Search     or:     and:
 LINUX 
 Language 
 Kernel 
 Package 
 Book 
 Test 
 OS 
 Forum 
 iakovlev.org 
 Kernels
 Boot 
 Memory 
 File system
 0.01
 1.0 
 2.0 
 2.4 
 2.6 
 3.x 
 4.x 
 Интервью 
 Kernel
 HOW-TO 1
 Ptrace
 Kernel-Rebuild-HOWTO
 Runlevel
 Linux daemons
 FAQ
NEWS
Последние статьи :
  Rust 07.11   
  Go 25.12   
  EXT4 10.11   
  FS benchmark 15.09   
  Сетунь 23.07   
  Trees 25.06   
  Apache 03.02   
  SQL 30.07   
  JFS 10.06   
  B-trees 01.06   
 
TOP 20
 Go Web ...384 
 2.0-> Linux IP Networking...337 
 Trees...308 
 Steve Pate 3...262 
 Secure Programming for Li...238 
 Rodriguez 6...233 
 Ethreal 1...231 
 Kamran Husain...223 
 Steve Pate 1...216 
 Rubni-Corbet -> Глав...213 
 Stein-MacEachern-> Час...206 
 Ethreal 4...204 
 Стивенс 9...203 
 Mike Perry...202 
 Gary V.Vaughan-> Autotoll...193 
 MySQL & PosgreSQL...193 
 Stevens-> Глава 3...191 
 Rubni-Corbet -> Глав...190 
 TCP 2...188 
 Rubni-Corbet -> Введ...186 
 
  01.08.2017 : 2258659 посещений 

iakovlev.org

Linux 2.6.9 Scheduler







Структура runqueue определена в kernel/sched.c

 struct runqueue {
 	spinlock_t lock;
 	unsigned long nr_running;
 	unsigned long cpu_load;
 	unsigned long long nr_switches;
 	unsigned long expired_timestamp, nr_uninterruptible;
 	unsigned long long timestamp_last_tick;
 	task_t *curr, *idle;
 	struct mm_struct *prev_mm;
 	prio_array_t *active, *expired, arrays[2];
 	int best_expired_prio;
 	atomic_t nr_iowait;
 	struct sched_domain *sd;
 	int active_balance;
 	int push_cpu;
 	task_t *migration_thread;
 	struct list_head migration_queue;
 	
 };
 
spinlock_t lock;
- блокировщик и "телохранитель" очереди процессов. Только один процесс может модифицировать runqueue .
unsigned long nr_running;
- порядковый номер задачи в очереди.
unsigned long cpu_load;
- загрузка процессора
unsigned long long nr_switches;
- время с последнего переключения приоритета
unsigned long  nr_uninterruptible;
- число задач , не имеющих прерываний
unsigned long long timestamp_last_tick;
- время последнего scheduler tick
task_t *curr;
- указатель на текущий процесс
task_t *idle;
- указатель на "пустышку"-процесс
struct mm_struct *prev_mm;
- указатель на виртуальную память предыдущего процесса
prio_array_t *active;
- массив приоритетных задач
prio_array_t *expired;
- массив задач с просроченным временем
int best_expired_prio;
- наивысший приоритет для всех задач
atomic_t nr_iowait;
- число задач в очереди , ждущих I/O
struct sched_domain *sd;
- домен , которому принадлежит очередь
int active_balance;
- балансировка очереди
int push_cpu;
- id процессора
	struct list_head migration_queue;
- список задач для миграции на много-процессорной системе

Блокировка

Только один процесс может блокировать очередь в данный момент времени. Функция для получения 2-х последовательных блокировок - double_rq_lock(rq1, rq2) , и ее обратный аналог - double_rq_unlock(rq1, rq2). Сама блокировка - task_rq_lock(task, &flags).

Массивы приоритетов

Планировщик всегда выполняет задачу с наивысшим приоритетом. Если несколько задач имеют наивысший одинаковый приоритет , то вступает в силу т.н. алгоритм round-robin . Имеются 2 массива - active и expired - для 2-х категорий задач.

unsigned int nr_active - число задач в таком массиве

unsigned long bitmap[BITMAP_SIZE] - битовый массив приоритетов задач в таком массиве задач. Этот битовый массив позволяет оптимизировать поиск приоритетов с помощью вызова __ffs().

struct list_head queue[MAX_PRIO] - список массивов. Каждый массив включает задачи со своим уровнем приоритета.

timeslice - время , которое отводится процессу на выполнение. Каждый приоритет - их всего 140 - имеет свой массив. После того как задача внутри такого массива получила шанс на выполнение и использовала его , она перемещается на вершину этого списка .

После того как timeslice заканчивается , задача удаляется из active priority array и перемещается в expired priority array. Когда все задачи окажутся перемещенными в expired priority array, происходит своппинг указателей active priority array и expired priority array.

Задачи имеют статический приоритет , который колеблется в пределах от -20 до 19. Чем выше это число , тем ниже приоритет. Любая задача начинает свою работу с нулевого приоритета , но потом он может быть изменен системным вызовом nice(). Статический приоритет хранится в static_prio. Задачи также имеют динамический приоритет , который хранится в prio

Когда задача выходит из спячки , время засыпания прибавляется к sleep_avg. Время , в течение которого процесс выполняется , вычитается из sleep_avg. Чем выше sleep_avg , тем выше динамический приоритет у задачи.

Когда форкается новый процесс , функция wake_up_forked_thread() уменьшает sleep_avg для родителя и потомка. Это делается для того , чтобы не произошло подавления со стороны более интерактивного процесса.

Каждую микросекунду срабатывает прерывание таймера - scheduler_tick(). Это событие порождает перемещение задач из expired array в active array. Это улучшает общую интерактивность и ротацию задач в системе.

Каждый процесс имеет переменную - interactive_credit. Чем больше спит процесс , тем выше это значение. Если это значение больше 100 , то это высокий интерактивный приоритет.

Задачи спят по-многим причинам - иногда они могут ожидать каких-то событий от устройств , иногда это причины программные , иногда из-за блокировки и т.д. Во время спячки они либо могут немедленно реагировать на внешние сигналы , либо нет - говорят , что они находятся в прерываемом либо в непрерываемом состоянии.

Waitqueue - очередь , в которой спящие задачи ожидают события . Процесс ухода в спячку порождает следующие атомарные события :

  1 Генерится DECLARE_WAIYQUEUE()
  2 Вызывается add_wait_queue()
  3 Задача маркируется с помощью TASK_INTERRUPTIBLE либо TASK_UNINTERRUPTIBLE
  4 Вызывается цикл schedule()
  5 Вызывается remove_wait_queue()
  
 

shedule() - главная функция шедулятора . Она переключает задачу и запускает ее. sheduler_tick() играет роль часового механизма, проверяя статус текущей задачи и выполняя балансировку очереди . Функция shedule() каждый раз проверяет время выполнения текущей задачи. Это время уменьшается , если выполняемая задача имеет высокий interactive credit. Далее , если функция получает сигнал прерывания от ядра для какой-то задачи , эта задача получает статус TASK_RUNNING . Далее , ищется следующая задача , если она есть в очереди на выполнение . Если таковых нет , происходит балансировка выполняемых задач .


 Файл kernel/sched.c :
 
 /*
  * If a task is 'interactive' then we reinsert it in the active
  * array after it has expired its current timeslice. (it will not
  * continue to run immediately, it will still roundrobin with
  * other interactive tasks.)
  *
  * This part scales the interactivity limit depending on niceness.
  *
  * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
  * Here are a few examples of different nice levels:
  *
  *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
  *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
  *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
  *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
  *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
  *
  * (the X axis represents the possible -5 ... 0 ... +5 dynamic
  *  priority range a task can explore, a value of '1' means the
  *  task is rated interactive.)
  *
  * Ie. nice +19 tasks can never get 'interactive' enough to be
  * reinserted into the active array. And only heavily CPU-hog nice -20
  * tasks will be expired. Default nice 0 tasks are somewhere between,
  * it takes some effort for them to get interactive, but it's not
  * too hard.
  */
 
 
 /*
  * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  * to time slice values: [800ms ... 100ms ... 5ms]
  *
  * The higher a thread's priority, the bigger timeslices
  * it gets during one round of execution. But even the lowest
  * priority thread gets MIN_TIMESLICE worth of execution time.
  */
 
 #define SCALE_PRIO(x, prio) \
 	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
 
 static unsigned int task_timeslice(task_t *p)
 {
 	if (p->static_prio < NICE_TO_PRIO(0))
 		return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
 	else
 		return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
 }
 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)	\
 				< (long long) (sd)->cache_hot_time)
 
 enum idle_type
 {
 	IDLE,
 	NOT_IDLE,
 	NEWLY_IDLE,
 	MAX_IDLE_TYPES
 };
 
 struct sched_domain;
 
 /*
  * These are the runqueue data structures:
  */
 
 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
 
 typedef struct runqueue runqueue_t;
 
 struct prio_array {
 	unsigned int nr_active;
 	unsigned long bitmap[BITMAP_SIZE];
 	struct list_head queue[MAX_PRIO];
 };
 
 /*
  * This is the main, per-CPU runqueue data structure.
  *
  * Locking rule: those places that want to lock multiple runqueues
  * (such as the load balancing or the thread migration code), lock
  * acquire operations must be ordered by ascending &runqueue.
  */
 struct runqueue {
 	spinlock_t lock;
 
 	/*
 	 * nr_running and cpu_load should be in the same cacheline because
 	 * remote CPUs use both these fields when doing load calculation.
 	 */
 	unsigned long nr_running;
 #ifdef CONFIG_SMP
 	unsigned long cpu_load;
 #endif
 	unsigned long long nr_switches;
 	unsigned long expired_timestamp, nr_uninterruptible;
 	unsigned long long timestamp_last_tick;
 	task_t *curr, *idle;
 	struct mm_struct *prev_mm;
 	prio_array_t *active, *expired, arrays[2];
 	int best_expired_prio;
 	atomic_t nr_iowait;
 
 #ifdef CONFIG_SMP
 	struct sched_domain *sd;
 
 	/* For active balancing */
 	int active_balance;
 	int push_cpu;
 
 	task_t *migration_thread;
 	struct list_head migration_queue;
 #endif
 
 #ifdef CONFIG_SCHEDSTATS
 	/* latency stats */
 	struct sched_info rq_sched_info;
 
 	/* sys_sched_yield() stats */
 	unsigned long yld_exp_empty;
 	unsigned long yld_act_empty;
 	unsigned long yld_both_empty;
 	unsigned long yld_cnt;
 
 	/* schedule() stats */
 	unsigned long sched_noswitch;
 	unsigned long sched_switch;
 	unsigned long sched_cnt;
 	unsigned long sched_goidle;
 
 	/* pull_task() stats */
 	unsigned long pt_gained[MAX_IDLE_TYPES];
 	unsigned long pt_lost[MAX_IDLE_TYPES];
 
 	/* active_load_balance() stats */
 	unsigned long alb_cnt;
 	unsigned long alb_lost;
 	unsigned long alb_gained;
 	unsigned long alb_failed;
 
 	/* try_to_wake_up() stats */
 	unsigned long ttwu_cnt;
 	unsigned long ttwu_attempts;
 	unsigned long ttwu_moved;
 
 	/* wake_up_new_task() stats */
 	unsigned long wunt_cnt;
 	unsigned long wunt_moved;
 
 	/* sched_migrate_task() stats */
 	unsigned long smt_cnt;
 
 	/* sched_balance_exec() stats */
 	unsigned long sbe_cnt;
 #endif
 };
 
 static DEFINE_PER_CPU(struct runqueue, runqueues);
 
 /*
  * sched-domains (multiprocessor balancing) declarations:
  */
 #ifdef CONFIG_SMP
 #define SCHED_LOAD_SCALE	128UL	/* increase resolution of load */
 
 #define SD_BALANCE_NEWIDLE	1	/* Balance when about to become idle */
 #define SD_BALANCE_EXEC		2	/* Balance on exec */
 #define SD_WAKE_IDLE		4	/* Wake to idle CPU on task wakeup */
 #define SD_WAKE_AFFINE		8	/* Wake task to waking CPU */
 #define SD_WAKE_BALANCE		16	/* Perform balancing at task wakeup */
 #define SD_SHARE_CPUPOWER	32	/* Domain members share cpu power */
 
 struct sched_group {
 	struct sched_group *next;	/* Must be a circular list */
 	cpumask_t cpumask;
 
 	/*
 	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
 	 * single CPU. This should be read only (except for setup). Although
 	 * it will need to be written to at cpu hot(un)plug time, perhaps the
 	 * cpucontrol semaphore will provide enough exclusion?
 	 */
 	unsigned long cpu_power;
 };
 
 struct sched_domain {
 	/* These fields must be setup */
 	struct sched_domain *parent;	/* top domain must be null terminated */
 	struct sched_group *groups;	/* the balancing groups of the domain */
 	cpumask_t span;			/* span of all CPUs in this domain */
 	unsigned long min_interval;	/* Minimum balance interval ms */
 	unsigned long max_interval;	/* Maximum balance interval ms */
 	unsigned int busy_factor;	/* less balancing by factor if busy */
 	unsigned int imbalance_pct;	/* No balance until over watermark */
 	unsigned long long cache_hot_time; /* Task considered cache hot (ns) */
 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
 	unsigned int per_cpu_gain;	/* CPU % gained by adding domain cpus */
 	int flags;			/* See SD_* */
 
 	/* Runtime fields. */
 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
 	unsigned int nr_balance_failed; /* initialise to 0 */
 
 #ifdef CONFIG_SCHEDSTATS
 	/* load_balance() stats */
 	unsigned long lb_cnt[MAX_IDLE_TYPES];
 	unsigned long lb_failed[MAX_IDLE_TYPES];
 	unsigned long lb_imbalance[MAX_IDLE_TYPES];
 	unsigned long lb_nobusyg[MAX_IDLE_TYPES];
 	unsigned long lb_nobusyq[MAX_IDLE_TYPES];
 
 	/* sched_balance_exec() stats */
 	unsigned long sbe_attempts;
 	unsigned long sbe_pushed;
 
 	/* try_to_wake_up() stats */
 	unsigned long ttwu_wake_affine;
 	unsigned long ttwu_wake_balance;
 #endif
 };
 
 #ifndef ARCH_HAS_SCHED_TUNE
 #ifdef CONFIG_SCHED_SMT
 #define ARCH_HAS_SCHED_WAKE_IDLE
 /* Common values for SMT siblings */
 #define SD_SIBLING_INIT (struct sched_domain) {		\
 	.span			= CPU_MASK_NONE,	\
 	.parent			= NULL,			\
 	.groups			= NULL,			\
 	.min_interval		= 1,			\
 	.max_interval		= 2,			\
 	.busy_factor		= 8,			\
 	.imbalance_pct		= 110,			\
 	.cache_hot_time		= 0,			\
 	.cache_nice_tries	= 0,			\
 	.per_cpu_gain		= 25,			\
 	.flags			= SD_BALANCE_NEWIDLE	\
 				| SD_BALANCE_EXEC	\
 				| SD_WAKE_AFFINE	\
 				| SD_WAKE_IDLE		\
 				| SD_SHARE_CPUPOWER,	\
 	.last_balance		= jiffies,		\
 	.balance_interval	= 1,			\
 	.nr_balance_failed	= 0,			\
 }
 #endif
 
 /* Common values for CPUs */
 #define SD_CPU_INIT (struct sched_domain) {		\
 	.span			= CPU_MASK_NONE,	\
 	.parent			= NULL,			\
 	.groups			= NULL,			\
 	.min_interval		= 1,			\
 	.max_interval		= 4,			\
 	.busy_factor		= 64,			\
 	.imbalance_pct		= 125,			\
 	.cache_hot_time		= cache_decay_ticks*1000000 ? : (5*1000000/2),\
 	.cache_nice_tries	= 1,			\
 	.per_cpu_gain		= 100,			\
 	.flags			= SD_BALANCE_NEWIDLE	\
 				| SD_BALANCE_EXEC	\
 				| SD_WAKE_AFFINE	\
 				| SD_WAKE_BALANCE,	\
 	.last_balance		= jiffies,		\
 	.balance_interval	= 1,			\
 	.nr_balance_failed	= 0,			\
 }
 
 /* Arch can override this macro in processor.h */
 #if defined(CONFIG_NUMA) && !defined(SD_NODE_INIT)
 #define SD_NODE_INIT (struct sched_domain) {		\
 	.span			= CPU_MASK_NONE,	\
 	.parent			= NULL,			\
 	.groups			= NULL,			\
 	.min_interval		= 8,			\
 	.max_interval		= 32,			\
 	.busy_factor		= 32,			\
 	.imbalance_pct		= 125,			\
 	.cache_hot_time		= (10*1000000),		\
 	.cache_nice_tries	= 1,			\
 	.per_cpu_gain		= 100,			\
 	.flags			= SD_BALANCE_EXEC	\
 				| SD_WAKE_BALANCE,	\
 	.last_balance		= jiffies,		\
 	.balance_interval	= 1,			\
 	.nr_balance_failed	= 0,			\
 }
 #endif
 #endif /* ARCH_HAS_SCHED_TUNE */
 #endif
 
 
 #define for_each_domain(cpu, domain) \
 	for (domain = cpu_rq(cpu)->sd; domain; domain = domain->parent)
 
 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
 #define this_rq()		(&__get_cpu_var(runqueues))
 #define task_rq(p)		cpu_rq(task_cpu(p))
 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
 
 /*
  * Default context-switch locking:
  */
 #ifndef prepare_arch_switch
 # define prepare_arch_switch(rq, next)	do { } while (0)
 # define finish_arch_switch(rq, next)	spin_unlock_irq(&(rq)->lock)
 # define task_running(rq, p)		((rq)->curr == (p))
 #endif
 
 /*
  * task_rq_lock - lock the runqueue a given task resides on and disable
  * interrupts.  Note the ordering: we can safely lookup the task_rq without
  * explicitly disabling preemption.
  */
 static runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
 {
 	struct runqueue *rq;
 
 repeat_lock_task:
 	local_irq_save(*flags);
 	rq = task_rq(p);
 	spin_lock(&rq->lock);
 	if (unlikely(rq != task_rq(p))) {
 		spin_unlock_irqrestore(&rq->lock, *flags);
 		goto repeat_lock_task;
 	}
 	return rq;
 }
 
 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
 {
 	spin_unlock_irqrestore(&rq->lock, *flags);
 }
 
 #ifdef CONFIG_SCHEDSTATS
 /*
  * bump this up when changing the output format or the meaning of an existing
  * format, so that tools can adapt (or abort)
  */
 #define SCHEDSTAT_VERSION 10
 
 static int show_schedstat(struct seq_file *seq, void *v)
 {
 	int cpu;
 	enum idle_type itype;
 
 	seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
 	seq_printf(seq, "timestamp %lu\n", jiffies);
 	for_each_online_cpu(cpu) {
 		runqueue_t *rq = cpu_rq(cpu);
 #ifdef CONFIG_SMP
 		struct sched_domain *sd;
 		int dcnt = 0;
 #endif
 
 		/* runqueue-specific stats */
 		seq_printf(seq,
 		    "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu "
 		    "%lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
 		    cpu, rq->yld_both_empty,
 		    rq->yld_act_empty, rq->yld_exp_empty,
 		    rq->yld_cnt, rq->sched_noswitch,
 		    rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
 		    rq->alb_cnt, rq->alb_gained, rq->alb_lost,
 		    rq->alb_failed,
 		    rq->ttwu_cnt, rq->ttwu_moved, rq->ttwu_attempts,
 		    rq->wunt_cnt, rq->wunt_moved,
 		    rq->smt_cnt, rq->sbe_cnt, rq->rq_sched_info.cpu_time,
 		    rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
 
 		for (itype = IDLE; itype < MAX_IDLE_TYPES; itype++)
 			seq_printf(seq, " %lu %lu", rq->pt_gained[itype],
 						    rq->pt_lost[itype]);
 		seq_printf(seq, "\n");
 
 #ifdef CONFIG_SMP
 		/* domain-specific stats */
 		for_each_domain(cpu, sd) {
 			char mask_str[NR_CPUS];
 
 			cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
 			seq_printf(seq, "domain%d %s", dcnt++, mask_str);
 			for (itype = IDLE; itype < MAX_IDLE_TYPES; itype++) {
 				seq_printf(seq, " %lu %lu %lu %lu %lu",
 				    sd->lb_cnt[itype],
 				    sd->lb_failed[itype],
 				    sd->lb_imbalance[itype],
 				    sd->lb_nobusyq[itype],
 				    sd->lb_nobusyg[itype]);
 			}
 			seq_printf(seq, " %lu %lu %lu %lu\n",
 			    sd->sbe_pushed, sd->sbe_attempts,
 			    sd->ttwu_wake_affine, sd->ttwu_wake_balance);
 		}
 #endif
 	}
 	return 0;
 }
 
 static int schedstat_open(struct inode *inode, struct file *file)
 {
 	unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
 	char *buf = kmalloc(size, GFP_KERNEL);
 	struct seq_file *m;
 	int res;
 
 	if (!buf)
 		return -ENOMEM;
 	res = single_open(file, show_schedstat, NULL);
 	if (!res) {
 		m = file->private_data;
 		m->buf = buf;
 		m->size = size;
 	} else
 		kfree(buf);
 	return res;
 }
 
 struct file_operations proc_schedstat_operations = {
 	.open    = schedstat_open,
 	.read    = seq_read,
 	.llseek  = seq_lseek,
 	.release = single_release,
 };
 
 # define schedstat_inc(rq, field)	rq->field++;
 # define schedstat_add(rq, field, amt)	rq->field += amt;
 #else /* !CONFIG_SCHEDSTATS */
 # define schedstat_inc(rq, field)	do { } while (0);
 # define schedstat_add(rq, field, amt)	do { } while (0);
 #endif
 
 /*
  * rq_lock - lock a given runqueue and disable interrupts.
  */
 static runqueue_t *this_rq_lock(void)
 {
 	runqueue_t *rq;
 
 	local_irq_disable();
 	rq = this_rq();
 	spin_lock(&rq->lock);
 
 	return rq;
 }
 
 static inline void rq_unlock(runqueue_t *rq)
 {
 	spin_unlock_irq(&rq->lock);
 }
 
 #ifdef CONFIG_SCHEDSTATS
 /*
  * Called when a process is dequeued from the active array and given
  * the cpu.  We should note that with the exception of interactive
  * tasks, the expired queue will become the active queue after the active
  * queue is empty, without explicitly dequeuing and requeuing tasks in the
  * expired queue.  (Interactive tasks may be requeued directly to the
  * active queue, thus delaying tasks in the expired queue from running;
  * see scheduler_tick()).
  *
  * This function is only called from sched_info_arrive(), rather than
  * dequeue_task(). Even though a task may be queued and dequeued multiple
  * times as it is shuffled about, we're really interested in knowing how
  * long it was from the *first* time it was queued to the time that it
  * finally hit a cpu.
  */
 static inline void sched_info_dequeued(task_t *t)
 {
 	t->sched_info.last_queued = 0;
 }
 
 /*
  * Called when a task finally hits the cpu.  We can now calculate how
  * long it was waiting to run.  We also note when it began so that we
  * can keep stats on how long its timeslice is.
  */
 static inline void sched_info_arrive(task_t *t)
 {
 	unsigned long now = jiffies, diff = 0;
 	struct runqueue *rq = task_rq(t);
 
 	if (t->sched_info.last_queued)
 		diff = now - t->sched_info.last_queued;
 	sched_info_dequeued(t);
 	t->sched_info.run_delay += diff;
 	t->sched_info.last_arrival = now;
 	t->sched_info.pcnt++;
 
 	if (!rq)
 		return;
 
 	rq->rq_sched_info.run_delay += diff;
 	rq->rq_sched_info.pcnt++;
 }
 
 /*
  * Called when a process is queued into either the active or expired
  * array.  The time is noted and later used to determine how long we
  * had to wait for us to reach the cpu.  Since the expired queue will
  * become the active queue after active queue is empty, without dequeuing
  * and requeuing any tasks, we are interested in queuing to either. It
  * is unusual but not impossible for tasks to be dequeued and immediately
  * requeued in the same or another array: this can happen in sched_yield(),
  * set_user_nice(), and even load_balance() as it moves tasks from runqueue
  * to runqueue.
  *
  * This function is only called from enqueue_task(), but also only updates
  * the timestamp if it is already not set.  It's assumed that
  * sched_info_dequeued() will clear that stamp when appropriate.
  */
 static inline void sched_info_queued(task_t *t)
 {
 	if (!t->sched_info.last_queued)
 		t->sched_info.last_queued = jiffies;
 }
 
 /*
  * Called when a process ceases being the active-running process, either
  * voluntarily or involuntarily.  Now we can calculate how long we ran.
  */
 static inline void sched_info_depart(task_t *t)
 {
 	struct runqueue *rq = task_rq(t);
 	unsigned long diff = jiffies - t->sched_info.last_arrival;
 
 	t->sched_info.cpu_time += diff;
 
 	if (rq)
 		rq->rq_sched_info.cpu_time += diff;
 }
 
 /*
  * Called when tasks are switched involuntarily due, typically, to expiring
  * their time slice.  (This may also be called when switching to or from
  * the idle task.)  We are only called when prev != next.
  */
 static inline void sched_info_switch(task_t *prev, task_t *next)
 {
 	struct runqueue *rq = task_rq(prev);
 
 	/*
 	 * prev now departs the cpu.  It's not interesting to record
 	 * stats about how efficient we were at scheduling the idle
 	 * process, however.
 	 */
 	if (prev != rq->idle)
 		sched_info_depart(prev);
 
 	if (next != rq->idle)
 		sched_info_arrive(next);
 }
 #else
 #define sched_info_queued(t)		do { } while (0)
 #define sched_info_switch(t, next)	do { } while (0)
 #endif /* CONFIG_SCHEDSTATS */
 
 /*
  * Adding/removing a task to/from a priority array:
  */
 static void dequeue_task(struct task_struct *p, prio_array_t *array)
 {
 	array->nr_active--;
 	list_del(&p->run_list);
 	if (list_empty(array->queue + p->prio))
 		__clear_bit(p->prio, array->bitmap);
 }
 
 static void enqueue_task(struct task_struct *p, prio_array_t *array)
 {
 	sched_info_queued(p);
 	list_add_tail(&p->run_list, array->queue + p->prio);
 	__set_bit(p->prio, array->bitmap);
 	array->nr_active++;
 	p->array = array;
 }
 
 /*
  * Used by the migration code - we pull tasks from the head of the
  * remote queue so we want these tasks to show up at the head of the
  * local queue:
  */
 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
 {
 	list_add(&p->run_list, array->queue + p->prio);
 	__set_bit(p->prio, array->bitmap);
 	array->nr_active++;
 	p->array = array;
 }
 
 /*
  * effective_prio - return the priority that is based on the static
  * priority but is modified by bonuses/penalties.
  *
  * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
  * into the -5 ... 0 ... +5 bonus/penalty range.
  *
  * We use 25% of the full 0...39 priority range so that:
  *
  * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
  * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
  *
  * Both properties are important to certain workloads.
  */
 static int effective_prio(task_t *p)
 {
 	int bonus, prio;
 
 	if (rt_task(p))
 		return p->prio;
 
 	bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
 
 	prio = p->static_prio - bonus;
 	if (prio < MAX_RT_PRIO)
 		prio = MAX_RT_PRIO;
 	if (prio > MAX_PRIO-1)
 		prio = MAX_PRIO-1;
 	return prio;
 }
 
 /*
  * __activate_task - move a task to the runqueue.
  */
 static inline void __activate_task(task_t *p, runqueue_t *rq)
 {
 	enqueue_task(p, rq->active);
 	rq->nr_running++;
 }
 
 /*
  * __activate_idle_task - move idle task to the _front_ of runqueue.
  */
 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
 {
 	enqueue_task_head(p, rq->active);
 	rq->nr_running++;
 }
 
 static void recalc_task_prio(task_t *p, unsigned long long now)
 {
 	unsigned long long __sleep_time = now - p->timestamp;
 	unsigned long sleep_time;
 
 	if (__sleep_time > NS_MAX_SLEEP_AVG)
 		sleep_time = NS_MAX_SLEEP_AVG;
 	else
 		sleep_time = (unsigned long)__sleep_time;
 
 	if (likely(sleep_time > 0)) {
 		/*
 		 * User tasks that sleep a long time are categorised as
 		 * idle and will get just interactive status to stay active &
 		 * prevent them suddenly becoming cpu hogs and starving
 		 * other processes.
 		 */
 		if (p->mm && p->activated != -1 &&
 			sleep_time > INTERACTIVE_SLEEP(p)) {
 				p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
 						DEF_TIMESLICE);
 				if (!HIGH_CREDIT(p))
 					p->interactive_credit++;
 		} else {
 			/*
 			 * The lower the sleep avg a task has the more
 			 * rapidly it will rise with sleep time.
 			 */
 			sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
 
 			/*
 			 * Tasks with low interactive_credit are limited to
 			 * one timeslice worth of sleep avg bonus.
 			 */
 			if (LOW_CREDIT(p) &&
 			    sleep_time > JIFFIES_TO_NS(task_timeslice(p)))
 				sleep_time = JIFFIES_TO_NS(task_timeslice(p));
 
 			/*
 			 * Non high_credit tasks waking from uninterruptible
 			 * sleep are limited in their sleep_avg rise as they
 			 * are likely to be cpu hogs waiting on I/O
 			 */
 			if (p->activated == -1 && !HIGH_CREDIT(p) && p->mm) {
 				if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
 					sleep_time = 0;
 				else if (p->sleep_avg + sleep_time >=
 						INTERACTIVE_SLEEP(p)) {
 					p->sleep_avg = INTERACTIVE_SLEEP(p);
 					sleep_time = 0;
 				}
 			}
 
 			/*
 			 * This code gives a bonus to interactive tasks.
 			 *
 			 * The boost works by updating the 'average sleep time'
 			 * value here, based on ->timestamp. The more time a
 			 * task spends sleeping, the higher the average gets -
 			 * and the higher the priority boost gets as well.
 			 */
 			p->sleep_avg += sleep_time;
 
 			if (p->sleep_avg > NS_MAX_SLEEP_AVG) {
 				p->sleep_avg = NS_MAX_SLEEP_AVG;
 				if (!HIGH_CREDIT(p))
 					p->interactive_credit++;
 			}
 		}
 	}
 
 	p->prio = effective_prio(p);
 }
 
 /*
  * activate_task - move a task to the runqueue and do priority recalculation
  *
  * Update all the scheduling statistics stuff. (sleep average
  * calculation, priority modifiers, etc.)
  */
 static void activate_task(task_t *p, runqueue_t *rq, int local)
 {
 	unsigned long long now;
 
 	now = sched_clock();
 #ifdef CONFIG_SMP
 	if (!local) {
 		/* Compensate for drifting sched_clock */
 		runqueue_t *this_rq = this_rq();
 		now = (now - this_rq->timestamp_last_tick)
 			+ rq->timestamp_last_tick;
 	}
 #endif
 
 	recalc_task_prio(p, now);
 
 	/*
 	 * This checks to make sure it's not an uninterruptible task
 	 * that is now waking up.
 	 */
 	if (!p->activated) {
 		/*
 		 * Tasks which were woken up by interrupts (ie. hw events)
 		 * are most likely of interactive nature. So we give them
 		 * the credit of extending their sleep time to the period
 		 * of time they spend on the runqueue, waiting for execution
 		 * on a CPU, first time around:
 		 */
 		if (in_interrupt())
 			p->activated = 2;
 		else {
 			/*
 			 * Normal first-time wakeups get a credit too for
 			 * on-runqueue time, but it will be weighted down:
 			 */
 			p->activated = 1;
 		}
 	}
 	p->timestamp = now;
 
 	__activate_task(p, rq);
 }
 
 /*
  * deactivate_task - remove a task from the runqueue.
  */
 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
 {
 	rq->nr_running--;
 	if (p->state == TASK_UNINTERRUPTIBLE)
 		rq->nr_uninterruptible++;
 	dequeue_task(p, p->array);
 	p->array = NULL;
 }
 
 /*
  * resched_task - mark a task 'to be rescheduled now'.
  *
  * On UP this means the setting of the need_resched flag, on SMP it
  * might also involve a cross-CPU call to trigger the scheduler on
  * the target CPU.
  */
 #ifdef CONFIG_SMP
 static void resched_task(task_t *p)
 {
 	int need_resched, nrpolling;
 
 	BUG_ON(!spin_is_locked(&task_rq(p)->lock));
 
 	/* minimise the chance of sending an interrupt to poll_idle() */
 	nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
 	need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
 	nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
 
 	if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
 		smp_send_reschedule(task_cpu(p));
 }
 #else
 static inline void resched_task(task_t *p)
 {
 	set_tsk_need_resched(p);
 }
 #endif
 
 /**
  * task_curr - is this task currently executing on a CPU?
  * @p: the task in question.
  */
 inline int task_curr(const task_t *p)
 {
 	return cpu_curr(task_cpu(p)) == p;
 }
 
 #ifdef CONFIG_SMP
 enum request_type {
 	REQ_MOVE_TASK,
 	REQ_SET_DOMAIN,
 };
 
 typedef struct {
 	struct list_head list;
 	enum request_type type;
 
 	/* For REQ_MOVE_TASK */
 	task_t *task;
 	int dest_cpu;
 
 	/* For REQ_SET_DOMAIN */
 	struct sched_domain *sd;
 
 	struct completion done;
 } migration_req_t;
 
 /*
  * The task's runqueue lock must be held.
  * Returns true if you have to wait for migration thread.
  */
 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
 {
 	runqueue_t *rq = task_rq(p);
 
 	/*
 	 * If the task is not on a runqueue (and not running), then
 	 * it is sufficient to simply update the task's cpu field.
 	 */
 	if (!p->array && !task_running(rq, p)) {
 		set_task_cpu(p, dest_cpu);
 		return 0;
 	}
 
 	init_completion(&req->done);
 	req->type = REQ_MOVE_TASK;
 	req->task = p;
 	req->dest_cpu = dest_cpu;
 	list_add(&req->list, &rq->migration_queue);
 	return 1;
 }
 
 /*
  * wait_task_inactive - wait for a thread to unschedule.
  *
  * The caller must ensure that the task *will* unschedule sometime soon,
  * else this function might spin for a *long* time. This function can't
  * be called with interrupts off, or it may introduce deadlock with
  * smp_call_function() if an IPI is sent by the same process we are
  * waiting to become inactive.
  */
 void wait_task_inactive(task_t * p)
 {
 	unsigned long flags;
 	runqueue_t *rq;
 	int preempted;
 
 repeat:
 	rq = task_rq_lock(p, &flags);
 	/* Must be off runqueue entirely, not preempted. */
 	if (unlikely(p->array)) {
 		/* If it's preempted, we yield.  It could be a while. */
 		preempted = !task_running(rq, p);
 		task_rq_unlock(rq, &flags);
 		cpu_relax();
 		if (preempted)
 			yield();
 		goto repeat;
 	}
 	task_rq_unlock(rq, &flags);
 }
 
 /***
  * kick_process - kick a running thread to enter/exit the kernel
  * @p: the to-be-kicked thread
  *
  * Cause a process which is running on another CPU to enter
  * kernel-mode, without any delay. (to get signals handled.)
  */
 void kick_process(task_t *p)
 {
 	int cpu;
 
 	preempt_disable();
 	cpu = task_cpu(p);
 	if ((cpu != smp_processor_id()) && task_curr(p))
 		smp_send_reschedule(cpu);
 	preempt_enable();
 }
 
 EXPORT_SYMBOL_GPL(kick_process);
 
 /*
  * Return a low guess at the load of a migration-source cpu.
  *
  * We want to under-estimate the load of migration sources, to
  * balance conservatively.
  */
 static inline unsigned long source_load(int cpu)
 {
 	runqueue_t *rq = cpu_rq(cpu);
 	unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
 
 	return min(rq->cpu_load, load_now);
 }
 
 /*
  * Return a high guess at the load of a migration-target cpu
  */
 static inline unsigned long target_load(int cpu)
 {
 	runqueue_t *rq = cpu_rq(cpu);
 	unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
 
 	return max(rq->cpu_load, load_now);
 }
 
 #endif
 
 /*
  * wake_idle() is useful especially on SMT architectures to wake a
  * task onto an idle sibling if we would otherwise wake it onto a
  * busy sibling.
  *
  * Returns the CPU we should wake onto.
  */
 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
 static int wake_idle(int cpu, task_t *p)
 {
 	cpumask_t tmp;
 	runqueue_t *rq = cpu_rq(cpu);
 	struct sched_domain *sd;
 	int i;
 
 	if (idle_cpu(cpu))
 		return cpu;
 
 	sd = rq->sd;
 	if (!(sd->flags & SD_WAKE_IDLE))
 		return cpu;
 
 	cpus_and(tmp, sd->span, cpu_online_map);
 	cpus_and(tmp, tmp, p->cpus_allowed);
 
 	for_each_cpu_mask(i, tmp) {
 		if (idle_cpu(i))
 			return i;
 	}
 
 	return cpu;
 }
 #else
 static inline int wake_idle(int cpu, task_t *p)
 {
 	return cpu;
 }
 #endif
 
 /***
  * try_to_wake_up - wake up a thread
  * @p: the to-be-woken-up thread
  * @state: the mask of task states that can be woken
  * @sync: do a synchronous wakeup?
  *
  * Put it on the run-queue if it's not already there. The "current"
  * thread is always on the run-queue (except when the actual
  * re-schedule is in progress), and as such you're allowed to do
  * the simpler "current->state = TASK_RUNNING" to mark yourself
  * runnable without the overhead of this.
  *
  * returns failure only if the task is already active.
  */
 static int try_to_wake_up(task_t * p, unsigned int state, int sync)
 {
 	int cpu, this_cpu, success = 0;
 	unsigned long flags;
 	long old_state;
 	runqueue_t *rq;
 #ifdef CONFIG_SMP
 	unsigned long load, this_load;
 	struct sched_domain *sd;
 	int new_cpu;
 #endif
 
 	rq = task_rq_lock(p, &flags);
 	schedstat_inc(rq, ttwu_cnt);
 	old_state = p->state;
 	if (!(old_state & state))
 		goto out;
 
 	if (p->array)
 		goto out_running;
 
 	cpu = task_cpu(p);
 	this_cpu = smp_processor_id();
 
 #ifdef CONFIG_SMP
 	if (unlikely(task_running(rq, p)))
 		goto out_activate;
 
 	new_cpu = cpu;
 
 	if (cpu == this_cpu || unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
 		goto out_set_cpu;
 
 	load = source_load(cpu);
 	this_load = target_load(this_cpu);
 
 	/*
 	 * If sync wakeup then subtract the (maximum possible) effect of
 	 * the currently running task from the load of the current CPU:
 	 */
 	if (sync)
 		this_load -= SCHED_LOAD_SCALE;
 
 	/* Don't pull the task off an idle CPU to a busy one */
 	if (load < SCHED_LOAD_SCALE/2 && this_load > SCHED_LOAD_SCALE/2)
 		goto out_set_cpu;
 
 	new_cpu = this_cpu; /* Wake to this CPU if we can */
 
 	/*
 	 * Scan domains for affine wakeup and passive balancing
 	 * possibilities.
 	 */
 	for_each_domain(this_cpu, sd) {
 		unsigned int imbalance;
 		/*
 		 * Start passive balancing when half the imbalance_pct
 		 * limit is reached.
 		 */
 		imbalance = sd->imbalance_pct + (sd->imbalance_pct - 100) / 2;
 
 		if ((sd->flags & SD_WAKE_AFFINE) &&
 				!task_hot(p, rq->timestamp_last_tick, sd)) {
 			/*
 			 * This domain has SD_WAKE_AFFINE and p is cache cold
 			 * in this domain.
 			 */
 			if (cpu_isset(cpu, sd->span)) {
 				schedstat_inc(sd, ttwu_wake_affine);
 				goto out_set_cpu;
 			}
 		} else if ((sd->flags & SD_WAKE_BALANCE) &&
 				imbalance*this_load <= 100*load) {
 			/*
 			 * This domain has SD_WAKE_BALANCE and there is
 			 * an imbalance.
 			 */
 			if (cpu_isset(cpu, sd->span)) {
 				schedstat_inc(sd, ttwu_wake_balance);
 				goto out_set_cpu;
 			}
 		}
 	}
 
 	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
 out_set_cpu:
 	schedstat_inc(rq, ttwu_attempts);
 	new_cpu = wake_idle(new_cpu, p);
 	if (new_cpu != cpu && cpu_isset(new_cpu, p->cpus_allowed)) {
 		schedstat_inc(rq, ttwu_moved);
 		set_task_cpu(p, new_cpu);
 		task_rq_unlock(rq, &flags);
 		/* might preempt at this point */
 		rq = task_rq_lock(p, &flags);
 		old_state = p->state;
 		if (!(old_state & state))
 			goto out;
 		if (p->array)
 			goto out_running;
 
 		this_cpu = smp_processor_id();
 		cpu = task_cpu(p);
 	}
 
 out_activate:
 #endif /* CONFIG_SMP */
 	if (old_state == TASK_UNINTERRUPTIBLE) {
 		rq->nr_uninterruptible--;
 		/*
 		 * Tasks on involuntary sleep don't earn
 		 * sleep_avg beyond just interactive state.
 		 */
 		p->activated = -1;
 	}
 
 	/*
 	 * Sync wakeups (i.e. those types of wakeups where the waker
 	 * has indicated that it will leave the CPU in short order)
 	 * don't trigger a preemption, if the woken up task will run on
 	 * this cpu. (in this case the 'I will reschedule' promise of
 	 * the waker guarantees that the freshly woken up task is going
 	 * to be considered on this CPU.)
 	 */
 	activate_task(p, rq, cpu == this_cpu);
 	if (!sync || cpu != this_cpu) {
 		if (TASK_PREEMPTS_CURR(p, rq))
 			resched_task(rq->curr);
 	}
 	success = 1;
 
 out_running:
 	p->state = TASK_RUNNING;
 out:
 	task_rq_unlock(rq, &flags);
 
 	return success;
 }
 
 int fastcall wake_up_process(task_t * p)
 {
 	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
 		       		 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
 }
 
 EXPORT_SYMBOL(wake_up_process);
 
 int fastcall wake_up_state(task_t *p, unsigned int state)
 {
 	return try_to_wake_up(p, state, 0);
 }
 
 #ifdef CONFIG_SMP
 static int find_idlest_cpu(struct task_struct *p, int this_cpu,
 			   struct sched_domain *sd);
 #endif
 
 /*
  * Perform scheduler related setup for a newly forked process p.
  * p is forked by current.
  */
 void fastcall sched_fork(task_t *p)
 {
 	/*
 	 * We mark the process as running here, but have not actually
 	 * inserted it onto the runqueue yet. This guarantees that
 	 * nobody will actually run it, and a signal or other external
 	 * event cannot wake it up and insert it on the runqueue either.
 	 */
 	p->state = TASK_RUNNING;
 	INIT_LIST_HEAD(&p->run_list);
 	p->array = NULL;
 	spin_lock_init(&p->switch_lock);
 #ifdef CONFIG_SCHEDSTATS
 	memset(&p->sched_info, 0, sizeof(p->sched_info));
 #endif
 #ifdef CONFIG_PREEMPT
 	/*
 	 * During context-switch we hold precisely one spinlock, which
 	 * schedule_tail drops. (in the common case it's this_rq()->lock,
 	 * but it also can be p->switch_lock.) So we compensate with a count
 	 * of 1. Also, we want to start with kernel preemption disabled.
 	 */
 	p->thread_info->preempt_count = 1;
 #endif
 	/*
 	 * Share the timeslice between parent and child, thus the
 	 * total amount of pending timeslices in the system doesn't change,
 	 * resulting in more scheduling fairness.
 	 */
 	local_irq_disable();
 	p->time_slice = (current->time_slice + 1) >> 1;
 	/*
 	 * The remainder of the first timeslice might be recovered by
 	 * the parent if the child exits early enough.
 	 */
 	p->first_time_slice = 1;
 	current->time_slice >>= 1;
 	p->timestamp = sched_clock();
 	if (unlikely(!current->time_slice)) {
 		/*
 		 * This case is rare, it happens when the parent has only
 		 * a single jiffy left from its timeslice. Taking the
 		 * runqueue lock is not a problem.
 		 */
 		current->time_slice = 1;
 		preempt_disable();
 		scheduler_tick(0, 0);
 		local_irq_enable();
 		preempt_enable();
 	} else
 		local_irq_enable();
 }
 
 /*
  * wake_up_new_task - wake up a newly created task for the first time.
  *
  * This function will do some initial scheduler statistics housekeeping
  * that must be done for every newly created context, then puts the task
  * on the runqueue and wakes it.
  */
 void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
 {
 	unsigned long flags;
 	int this_cpu, cpu;
 	runqueue_t *rq, *this_rq;
 
 	rq = task_rq_lock(p, &flags);
 	cpu = task_cpu(p);
 	this_cpu = smp_processor_id();
 
 	BUG_ON(p->state != TASK_RUNNING);
 
 	schedstat_inc(rq, wunt_cnt);
 	/*
 	 * We decrease the sleep average of forking parents
 	 * and children as well, to keep max-interactive tasks
 	 * from forking tasks that are max-interactive. The parent
 	 * (current) is done further down, under its lock.
 	 */
 	p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
 		CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
 
 	p->interactive_credit = 0;
 
 	p->prio = effective_prio(p);
 
 	if (likely(cpu == this_cpu)) {
 		if (!(clone_flags & CLONE_VM)) {
 			/*
 			 * The VM isn't cloned, so we're in a good position to
 			 * do child-runs-first in anticipation of an exec. This
 			 * usually avoids a lot of COW overhead.
 			 */
 			if (unlikely(!current->array))
 				__activate_task(p, rq);
 			else {
 				p->prio = current->prio;
 				list_add_tail(&p->run_list, ¤t->run_list);
 				p->array = current->array;
 				p->array->nr_active++;
 				rq->nr_running++;
 			}
 			set_need_resched();
 		} else
 			/* Run child last */
 			__activate_task(p, rq);
 		/*
 		 * We skip the following code due to cpu == this_cpu
 	 	 *
 		 *   task_rq_unlock(rq, &flags);
 		 *   this_rq = task_rq_lock(current, &flags);
 		 */
 		this_rq = rq;
 	} else {
 		this_rq = cpu_rq(this_cpu);
 
 		/*
 		 * Not the local CPU - must adjust timestamp. This should
 		 * get optimised away in the !CONFIG_SMP case.
 		 */
 		p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
 					+ rq->timestamp_last_tick;
 		__activate_task(p, rq);
 		if (TASK_PREEMPTS_CURR(p, rq))
 			resched_task(rq->curr);
 
 		schedstat_inc(rq, wunt_moved);
 		/*
 		 * Parent and child are on different CPUs, now get the
 		 * parent runqueue to update the parent's ->sleep_avg:
 		 */
 		task_rq_unlock(rq, &flags);
 		this_rq = task_rq_lock(current, &flags);
 	}
 	current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
 		PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
 	task_rq_unlock(this_rq, &flags);
 }
 
 /*
  * Potentially available exiting-child timeslices are
  * retrieved here - this way the parent does not get
  * penalized for creating too many threads.
  *
  * (this cannot be used to 'generate' timeslices
  * artificially, because any timeslice recovered here
  * was given away by the parent in the first place.)
  */
 void fastcall sched_exit(task_t * p)
 {
 	unsigned long flags;
 	runqueue_t *rq;
 
 	/*
 	 * If the child was a (relative-) CPU hog then decrease
 	 * the sleep_avg of the parent as well.
 	 */
 	rq = task_rq_lock(p->parent, &flags);
 	if (p->first_time_slice) {
 		p->parent->time_slice += p->time_slice;
 		if (unlikely(p->parent->time_slice > task_timeslice(p)))
 			p->parent->time_slice = task_timeslice(p);
 	}
 	if (p->sleep_avg < p->parent->sleep_avg)
 		p->parent->sleep_avg = p->parent->sleep_avg /
 		(EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
 		(EXIT_WEIGHT + 1);
 	task_rq_unlock(rq, &flags);
 }
 
 /**
  * finish_task_switch - clean up after a task-switch
  * @prev: the thread we just switched away from.
  *
  * We enter this with the runqueue still locked, and finish_arch_switch()
  * will unlock it along with doing any other architecture-specific cleanup
  * actions.
  *
  * Note that we may have delayed dropping an mm in context_switch(). If
  * so, we finish that here outside of the runqueue lock.  (Doing it
  * with the lock held can cause deadlocks; see schedule() for
  * details.)
  */
 static void finish_task_switch(task_t *prev)
 {
 	runqueue_t *rq = this_rq();
 	struct mm_struct *mm = rq->prev_mm;
 	unsigned long prev_task_flags;
 
 	rq->prev_mm = NULL;
 
 	/*
 	 * A task struct has one reference for the use as "current".
 	 * If a task dies, then it sets TASK_ZOMBIE in tsk->state and calls
 	 * schedule one last time. The schedule call will never return,
 	 * and the scheduled task must drop that reference.
 	 * The test for TASK_ZOMBIE must occur while the runqueue locks are
 	 * still held, otherwise prev could be scheduled on another cpu, die
 	 * there before we look at prev->state, and then the reference would
 	 * be dropped twice.
 	 *		Manfred Spraul 
 	 */
 	prev_task_flags = prev->flags;
 	finish_arch_switch(rq, prev);
 	if (mm)
 		mmdrop(mm);
 	if (unlikely(prev_task_flags & PF_DEAD))
 		put_task_struct(prev);
 }
 
 /**
  * schedule_tail - first thing a freshly forked thread must call.
  * @prev: the thread we just switched away from.
  */
 asmlinkage void schedule_tail(task_t *prev)
 {
 	finish_task_switch(prev);
 
 	if (current->set_child_tid)
 		put_user(current->pid, current->set_child_tid);
 }
 
 /*
  * context_switch - switch to the new MM and the new
  * thread's register state.
  */
 static inline
 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
 {
 	struct mm_struct *mm = next->mm;
 	struct mm_struct *oldmm = prev->active_mm;
 
 	if (unlikely(!mm)) {
 		next->active_mm = oldmm;
 		atomic_inc(&oldmm->mm_count);
 		enter_lazy_tlb(oldmm, next);
 	} else
 		switch_mm(oldmm, mm, next);
 
 	if (unlikely(!prev->mm)) {
 		prev->active_mm = NULL;
 		WARN_ON(rq->prev_mm);
 		rq->prev_mm = oldmm;
 	}
 
 	/* Here we just switch the register state and the stack. */
 	switch_to(prev, next, prev);
 
 	return prev;
 }
 
 /*
  * nr_running, nr_uninterruptible and nr_context_switches:
  *
  * externally visible scheduler statistics: current number of runnable
  * threads, current number of uninterruptible-sleeping threads, total
  * number of context switches performed since bootup.
  */
 unsigned long nr_running(void)
 {
 	unsigned long i, sum = 0;
 
 	for_each_online_cpu(i)
 		sum += cpu_rq(i)->nr_running;
 
 	return sum;
 }
 
 unsigned long nr_uninterruptible(void)
 {
 	unsigned long i, sum = 0;
 
 	for_each_cpu(i)
 		sum += cpu_rq(i)->nr_uninterruptible;
 
 	return sum;
 }
 
 unsigned long long nr_context_switches(void)
 {
 	unsigned long long i, sum = 0;
 
 	for_each_cpu(i)
 		sum += cpu_rq(i)->nr_switches;
 
 	return sum;
 }
 
 unsigned long nr_iowait(void)
 {
 	unsigned long i, sum = 0;
 
 	for_each_cpu(i)
 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
 
 	return sum;
 }
 
 #ifdef CONFIG_SMP
 
 /*
  * double_rq_lock - safely lock two runqueues
  *
  * Note this does not disable interrupts like task_rq_lock,
  * you need to do so manually before calling.
  */
 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
 {
 	if (rq1 == rq2)
 		spin_lock(&rq1->lock);
 	else {
 		if (rq1 < rq2) {
 			spin_lock(&rq1->lock);
 			spin_lock(&rq2->lock);
 		} else {
 			spin_lock(&rq2->lock);
 			spin_lock(&rq1->lock);
 		}
 	}
 }
 
 /*
  * double_rq_unlock - safely unlock two runqueues
  *
  * Note this does not restore interrupts like task_rq_unlock,
  * you need to do so manually after calling.
  */
 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
 {
 	spin_unlock(&rq1->lock);
 	if (rq1 != rq2)
 		spin_unlock(&rq2->lock);
 }
 
 /*
  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  */
 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
 {
 	if (unlikely(!spin_trylock(&busiest->lock))) {
 		if (busiest < this_rq) {
 			spin_unlock(&this_rq->lock);
 			spin_lock(&busiest->lock);
 			spin_lock(&this_rq->lock);
 		} else
 			spin_lock(&busiest->lock);
 	}
 }
 
 /*
  * find_idlest_cpu - find the least busy runqueue.
  */
 static int find_idlest_cpu(struct task_struct *p, int this_cpu,
 			   struct sched_domain *sd)
 {
 	unsigned long load, min_load, this_load;
 	int i, min_cpu;
 	cpumask_t mask;
 
 	min_cpu = UINT_MAX;
 	min_load = ULONG_MAX;
 
 	cpus_and(mask, sd->span, cpu_online_map);
 	cpus_and(mask, mask, p->cpus_allowed);
 
 	for_each_cpu_mask(i, mask) {
 		load = target_load(i);
 
 		if (load < min_load) {
 			min_cpu = i;
 			min_load = load;
 
 			/* break out early on an idle CPU: */
 			if (!min_load)
 				break;
 		}
 	}
 
 	/* add +1 to account for the new task */
 	this_load = source_load(this_cpu) + SCHED_LOAD_SCALE;
 
 	/*
 	 * Would with the addition of the new task to the
 	 * current CPU there be an imbalance between this
 	 * CPU and the idlest CPU?
 	 *
 	 * Use half of the balancing threshold - new-context is
 	 * a good opportunity to balance.
 	 */
 	if (min_load*(100 + (sd->imbalance_pct-100)/2) < this_load*100)
 		return min_cpu;
 
 	return this_cpu;
 }
 
 /*
  * If dest_cpu is allowed for this process, migrate the task to it.
  * This is accomplished by forcing the cpu_allowed mask to only
  * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
  * the cpu_allowed mask is restored.
  */
 static void sched_migrate_task(task_t *p, int dest_cpu)
 {
 	migration_req_t req;
 	runqueue_t *rq;
 	unsigned long flags;
 
 	rq = task_rq_lock(p, &flags);
 	if (!cpu_isset(dest_cpu, p->cpus_allowed)
 	    || unlikely(cpu_is_offline(dest_cpu)))
 		goto out;
 
 	schedstat_inc(rq, smt_cnt);
 	/* force the process onto the specified CPU */
 	if (migrate_task(p, dest_cpu, &req)) {
 		/* Need to wait for migration thread (might exit: take ref). */
 		struct task_struct *mt = rq->migration_thread;
 		get_task_struct(mt);
 		task_rq_unlock(rq, &flags);
 		wake_up_process(mt);
 		put_task_struct(mt);
 		wait_for_completion(&req.done);
 		return;
 	}
 out:
 	task_rq_unlock(rq, &flags);
 }
 
 /*
  * sched_exec(): find the highest-level, exec-balance-capable
  * domain and try to migrate the task to the least loaded CPU.
  *
  * execve() is a valuable balancing opportunity, because at this point
  * the task has the smallest effective memory and cache footprint.
  */
 void sched_exec(void)
 {
 	struct sched_domain *tmp, *sd = NULL;
 	int new_cpu, this_cpu = get_cpu();
 
 	schedstat_inc(this_rq(), sbe_cnt);
 	/* Prefer the current CPU if there's only this task running */
 	if (this_rq()->nr_running <= 1)
 		goto out;
 
 	for_each_domain(this_cpu, tmp)
 		if (tmp->flags & SD_BALANCE_EXEC)
 			sd = tmp;
 
 	if (sd) {
 		schedstat_inc(sd, sbe_attempts);
 		new_cpu = find_idlest_cpu(current, this_cpu, sd);
 		if (new_cpu != this_cpu) {
 			schedstat_inc(sd, sbe_pushed);
 			put_cpu();
 			sched_migrate_task(current, new_cpu);
 			return;
 		}
 	}
 out:
 	put_cpu();
 }
 
 /*
  * pull_task - move a task from a remote runqueue to the local runqueue.
  * Both runqueues must be locked.
  */
 static inline
 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
 	       runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
 {
 	dequeue_task(p, src_array);
 	src_rq->nr_running--;
 	set_task_cpu(p, this_cpu);
 	this_rq->nr_running++;
 	enqueue_task(p, this_array);
 	p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
 				+ this_rq->timestamp_last_tick;
 	/*
 	 * Note that idle threads have a prio of MAX_PRIO, for this test
 	 * to be always true for them.
 	 */
 	if (TASK_PREEMPTS_CURR(p, this_rq))
 		resched_task(this_rq->curr);
 }
 
 /*
  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  */
 static inline
 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
 		     struct sched_domain *sd, enum idle_type idle)
 {
 	/*
 	 * We do not migrate tasks that are:
 	 * 1) running (obviously), or
 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
 	 * 3) are cache-hot on their current CPU.
 	 */
 	if (task_running(rq, p))
 		return 0;
 	if (!cpu_isset(this_cpu, p->cpus_allowed))
 		return 0;
 
 	/* Aggressive migration if we've failed balancing */
 	if (idle == NEWLY_IDLE ||
 			sd->nr_balance_failed < sd->cache_nice_tries) {
 		if (task_hot(p, rq->timestamp_last_tick, sd))
 			return 0;
 	}
 
 	return 1;
 }
 
 /*
  * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
  * as part of a balancing operation within "domain". Returns the number of
  * tasks moved.
  *
  * Called with both runqueues locked.
  */
 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
 		      unsigned long max_nr_move, struct sched_domain *sd,
 		      enum idle_type idle)
 {
 	prio_array_t *array, *dst_array;
 	struct list_head *head, *curr;
 	int idx, pulled = 0;
 	task_t *tmp;
 
 	if (max_nr_move <= 0 || busiest->nr_running <= 1)
 		goto out;
 
 	/*
 	 * We first consider expired tasks. Those will likely not be
 	 * executed in the near future, and they are most likely to
 	 * be cache-cold, thus switching CPUs has the least effect
 	 * on them.
 	 */
 	if (busiest->expired->nr_active) {
 		array = busiest->expired;
 		dst_array = this_rq->expired;
 	} else {
 		array = busiest->active;
 		dst_array = this_rq->active;
 	}
 
 new_array:
 	/* Start searching at priority 0: */
 	idx = 0;
 skip_bitmap:
 	if (!idx)
 		idx = sched_find_first_bit(array->bitmap);
 	else
 		idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
 	if (idx >= MAX_PRIO) {
 		if (array == busiest->expired && busiest->active->nr_active) {
 			array = busiest->active;
 			dst_array = this_rq->active;
 			goto new_array;
 		}
 		goto out;
 	}
 
 	head = array->queue + idx;
 	curr = head->prev;
 skip_queue:
 	tmp = list_entry(curr, task_t, run_list);
 
 	curr = curr->prev;
 
 	if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle)) {
 		if (curr != head)
 			goto skip_queue;
 		idx++;
 		goto skip_bitmap;
 	}
 
 	/*
 	 * Right now, this is the only place pull_task() is called,
 	 * so we can safely collect pull_task() stats here rather than
 	 * inside pull_task().
 	 */
 	schedstat_inc(this_rq, pt_gained[idle]);
 	schedstat_inc(busiest, pt_lost[idle]);
 
 	pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
 	pulled++;
 
 	/* We only want to steal up to the prescribed number of tasks. */
 	if (pulled < max_nr_move) {
 		if (curr != head)
 			goto skip_queue;
 		idx++;
 		goto skip_bitmap;
 	}
 out:
 	return pulled;
 }
 
 /*
  * find_busiest_group finds and returns the busiest CPU group within the
  * domain. It calculates and returns the number of tasks which should be
  * moved to restore balance via the imbalance parameter.
  */
 static struct sched_group *
 find_busiest_group(struct sched_domain *sd, int this_cpu,
 		   unsigned long *imbalance, enum idle_type idle)
 {
 	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
 	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
 
 	max_load = this_load = total_load = total_pwr = 0;
 
 	do {
 		cpumask_t tmp;
 		unsigned long load;
 		int local_group;
 		int i, nr_cpus = 0;
 
 		local_group = cpu_isset(this_cpu, group->cpumask);
 
 		/* Tally up the load of all CPUs in the group */
 		avg_load = 0;
 		cpus_and(tmp, group->cpumask, cpu_online_map);
 		if (unlikely(cpus_empty(tmp)))
 			goto nextgroup;
 
 		for_each_cpu_mask(i, tmp) {
 			/* Bias balancing toward cpus of our domain */
 			if (local_group)
 				load = target_load(i);
 			else
 				load = source_load(i);
 
 			nr_cpus++;
 			avg_load += load;
 		}
 
 		if (!nr_cpus)
 			goto nextgroup;
 
 		total_load += avg_load;
 		total_pwr += group->cpu_power;
 
 		/* Adjust by relative CPU power of the group */
 		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
 
 		if (local_group) {
 			this_load = avg_load;
 			this = group;
 			goto nextgroup;
 		} else if (avg_load > max_load) {
 			max_load = avg_load;
 			busiest = group;
 		}
 nextgroup:
 		group = group->next;
 	} while (group != sd->groups);
 
 	if (!busiest || this_load >= max_load)
 		goto out_balanced;
 
 	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
 
 	if (this_load >= avg_load ||
 			100*max_load <= sd->imbalance_pct*this_load)
 		goto out_balanced;
 
 	/*
 	 * We're trying to get all the cpus to the average_load, so we don't
 	 * want to push ourselves above the average load, nor do we wish to
 	 * reduce the max loaded cpu below the average load, as either of these
 	 * actions would just result in more rebalancing later, and ping-pong
 	 * tasks around. Thus we look for the minimum possible imbalance.
 	 * Negative imbalances (*we* are more loaded than anyone else) will
 	 * be counted as no imbalance for these purposes -- we can't fix that
 	 * by pulling tasks to us.  Be careful of negative numbers as they'll
 	 * appear as very large values with unsigned longs.
 	 */
 	*imbalance = min(max_load - avg_load, avg_load - this_load);
 
 	/* How much load to actually move to equalise the imbalance */
 	*imbalance = (*imbalance * min(busiest->cpu_power, this->cpu_power))
 				/ SCHED_LOAD_SCALE;
 
 	if (*imbalance < SCHED_LOAD_SCALE - 1) {
 		unsigned long pwr_now = 0, pwr_move = 0;
 		unsigned long tmp;
 
 		if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
 			*imbalance = 1;
 			return busiest;
 		}
 
 		/*
 		 * OK, we don't have enough imbalance to justify moving tasks,
 		 * however we may be able to increase total CPU power used by
 		 * moving them.
 		 */
 
 		pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
 		pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
 		pwr_now /= SCHED_LOAD_SCALE;
 
 		/* Amount of load we'd subtract */
 		tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
 		if (max_load > tmp)
 			pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
 							max_load - tmp);
 
 		/* Amount of load we'd add */
 		tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
 		if (max_load < tmp)
 			tmp = max_load;
 		pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
 		pwr_move /= SCHED_LOAD_SCALE;
 
 		/* Move if we gain another 8th of a CPU worth of throughput */
 		if (pwr_move < pwr_now + SCHED_LOAD_SCALE / 8)
 			goto out_balanced;
 
 		*imbalance = 1;
 		return busiest;
 	}
 
 	/* Get rid of the scaling factor, rounding down as we divide */
 	*imbalance = (*imbalance + 1) / SCHED_LOAD_SCALE;
 
 	return busiest;
 
 out_balanced:
 	if (busiest && (idle == NEWLY_IDLE ||
 			(idle == IDLE && max_load > SCHED_LOAD_SCALE)) ) {
 		*imbalance = 1;
 		return busiest;
 	}
 
 	*imbalance = 0;
 	return NULL;
 }
 
 /*
  * find_busiest_queue - find the busiest runqueue among the cpus in group.
  */
 static runqueue_t *find_busiest_queue(struct sched_group *group)
 {
 	cpumask_t tmp;
 	unsigned long load, max_load = 0;
 	runqueue_t *busiest = NULL;
 	int i;
 
 	cpus_and(tmp, group->cpumask, cpu_online_map);
 	for_each_cpu_mask(i, tmp) {
 		load = source_load(i);
 
 		if (load > max_load) {
 			max_load = load;
 			busiest = cpu_rq(i);
 		}
 	}
 
 	return busiest;
 }
 
 /*
  * Check this_cpu to ensure it is balanced within domain. Attempt to move
  * tasks if there is an imbalance.
  *
  * Called with this_rq unlocked.
  */
 static int load_balance(int this_cpu, runqueue_t *this_rq,
 			struct sched_domain *sd, enum idle_type idle)
 {
 	struct sched_group *group;
 	runqueue_t *busiest;
 	unsigned long imbalance;
 	int nr_moved;
 
 	spin_lock(&this_rq->lock);
 	schedstat_inc(sd, lb_cnt[idle]);
 
 	group = find_busiest_group(sd, this_cpu, &imbalance, idle);
 	if (!group) {
 		schedstat_inc(sd, lb_nobusyg[idle]);
 		goto out_balanced;
 	}
 
 	busiest = find_busiest_queue(group);
 	if (!busiest) {
 		schedstat_inc(sd, lb_nobusyq[idle]);
 		goto out_balanced;
 	}
 
 	/*
 	 * This should be "impossible", but since load
 	 * balancing is inherently racy and statistical,
 	 * it could happen in theory.
 	 */
 	if (unlikely(busiest == this_rq)) {
 		WARN_ON(1);
 		goto out_balanced;
 	}
 
 	schedstat_add(sd, lb_imbalance[idle], imbalance);
 
 	nr_moved = 0;
 	if (busiest->nr_running > 1) {
 		/*
 		 * Attempt to move tasks. If find_busiest_group has found
 		 * an imbalance but busiest->nr_running <= 1, the group is
 		 * still unbalanced. nr_moved simply stays zero, so it is
 		 * correctly treated as an imbalance.
 		 */
 		double_lock_balance(this_rq, busiest);
 		nr_moved = move_tasks(this_rq, this_cpu, busiest,
 						imbalance, sd, idle);
 		spin_unlock(&busiest->lock);
 	}
 	spin_unlock(&this_rq->lock);
 
 	if (!nr_moved) {
 		schedstat_inc(sd, lb_failed[idle]);
 		sd->nr_balance_failed++;
 
 		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
 			int wake = 0;
 
 			spin_lock(&busiest->lock);
 			if (!busiest->active_balance) {
 				busiest->active_balance = 1;
 				busiest->push_cpu = this_cpu;
 				wake = 1;
 			}
 			spin_unlock(&busiest->lock);
 			if (wake)
 				wake_up_process(busiest->migration_thread);
 
 			/*
 			 * We've kicked active balancing, reset the failure
 			 * counter.
 			 */
 			sd->nr_balance_failed = sd->cache_nice_tries;
 		}
 	} else
 		sd->nr_balance_failed = 0;
 
 	/* We were unbalanced, so reset the balancing interval */
 	sd->balance_interval = sd->min_interval;
 
 	return nr_moved;
 
 out_balanced:
 	spin_unlock(&this_rq->lock);
 
 	/* tune up the balancing interval */
 	if (sd->balance_interval < sd->max_interval)
 		sd->balance_interval *= 2;
 
 	return 0;
 }
 
 /*
  * Check this_cpu to ensure it is balanced within domain. Attempt to move
  * tasks if there is an imbalance.
  *
  * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
  * this_rq is locked.
  */
 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
 				struct sched_domain *sd)
 {
 	struct sched_group *group;
 	runqueue_t *busiest = NULL;
 	unsigned long imbalance;
 	int nr_moved = 0;
 
 	schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
 	group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
 	if (!group) {
 		schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
 		goto out;
 	}
 
 	busiest = find_busiest_queue(group);
 	if (!busiest || busiest == this_rq) {
 		schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
 		goto out;
 	}
 
 	/* Attempt to move tasks */
 	double_lock_balance(this_rq, busiest);
 
 	schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
 	nr_moved = move_tasks(this_rq, this_cpu, busiest,
 					imbalance, sd, NEWLY_IDLE);
 	if (!nr_moved)
 		schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
 
 	spin_unlock(&busiest->lock);
 
 out:
 	return nr_moved;
 }
 
 /*
  * idle_balance is called by schedule() if this_cpu is about to become
  * idle. Attempts to pull tasks from other CPUs.
  */
 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
 {
 	struct sched_domain *sd;
 
 	for_each_domain(this_cpu, sd) {
 		if (sd->flags & SD_BALANCE_NEWIDLE) {
 			if (load_balance_newidle(this_cpu, this_rq, sd)) {
 				/* We've pulled tasks over so stop searching */
 				break;
 			}
 		}
 	}
 }
 
 /*
  * active_load_balance is run by migration threads. It pushes a running
  * task off the cpu. It can be required to correctly have at least 1 task
  * running on each physical CPU where possible, and not have a physical /
  * logical imbalance.
  *
  * Called with busiest locked.
  */
 static void active_load_balance(runqueue_t *busiest, int busiest_cpu)
 {
 	struct sched_domain *sd;
 	struct sched_group *group, *busy_group;
 	int i;
 
 	schedstat_inc(busiest, alb_cnt);
 	if (busiest->nr_running <= 1)
 		return;
 
 	for_each_domain(busiest_cpu, sd)
 		if (cpu_isset(busiest->push_cpu, sd->span))
 			break;
 	if (!sd)
 		return;
 
 	group = sd->groups;
 	while (!cpu_isset(busiest_cpu, group->cpumask))
 		group = group->next;
 	busy_group = group;
 
 	group = sd->groups;
 	do {
 		cpumask_t tmp;
 		runqueue_t *rq;
 		int push_cpu = 0;
 
 		if (group == busy_group)
 			goto next_group;
 
 		cpus_and(tmp, group->cpumask, cpu_online_map);
 		if (!cpus_weight(tmp))
 			goto next_group;
 
 		for_each_cpu_mask(i, tmp) {
 			if (!idle_cpu(i))
 				goto next_group;
 			push_cpu = i;
 		}
 
 		rq = cpu_rq(push_cpu);
 
 		/*
 		 * This condition is "impossible", but since load
 		 * balancing is inherently a bit racy and statistical,
 		 * it can trigger.. Reported by Bjorn Helgaas on a
 		 * 128-cpu setup.
 		 */
 		if (unlikely(busiest == rq))
 			goto next_group;
 		double_lock_balance(busiest, rq);
 		if (move_tasks(rq, push_cpu, busiest, 1, sd, IDLE)) {
 			schedstat_inc(busiest, alb_lost);
 			schedstat_inc(rq, alb_gained);
 		} else {
 			schedstat_inc(busiest, alb_failed);
 		}
 		spin_unlock(&rq->lock);
 next_group:
 		group = group->next;
 	} while (group != sd->groups);
 }
 
 /*
  * rebalance_tick will get called every timer tick, on every CPU.
  *
  * It checks each scheduling domain to see if it is due to be balanced,
  * and initiates a balancing operation if so.
  *
  * Balancing parameters are set up in arch_init_sched_domains.
  */
 
 /* Don't have all balancing operations going off at once */
 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
 
 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
 			   enum idle_type idle)
 {
 	unsigned long old_load, this_load;
 	unsigned long j = jiffies + CPU_OFFSET(this_cpu);
 	struct sched_domain *sd;
 
 	/* Update our load */
 	old_load = this_rq->cpu_load;
 	this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
 	/*
 	 * Round up the averaging division if load is increasing. This
 	 * prevents us from getting stuck on 9 if the load is 10, for
 	 * example.
 	 */
 	if (this_load > old_load)
 		old_load++;
 	this_rq->cpu_load = (old_load + this_load) / 2;
 
 	for_each_domain(this_cpu, sd) {
 		unsigned long interval = sd->balance_interval;
 
 		if (idle != IDLE)
 			interval *= sd->busy_factor;
 
 		/* scale ms to jiffies */
 		interval = msecs_to_jiffies(interval);
 		if (unlikely(!interval))
 			interval = 1;
 
 		if (j - sd->last_balance >= interval) {
 			if (load_balance(this_cpu, this_rq, sd, idle)) {
 				/* We've pulled tasks over so no longer idle */
 				idle = NOT_IDLE;
 			}
 			sd->last_balance += interval;
 		}
 	}
 }
 #else
 /*
  * on UP we do not need to balance between CPUs:
  */
 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
 {
 }
 static inline void idle_balance(int cpu, runqueue_t *rq)
 {
 }
 #endif
 
 static inline int wake_priority_sleeper(runqueue_t *rq)
 {
 	int ret = 0;
 #ifdef CONFIG_SCHED_SMT
 	spin_lock(&rq->lock);
 	/*
 	 * If an SMT sibling task has been put to sleep for priority
 	 * reasons reschedule the idle task to see if it can now run.
 	 */
 	if (rq->nr_running) {
 		resched_task(rq->idle);
 		ret = 1;
 	}
 	spin_unlock(&rq->lock);
 #endif
 	return ret;
 }
 
 DEFINE_PER_CPU(struct kernel_stat, kstat);
 
 EXPORT_PER_CPU_SYMBOL(kstat);
 
 /*
  * We place interactive tasks back into the active array, if possible.
  *
  * To guarantee that this does not starve expired tasks we ignore the
  * interactivity of a task if the first expired task had to wait more
  * than a 'reasonable' amount of time. This deadline timeout is
  * load-dependent, as the frequency of array switched decreases with
  * increasing number of running tasks. We also ignore the interactivity
  * if a better static_prio task has expired:
  */
 #define EXPIRED_STARVING(rq) \
 	((STARVATION_LIMIT && ((rq)->expired_timestamp && \
 		(jiffies - (rq)->expired_timestamp >= \
 			STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
 			((rq)->curr->static_prio > (rq)->best_expired_prio))
 
 /*
  * This function gets called by the timer code, with HZ frequency.
  * We call it with interrupts disabled.
  *
  * It also gets called by the fork code, when changing the parent's
  * timeslices.
  */
 void scheduler_tick(int user_ticks, int sys_ticks)
 {
 	int cpu = smp_processor_id();
 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
 	runqueue_t *rq = this_rq();
 	task_t *p = current;
 
 	rq->timestamp_last_tick = sched_clock();
 
 	if (rcu_pending(cpu))
 		rcu_check_callbacks(cpu, user_ticks);
 
 	/* note: this timer irq context must be accounted for as well */
 	if (hardirq_count() - HARDIRQ_OFFSET) {
 		cpustat->irq += sys_ticks;
 		sys_ticks = 0;
 	} else if (softirq_count()) {
 		cpustat->softirq += sys_ticks;
 		sys_ticks = 0;
 	}
 
 	if (p == rq->idle) {
 		if (atomic_read(&rq->nr_iowait) > 0)
 			cpustat->iowait += sys_ticks;
 		else
 			cpustat->idle += sys_ticks;
 		if (wake_priority_sleeper(rq))
 			goto out;
 		rebalance_tick(cpu, rq, IDLE);
 		return;
 	}
 	if (TASK_NICE(p) > 0)
 		cpustat->nice += user_ticks;
 	else
 		cpustat->user += user_ticks;
 	cpustat->system += sys_ticks;
 
 	/* Task might have expired already, but not scheduled off yet */
 	if (p->array != rq->active) {
 		set_tsk_need_resched(p);
 		goto out;
 	}
 	spin_lock(&rq->lock);
 	/*
 	 * The task was running during this tick - update the
 	 * time slice counter. Note: we do not update a thread's
 	 * priority until it either goes to sleep or uses up its
 	 * timeslice. This makes it possible for interactive tasks
 	 * to use up their timeslices at their highest priority levels.
 	 */
 	if (rt_task(p)) {
 		/*
 		 * RR tasks need a special form of timeslice management.
 		 * FIFO tasks have no timeslices.
 		 */
 		if ((p->policy == SCHED_RR) && !--p->time_slice) {
 			p->time_slice = task_timeslice(p);
 			p->first_time_slice = 0;
 			set_tsk_need_resched(p);
 
 			/* put it at the end of the queue: */
 			dequeue_task(p, rq->active);
 			enqueue_task(p, rq->active);
 		}
 		goto out_unlock;
 	}
 	if (!--p->time_slice) {
 		dequeue_task(p, rq->active);
 		set_tsk_need_resched(p);
 		p->prio = effective_prio(p);
 		p->time_slice = task_timeslice(p);
 		p->first_time_slice = 0;
 
 		if (!rq->expired_timestamp)
 			rq->expired_timestamp = jiffies;
 		if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
 			enqueue_task(p, rq->expired);
 			if (p->static_prio < rq->best_expired_prio)
 				rq->best_expired_prio = p->static_prio;
 		} else
 			enqueue_task(p, rq->active);
 	} else {
 		/*
 		 * Prevent a too long timeslice allowing a task to monopolize
 		 * the CPU. We do this by splitting up the timeslice into
 		 * smaller pieces.
 		 *
 		 * Note: this does not mean the task's timeslices expire or
 		 * get lost in any way, they just might be preempted by
 		 * another task of equal priority. (one with higher
 		 * priority would have preempted this task already.) We
 		 * requeue this task to the end of the list on this priority
 		 * level, which is in essence a round-robin of tasks with
 		 * equal priority.
 		 *
 		 * This only applies to tasks in the interactive
 		 * delta range with at least TIMESLICE_GRANULARITY to requeue.
 		 */
 		if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
 			p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
 			(p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
 			(p->array == rq->active)) {
 
 			dequeue_task(p, rq->active);
 			set_tsk_need_resched(p);
 			p->prio = effective_prio(p);
 			enqueue_task(p, rq->active);
 		}
 	}
 out_unlock:
 	spin_unlock(&rq->lock);
 out:
 	rebalance_tick(cpu, rq, NOT_IDLE);
 }
 
 #ifdef CONFIG_SCHED_SMT
 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
 {
 	struct sched_domain *sd = this_rq->sd;
 	cpumask_t sibling_map;
 	int i;
 
 	if (!(sd->flags & SD_SHARE_CPUPOWER))
 		return;
 
 	/*
 	 * Unlock the current runqueue because we have to lock in
 	 * CPU order to avoid deadlocks. Caller knows that we might
 	 * unlock. We keep IRQs disabled.
 	 */
 	spin_unlock(&this_rq->lock);
 
 	cpus_and(sibling_map, sd->span, cpu_online_map);
 
 	for_each_cpu_mask(i, sibling_map)
 		spin_lock(&cpu_rq(i)->lock);
 	/*
 	 * We clear this CPU from the mask. This both simplifies the
 	 * inner loop and keps this_rq locked when we exit:
 	 */
 	cpu_clear(this_cpu, sibling_map);
 
 	for_each_cpu_mask(i, sibling_map) {
 		runqueue_t *smt_rq = cpu_rq(i);
 
 		/*
 		 * If an SMT sibling task is sleeping due to priority
 		 * reasons wake it up now.
 		 */
 		if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running)
 			resched_task(smt_rq->idle);
 	}
 
 	for_each_cpu_mask(i, sibling_map)
 		spin_unlock(&cpu_rq(i)->lock);
 	/*
 	 * We exit with this_cpu's rq still held and IRQs
 	 * still disabled:
 	 */
 }
 
 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
 {
 	struct sched_domain *sd = this_rq->sd;
 	cpumask_t sibling_map;
 	prio_array_t *array;
 	int ret = 0, i;
 	task_t *p;
 
 	if (!(sd->flags & SD_SHARE_CPUPOWER))
 		return 0;
 
 	/*
 	 * The same locking rules and details apply as for
 	 * wake_sleeping_dependent():
 	 */
 	spin_unlock(&this_rq->lock);
 	cpus_and(sibling_map, sd->span, cpu_online_map);
 	for_each_cpu_mask(i, sibling_map)
 		spin_lock(&cpu_rq(i)->lock);
 	cpu_clear(this_cpu, sibling_map);
 
 	/*
 	 * Establish next task to be run - it might have gone away because
 	 * we released the runqueue lock above:
 	 */
 	if (!this_rq->nr_running)
 		goto out_unlock;
 	array = this_rq->active;
 	if (!array->nr_active)
 		array = this_rq->expired;
 	BUG_ON(!array->nr_active);
 
 	p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
 		task_t, run_list);
 
 	for_each_cpu_mask(i, sibling_map) {
 		runqueue_t *smt_rq = cpu_rq(i);
 		task_t *smt_curr = smt_rq->curr;
 
 		/*
 		 * If a user task with lower static priority than the
 		 * running task on the SMT sibling is trying to schedule,
 		 * delay it till there is proportionately less timeslice
 		 * left of the sibling task to prevent a lower priority
 		 * task from using an unfair proportion of the
 		 * physical cpu's resources. -ck
 		 */
 		if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) >
 			task_timeslice(p) || rt_task(smt_curr)) &&
 			p->mm && smt_curr->mm && !rt_task(p))
 				ret = 1;
 
 		/*
 		 * Reschedule a lower priority task on the SMT sibling,
 		 * or wake it up if it has been put to sleep for priority
 		 * reasons.
 		 */
 		if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
 			task_timeslice(smt_curr) || rt_task(p)) &&
 			smt_curr->mm && p->mm && !rt_task(smt_curr)) ||
 			(smt_curr == smt_rq->idle && smt_rq->nr_running))
 				resched_task(smt_curr);
 	}
 out_unlock:
 	for_each_cpu_mask(i, sibling_map)
 		spin_unlock(&cpu_rq(i)->lock);
 	return ret;
 }
 #else
 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
 {
 }
 
 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
 {
 	return 0;
 }
 #endif
 
 /*
  * schedule() is the main scheduler function.
  */
 asmlinkage void __sched schedule(void)
 {
 	long *switch_count;
 	task_t *prev, *next;
 	runqueue_t *rq;
 	prio_array_t *array;
 	struct list_head *queue;
 	unsigned long long now;
 	unsigned long run_time;
 	int cpu, idx;
 
 	/*
 	 * Test if we are atomic.  Since do_exit() needs to call into
 	 * schedule() atomically, we ignore that path for now.
 	 * Otherwise, whine if we are scheduling when we should not be.
 	 */
 	if (likely(!(current->state & (TASK_DEAD | TASK_ZOMBIE)))) {
 		if (unlikely(in_atomic())) {
 			printk(KERN_ERR "bad: scheduling while atomic!\n");
 			dump_stack();
 		}
 	}
 
 need_resched:
 	preempt_disable();
 	prev = current;
 	rq = this_rq();
 
 	/*
 	 * The idle thread is not allowed to schedule!
 	 * Remove this check after it has been exercised a bit.
 	 */
 	if (unlikely(current == rq->idle) && current->state != TASK_RUNNING) {
 		printk(KERN_ERR "bad: scheduling from the idle thread!\n");
 		dump_stack();
 	}
 
 	release_kernel_lock(prev);
 	schedstat_inc(rq, sched_cnt);
 	now = sched_clock();
 	if (likely(now - prev->timestamp < NS_MAX_SLEEP_AVG))
 		run_time = now - prev->timestamp;
 	else
 		run_time = NS_MAX_SLEEP_AVG;
 
 	/*
 	 * Tasks with interactive credits get charged less run_time
 	 * at high sleep_avg to delay them losing their interactive
 	 * status
 	 */
 	if (HIGH_CREDIT(prev))
 		run_time /= (CURRENT_BONUS(prev) ? : 1);
 
 	spin_lock_irq(&rq->lock);
 
 	/*
 	 * if entering off of a kernel preemption go straight
 	 * to picking the next task.
 	 */
 	switch_count = &prev->nivcsw;
 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
 		switch_count = &prev->nvcsw;
 		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
 				unlikely(signal_pending(prev))))
 			prev->state = TASK_RUNNING;
 		else
 			deactivate_task(prev, rq);
 	}
 
 	cpu = smp_processor_id();
 	if (unlikely(!rq->nr_running)) {
 go_idle:
 		idle_balance(cpu, rq);
 		if (!rq->nr_running) {
 			next = rq->idle;
 			rq->expired_timestamp = 0;
 			wake_sleeping_dependent(cpu, rq);
 			/*
 			 * wake_sleeping_dependent() might have released
 			 * the runqueue, so break out if we got new
 			 * tasks meanwhile:
 			 */
 			if (!rq->nr_running)
 				goto switch_tasks;
 		}
 	} else {
 		if (dependent_sleeper(cpu, rq)) {
 			schedstat_inc(rq, sched_goidle);
 			next = rq->idle;
 			goto switch_tasks;
 		}
 		/*
 		 * dependent_sleeper() releases and reacquires the runqueue
 		 * lock, hence go into the idle loop if the rq went
 		 * empty meanwhile:
 		 */
 		if (unlikely(!rq->nr_running))
 			goto go_idle;
 	}
 
 	array = rq->active;
 	if (unlikely(!array->nr_active)) {
 		/*
 		 * Switch the active and expired arrays.
 		 */
 		schedstat_inc(rq, sched_switch);
 		rq->active = rq->expired;
 		rq->expired = array;
 		array = rq->active;
 		rq->expired_timestamp = 0;
 		rq->best_expired_prio = MAX_PRIO;
 	} else
 		schedstat_inc(rq, sched_noswitch);
 
 	idx = sched_find_first_bit(array->bitmap);
 	queue = array->queue + idx;
 	next = list_entry(queue->next, task_t, run_list);
 
 	if (!rt_task(next) && next->activated > 0) {
 		unsigned long long delta = now - next->timestamp;
 
 		if (next->activated == 1)
 			delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
 
 		array = next->array;
 		dequeue_task(next, array);
 		recalc_task_prio(next, next->timestamp + delta);
 		enqueue_task(next, array);
 	}
 	next->activated = 0;
 switch_tasks:
 	prefetch(next);
 	clear_tsk_need_resched(prev);
 	rcu_qsctr_inc(task_cpu(prev));
 
 	prev->sleep_avg -= run_time;
 	if ((long)prev->sleep_avg <= 0) {
 		prev->sleep_avg = 0;
 		if (!(HIGH_CREDIT(prev) || LOW_CREDIT(prev)))
 			prev->interactive_credit--;
 	}
 	prev->timestamp = prev->last_ran = now;
 
 	sched_info_switch(prev, next);
 	if (likely(prev != next)) {
 		next->timestamp = now;
 		rq->nr_switches++;
 		rq->curr = next;
 		++*switch_count;
 
 		prepare_arch_switch(rq, next);
 		prev = context_switch(rq, prev, next);
 		barrier();
 
 		finish_task_switch(prev);
 	} else
 		spin_unlock_irq(&rq->lock);
 
 	reacquire_kernel_lock(current);
 	preempt_enable_no_resched();
 	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
 		goto need_resched;
 }
 
 EXPORT_SYMBOL(schedule);
 
 #ifdef CONFIG_PREEMPT
 /*
  * this is is the entry point to schedule() from in-kernel preemption
  * off of preempt_enable.  Kernel preemptions off return from interrupt
  * occur there and call schedule directly.
  */
 asmlinkage void __sched preempt_schedule(void)
 {
 	struct thread_info *ti = current_thread_info();
 
 	/*
 	 * If there is a non-zero preempt_count or interrupts are disabled,
 	 * we do not want to preempt the current task.  Just return..
 	 */
 	if (unlikely(ti->preempt_count || irqs_disabled()))
 		return;
 
 need_resched:
 	ti->preempt_count = PREEMPT_ACTIVE;
 	schedule();
 	ti->preempt_count = 0;
 
 	/* we could miss a preemption opportunity between schedule and now */
 	barrier();
 	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
 		goto need_resched;
 }
 
 EXPORT_SYMBOL(preempt_schedule);
 #endif /* CONFIG_PREEMPT */
 
 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
 {
 	task_t *p = curr->task;
 	return try_to_wake_up(p, mode, sync);
 }
 
 EXPORT_SYMBOL(default_wake_function);
 
 /*
  * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
  * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
  * number) then we wake all the non-exclusive tasks and one exclusive task.
  *
  * There are circumstances in which we can try to wake a task which has already
  * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
  * zero in this (rare) case, and we handle it by continuing to scan the queue.
  */
 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
 			     int nr_exclusive, int sync, void *key)
 {
 	struct list_head *tmp, *next;
 
 	list_for_each_safe(tmp, next, &q->task_list) {
 		wait_queue_t *curr;
 		unsigned flags;
 		curr = list_entry(tmp, wait_queue_t, task_list);
 		flags = curr->flags;
 		if (curr->func(curr, mode, sync, key) &&
 		    (flags & WQ_FLAG_EXCLUSIVE) &&
 		    !--nr_exclusive)
 			break;
 	}
 }
 
 /**
  * __wake_up - wake up threads blocked on a waitqueue.
  * @q: the waitqueue
  * @mode: which threads
  * @nr_exclusive: how many wake-one or wake-many threads to wake up
  */
 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
 				int nr_exclusive, void *key)
 {
 	unsigned long flags;
 
 	spin_lock_irqsave(&q->lock, flags);
 	__wake_up_common(q, mode, nr_exclusive, 0, key);
 	spin_unlock_irqrestore(&q->lock, flags);
 }
 
 EXPORT_SYMBOL(__wake_up);
 
 /*
  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  */
 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
 {
 	__wake_up_common(q, mode, 1, 0, NULL);
 }
 
 /**
  * __wake_up - sync- wake up threads blocked on a waitqueue.
  * @q: the waitqueue
  * @mode: which threads
  * @nr_exclusive: how many wake-one or wake-many threads to wake up
  *
  * The sync wakeup differs that the waker knows that it will schedule
  * away soon, so while the target thread will be woken up, it will not
  * be migrated to another CPU - ie. the two threads are 'synchronized'
  * with each other. This can prevent needless bouncing between CPUs.
  *
  * On UP it can prevent extra preemption.
  */
 void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
 {
 	unsigned long flags;
 	int sync = 1;
 
 	if (unlikely(!q))
 		return;
 
 	if (unlikely(!nr_exclusive))
 		sync = 0;
 
 	spin_lock_irqsave(&q->lock, flags);
 	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
 	spin_unlock_irqrestore(&q->lock, flags);
 }
 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
 
 void fastcall complete(struct completion *x)
 {
 	unsigned long flags;
 
 	spin_lock_irqsave(&x->wait.lock, flags);
 	x->done++;
 	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
 			 1, 0, NULL);
 	spin_unlock_irqrestore(&x->wait.lock, flags);
 }
 EXPORT_SYMBOL(complete);
 
 void fastcall complete_all(struct completion *x)
 {
 	unsigned long flags;
 
 	spin_lock_irqsave(&x->wait.lock, flags);
 	x->done += UINT_MAX/2;
 	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
 			 0, 0, NULL);
 	spin_unlock_irqrestore(&x->wait.lock, flags);
 }
 EXPORT_SYMBOL(complete_all);
 
 void fastcall __sched wait_for_completion(struct completion *x)
 {
 	might_sleep();
 	spin_lock_irq(&x->wait.lock);
 	if (!x->done) {
 		DECLARE_WAITQUEUE(wait, current);
 
 		wait.flags |= WQ_FLAG_EXCLUSIVE;
 		__add_wait_queue_tail(&x->wait, &wait);
 		do {
 			__set_current_state(TASK_UNINTERRUPTIBLE);
 			spin_unlock_irq(&x->wait.lock);
 			schedule();
 			spin_lock_irq(&x->wait.lock);
 		} while (!x->done);
 		__remove_wait_queue(&x->wait, &wait);
 	}
 	x->done--;
 	spin_unlock_irq(&x->wait.lock);
 }
 EXPORT_SYMBOL(wait_for_completion);
 
 #define	SLEEP_ON_VAR					\
 	unsigned long flags;				\
 	wait_queue_t wait;				\
 	init_waitqueue_entry(&wait, current);
 
 #define SLEEP_ON_HEAD					\
 	spin_lock_irqsave(&q->lock,flags);		\
 	__add_wait_queue(q, &wait);			\
 	spin_unlock(&q->lock);
 
 #define	SLEEP_ON_TAIL					\
 	spin_lock_irq(&q->lock);			\
 	__remove_wait_queue(q, &wait);			\
 	spin_unlock_irqrestore(&q->lock, flags);
 
 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
 {
 	SLEEP_ON_VAR
 
 	current->state = TASK_INTERRUPTIBLE;
 
 	SLEEP_ON_HEAD
 	schedule();
 	SLEEP_ON_TAIL
 }
 
 EXPORT_SYMBOL(interruptible_sleep_on);
 
 long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, 
 						long timeout)
 {
 	SLEEP_ON_VAR
 
 	current->state = TASK_INTERRUPTIBLE;
 
 	SLEEP_ON_HEAD
 	timeout = schedule_timeout(timeout);
 	SLEEP_ON_TAIL
 
 	return timeout;
 }
 
 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
 
 void fastcall __sched sleep_on(wait_queue_head_t *q)
 {
 	SLEEP_ON_VAR
 
 	current->state = TASK_UNINTERRUPTIBLE;
 
 	SLEEP_ON_HEAD
 	schedule();
 	SLEEP_ON_TAIL
 }
 
 EXPORT_SYMBOL(sleep_on);
 
 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
 {
 	SLEEP_ON_VAR
 
 	current->state = TASK_UNINTERRUPTIBLE;
 
 	SLEEP_ON_HEAD
 	timeout = schedule_timeout(timeout);
 	SLEEP_ON_TAIL
 
 	return timeout;
 }
 
 EXPORT_SYMBOL(sleep_on_timeout);
 
 void set_user_nice(task_t *p, long nice)
 {
 	unsigned long flags;
 	prio_array_t *array;
 	runqueue_t *rq;
 	int old_prio, new_prio, delta;
 
 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
 		return;
 	/*
 	 * We have to be careful, if called from sys_setpriority(),
 	 * the task might be in the middle of scheduling on another CPU.
 	 */
 	rq = task_rq_lock(p, &flags);
 	/*
 	 * The RT priorities are set via setscheduler(), but we still
 	 * allow the 'normal' nice value to be set - but as expected
 	 * it wont have any effect on scheduling until the task is
 	 * not SCHED_NORMAL:
 	 */
 	if (rt_task(p)) {
 		p->static_prio = NICE_TO_PRIO(nice);
 		goto out_unlock;
 	}
 	array = p->array;
 	if (array)
 		dequeue_task(p, array);
 
 	old_prio = p->prio;
 	new_prio = NICE_TO_PRIO(nice);
 	delta = new_prio - old_prio;
 	p->static_prio = NICE_TO_PRIO(nice);
 	p->prio += delta;
 
 	if (array) {
 		enqueue_task(p, array);
 		/*
 		 * If the task increased its priority or is running and
 		 * lowered its priority, then reschedule its CPU:
 		 */
 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
 			resched_task(rq->curr);
 	}
 out_unlock:
 	task_rq_unlock(rq, &flags);
 }
 
 EXPORT_SYMBOL(set_user_nice);
 
 #ifdef __ARCH_WANT_SYS_NICE
 
 /*
  * sys_nice - change the priority of the current process.
  * @increment: priority increment
  *
  * sys_setpriority is a more generic, but much slower function that
  * does similar things.
  */
 asmlinkage long sys_nice(int increment)
 {
 	int retval;
 	long nice;
 
 	/*
 	 * Setpriority might change our priority at the same moment.
 	 * We don't have to worry. Conceptually one call occurs first
 	 * and we have a single winner.
 	 */
 	if (increment < 0) {
 		if (!capable(CAP_SYS_NICE))
 			return -EPERM;
 		if (increment < -40)
 			increment = -40;
 	}
 	if (increment > 40)
 		increment = 40;
 
 	nice = PRIO_TO_NICE(current->static_prio) + increment;
 	if (nice < -20)
 		nice = -20;
 	if (nice > 19)
 		nice = 19;
 
 	retval = security_task_setnice(current, nice);
 	if (retval)
 		return retval;
 
 	set_user_nice(current, nice);
 	return 0;
 }
 
 #endif
 
 /**
  * task_prio - return the priority value of a given task.
  * @p: the task in question.
  *
  * This is the priority value as seen by users in /proc.
  * RT tasks are offset by -200. Normal tasks are centered
  * around 0, value goes from -16 to +15.
  */
 int task_prio(const task_t *p)
 {
 	return p->prio - MAX_RT_PRIO;
 }
 
 /**
  * task_nice - return the nice value of a given task.
  * @p: the task in question.
  */
 int task_nice(const task_t *p)
 {
 	return TASK_NICE(p);
 }
 
 EXPORT_SYMBOL(task_nice);
 
 /**
  * idle_cpu - is a given cpu idle currently?
  * @cpu: the processor in question.
  */
 int idle_cpu(int cpu)
 {
 	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
 }
 
 EXPORT_SYMBOL_GPL(idle_cpu);
 
 /**
  * find_process_by_pid - find a process with a matching PID value.
  * @pid: the pid in question.
  */
 static inline task_t *find_process_by_pid(pid_t pid)
 {
 	return pid ? find_task_by_pid(pid) : current;
 }
 
 /* Actually do priority change: must hold rq lock. */
 static void __setscheduler(struct task_struct *p, int policy, int prio)
 {
 	BUG_ON(p->array);
 	p->policy = policy;
 	p->rt_priority = prio;
 	if (policy != SCHED_NORMAL)
 		p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority;
 	else
 		p->prio = p->static_prio;
 }
 
 /*
  * setscheduler - change the scheduling policy and/or RT priority of a thread.
  */
 static int setscheduler(pid_t pid, int policy, struct sched_param __user *param)
 {
 	struct sched_param lp;
 	int retval = -EINVAL;
 	int oldprio;
 	prio_array_t *array;
 	unsigned long flags;
 	runqueue_t *rq;
 	task_t *p;
 
 	if (!param || pid < 0)
 		goto out_nounlock;
 
 	retval = -EFAULT;
 	if (copy_from_user(&lp, param, sizeof(struct sched_param)))
 		goto out_nounlock;
 
 	/*
 	 * We play safe to avoid deadlocks.
 	 */
 	read_lock_irq(&tasklist_lock);
 
 	p = find_process_by_pid(pid);
 
 	retval = -ESRCH;
 	if (!p)
 		goto out_unlock_tasklist;
 
 	/*
 	 * To be able to change p->policy safely, the apropriate
 	 * runqueue lock must be held.
 	 */
 	rq = task_rq_lock(p, &flags);
 
 	if (policy < 0)
 		policy = p->policy;
 	else {
 		retval = -EINVAL;
 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
 				policy != SCHED_NORMAL)
 			goto out_unlock;
 	}
 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
 
 	/*
 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
 	 */
 	retval = -EINVAL;
 	if (lp.sched_priority < 0 || lp.sched_priority > MAX_USER_RT_PRIO-1)
 		goto out_unlock;
 	if ((policy == SCHED_NORMAL) != (lp.sched_priority == 0))
 		goto out_unlock;
 
 	retval = -EPERM;
 	if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
 	    !capable(CAP_SYS_NICE))
 		goto out_unlock;
 	if ((current->euid != p->euid) && (current->euid != p->uid) &&
 	    !capable(CAP_SYS_NICE))
 		goto out_unlock;
 
 	retval = security_task_setscheduler(p, policy, &lp);
 	if (retval)
 		goto out_unlock;
 
 	array = p->array;
 	if (array)
 		deactivate_task(p, task_rq(p));
 	retval = 0;
 	oldprio = p->prio;
 	__setscheduler(p, policy, lp.sched_priority);
 	if (array) {
 		__activate_task(p, task_rq(p));
 		/*
 		 * Reschedule if we are currently running on this runqueue and
 		 * our priority decreased, or if we are not currently running on
 		 * this runqueue and our priority is higher than the current's
 		 */
 		if (task_running(rq, p)) {
 			if (p->prio > oldprio)
 				resched_task(rq->curr);
 		} else if (TASK_PREEMPTS_CURR(p, rq))
 			resched_task(rq->curr);
 	}
 
 out_unlock:
 	task_rq_unlock(rq, &flags);
 out_unlock_tasklist:
 	read_unlock_irq(&tasklist_lock);
 
 out_nounlock:
 	return retval;
 }
 
 /**
  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  * @pid: the pid in question.
  * @policy: new policy
  * @param: structure containing the new RT priority.
  */
 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
 				       struct sched_param __user *param)
 {
 	return setscheduler(pid, policy, param);
 }
 
 /**
  * sys_sched_setparam - set/change the RT priority of a thread
  * @pid: the pid in question.
  * @param: structure containing the new RT priority.
  */
 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
 {
 	return setscheduler(pid, -1, param);
 }
 
 /**
  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  * @pid: the pid in question.
  */
 asmlinkage long sys_sched_getscheduler(pid_t pid)
 {
 	int retval = -EINVAL;
 	task_t *p;
 
 	if (pid < 0)
 		goto out_nounlock;
 
 	retval = -ESRCH;
 	read_lock(&tasklist_lock);
 	p = find_process_by_pid(pid);
 	if (p) {
 		retval = security_task_getscheduler(p);
 		if (!retval)
 			retval = p->policy;
 	}
 	read_unlock(&tasklist_lock);
 
 out_nounlock:
 	return retval;
 }
 
 /**
  * sys_sched_getscheduler - get the RT priority of a thread
  * @pid: the pid in question.
  * @param: structure containing the RT priority.
  */
 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
 {
 	struct sched_param lp;
 	int retval = -EINVAL;
 	task_t *p;
 
 	if (!param || pid < 0)
 		goto out_nounlock;
 
 	read_lock(&tasklist_lock);
 	p = find_process_by_pid(pid);
 	retval = -ESRCH;
 	if (!p)
 		goto out_unlock;
 
 	retval = security_task_getscheduler(p);
 	if (retval)
 		goto out_unlock;
 
 	lp.sched_priority = p->rt_priority;
 	read_unlock(&tasklist_lock);
 
 	/*
 	 * This one might sleep, we cannot do it with a spinlock held ...
 	 */
 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
 
 out_nounlock:
 	return retval;
 
 out_unlock:
 	read_unlock(&tasklist_lock);
 	return retval;
 }
 
 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
 {
 	task_t *p;
 	int retval;
 
 	lock_cpu_hotplug();
 	read_lock(&tasklist_lock);
 
 	p = find_process_by_pid(pid);
 	if (!p) {
 		read_unlock(&tasklist_lock);
 		unlock_cpu_hotplug();
 		return -ESRCH;
 	}
 
 	/*
 	 * It is not safe to call set_cpus_allowed with the
 	 * tasklist_lock held.  We will bump the task_struct's
 	 * usage count and then drop tasklist_lock.
 	 */
 	get_task_struct(p);
 	read_unlock(&tasklist_lock);
 
 	retval = -EPERM;
 	if ((current->euid != p->euid) && (current->euid != p->uid) &&
 			!capable(CAP_SYS_NICE))
 		goto out_unlock;
 
 	retval = set_cpus_allowed(p, new_mask);
 
 out_unlock:
 	put_task_struct(p);
 	unlock_cpu_hotplug();
 	return retval;
 }
 
 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
 			     cpumask_t *new_mask)
 {
 	if (len < sizeof(cpumask_t)) {
 		memset(new_mask, 0, sizeof(cpumask_t));
 	} else if (len > sizeof(cpumask_t)) {
 		len = sizeof(cpumask_t);
 	}
 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
 }
 
 /**
  * sys_sched_setaffinity - set the cpu affinity of a process
  * @pid: pid of the process
  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  * @user_mask_ptr: user-space pointer to the new cpu mask
  */
 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
 				      unsigned long __user *user_mask_ptr)
 {
 	cpumask_t new_mask;
 	int retval;
 
 	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
 	if (retval)
 		return retval;
 
 	return sched_setaffinity(pid, new_mask);
 }
 
 /*
  * Represents all cpu's present in the system
  * In systems capable of hotplug, this map could dynamically grow
  * as new cpu's are detected in the system via any platform specific
  * method, such as ACPI for e.g.
  */
 
 cpumask_t cpu_present_map;
 EXPORT_SYMBOL(cpu_present_map);
 
 #ifndef CONFIG_SMP
 cpumask_t cpu_online_map = CPU_MASK_ALL;
 cpumask_t cpu_possible_map = CPU_MASK_ALL;
 #endif
 
 long sched_getaffinity(pid_t pid, cpumask_t *mask)
 {
 	int retval;
 	task_t *p;
 
 	lock_cpu_hotplug();
 	read_lock(&tasklist_lock);
 
 	retval = -ESRCH;
 	p = find_process_by_pid(pid);
 	if (!p)
 		goto out_unlock;
 
 	retval = 0;
 	cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
 
 out_unlock:
 	read_unlock(&tasklist_lock);
 	unlock_cpu_hotplug();
 	if (retval)
 		return retval;
 
 	return 0;
 }
 
 /**
  * sys_sched_getaffinity - get the cpu affinity of a process
  * @pid: pid of the process
  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  * @user_mask_ptr: user-space pointer to hold the current cpu mask
  */
 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
 				      unsigned long __user *user_mask_ptr)
 {
 	int ret;
 	cpumask_t mask;
 
 	if (len < sizeof(cpumask_t))
 		return -EINVAL;
 
 	ret = sched_getaffinity(pid, &mask);
 	if (ret < 0)
 		return ret;
 
 	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
 		return -EFAULT;
 
 	return sizeof(cpumask_t);
 }
 
 /**
  * sys_sched_yield - yield the current processor to other threads.
  *
  * this function yields the current CPU by moving the calling thread
  * to the expired array. If there are no other threads running on this
  * CPU then this function will return.
  */
 asmlinkage long sys_sched_yield(void)
 {
 	runqueue_t *rq = this_rq_lock();
 	prio_array_t *array = current->array;
 	prio_array_t *target = rq->expired;
 
 	schedstat_inc(rq, yld_cnt);
 	/*
 	 * We implement yielding by moving the task into the expired
 	 * queue.
 	 *
 	 * (special rule: RT tasks will just roundrobin in the active
 	 *  array.)
 	 */
 	if (rt_task(current))
 		target = rq->active;
 
 	if (current->array->nr_active == 1) {
 		schedstat_inc(rq, yld_act_empty);
 		if (!rq->expired->nr_active)
 			schedstat_inc(rq, yld_both_empty);
 	} else if (!rq->expired->nr_active)
 		schedstat_inc(rq, yld_exp_empty);
 
 	dequeue_task(current, array);
 	enqueue_task(current, target);
 
 	/*
 	 * Since we are going to call schedule() anyway, there's
 	 * no need to preempt or enable interrupts:
 	 */
 	_raw_spin_unlock(&rq->lock);
 	preempt_enable_no_resched();
 
 	schedule();
 
 	return 0;
 }
 
 void __sched __cond_resched(void)
 {
 	set_current_state(TASK_RUNNING);
 	schedule();
 }
 
 EXPORT_SYMBOL(__cond_resched);
 
 /**
  * yield - yield the current processor to other threads.
  *
  * this is a shortcut for kernel-space yielding - it marks the
  * thread runnable and calls sys_sched_yield().
  */
 void __sched yield(void)
 {
 	set_current_state(TASK_RUNNING);
 	sys_sched_yield();
 }
 
 EXPORT_SYMBOL(yield);
 
 /*
  * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
  * that process accounting knows that this is a task in IO wait state.
  *
  * But don't do that if it is a deliberate, throttling IO wait (this task
  * has set its backing_dev_info: the queue against which it should throttle)
  */
 void __sched io_schedule(void)
 {
 	struct runqueue *rq = this_rq();
 
 	atomic_inc(&rq->nr_iowait);
 	schedule();
 	atomic_dec(&rq->nr_iowait);
 }
 
 EXPORT_SYMBOL(io_schedule);
 
 long __sched io_schedule_timeout(long timeout)
 {
 	struct runqueue *rq = this_rq();
 	long ret;
 
 	atomic_inc(&rq->nr_iowait);
 	ret = schedule_timeout(timeout);
 	atomic_dec(&rq->nr_iowait);
 	return ret;
 }
 
 /**
  * sys_sched_get_priority_max - return maximum RT priority.
  * @policy: scheduling class.
  *
  * this syscall returns the maximum rt_priority that can be used
  * by a given scheduling class.
  */
 asmlinkage long sys_sched_get_priority_max(int policy)
 {
 	int ret = -EINVAL;
 
 	switch (policy) {
 	case SCHED_FIFO:
 	case SCHED_RR:
 		ret = MAX_USER_RT_PRIO-1;
 		break;
 	case SCHED_NORMAL:
 		ret = 0;
 		break;
 	}
 	return ret;
 }
 
 /**
  * sys_sched_get_priority_min - return minimum RT priority.
  * @policy: scheduling class.
  *
  * this syscall returns the minimum rt_priority that can be used
  * by a given scheduling class.
  */
 asmlinkage long sys_sched_get_priority_min(int policy)
 {
 	int ret = -EINVAL;
 
 	switch (policy) {
 	case SCHED_FIFO:
 	case SCHED_RR:
 		ret = 1;
 		break;
 	case SCHED_NORMAL:
 		ret = 0;
 	}
 	return ret;
 }
 
 /**
  * sys_sched_rr_get_interval - return the default timeslice of a process.
  * @pid: pid of the process.
  * @interval: userspace pointer to the timeslice value.
  *
  * this syscall writes the default timeslice value of a given process
  * into the user-space timespec buffer. A value of '0' means infinity.
  */
 asmlinkage
 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
 {
 	int retval = -EINVAL;
 	struct timespec t;
 	task_t *p;
 
 	if (pid < 0)
 		goto out_nounlock;
 
 	retval = -ESRCH;
 	read_lock(&tasklist_lock);
 	p = find_process_by_pid(pid);
 	if (!p)
 		goto out_unlock;
 
 	retval = security_task_getscheduler(p);
 	if (retval)
 		goto out_unlock;
 
 	jiffies_to_timespec(p->policy & SCHED_FIFO ?
 				0 : task_timeslice(p), &t);
 	read_unlock(&tasklist_lock);
 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
 out_nounlock:
 	return retval;
 out_unlock:
 	read_unlock(&tasklist_lock);
 	return retval;
 }
 
 static inline struct task_struct *eldest_child(struct task_struct *p)
 {
 	if (list_empty(&p->children)) return NULL;
 	return list_entry(p->children.next,struct task_struct,sibling);
 }
 
 static inline struct task_struct *older_sibling(struct task_struct *p)
 {
 	if (p->sibling.prev==&p->parent->children) return NULL;
 	return list_entry(p->sibling.prev,struct task_struct,sibling);
 }
 
 static inline struct task_struct *younger_sibling(struct task_struct *p)
 {
 	if (p->sibling.next==&p->parent->children) return NULL;
 	return list_entry(p->sibling.next,struct task_struct,sibling);
 }
 
 static void show_task(task_t * p)
 {
 	task_t *relative;
 	unsigned state;
 	unsigned long free = 0;
 	static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
 
 	printk("%-13.13s ", p->comm);
 	state = p->state ? __ffs(p->state) + 1 : 0;
 	if (state < ARRAY_SIZE(stat_nam))
 		printk(stat_nam[state]);
 	else
 		printk("?");
 #if (BITS_PER_LONG == 32)
 	if (state == TASK_RUNNING)
 		printk(" running ");
 	else
 		printk(" %08lX ", thread_saved_pc(p));
 #else
 	if (state == TASK_RUNNING)
 		printk("  running task   ");
 	else
 		printk(" %016lx ", thread_saved_pc(p));
 #endif
 #ifdef CONFIG_DEBUG_STACK_USAGE
 	{
 		unsigned long * n = (unsigned long *) (p->thread_info+1);
 		while (!*n)
 			n++;
 		free = (unsigned long) n - (unsigned long)(p->thread_info+1);
 	}
 #endif
 	printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
 	if ((relative = eldest_child(p)))
 		printk("%5d ", relative->pid);
 	else
 		printk("      ");
 	if ((relative = younger_sibling(p)))
 		printk("%7d", relative->pid);
 	else
 		printk("       ");
 	if ((relative = older_sibling(p)))
 		printk(" %5d", relative->pid);
 	else
 		printk("      ");
 	if (!p->mm)
 		printk(" (L-TLB)\n");
 	else
 		printk(" (NOTLB)\n");
 
 	if (state != TASK_RUNNING)
 		show_stack(p, NULL);
 }
 
 void show_state(void)
 {
 	task_t *g, *p;
 
 #if (BITS_PER_LONG == 32)
 	printk("\n"
 	       "                                               sibling\n");
 	printk("  task             PC      pid father child younger older\n");
 #else
 	printk("\n"
 	       "                                                       sibling\n");
 	printk("  task                 PC          pid father child younger older\n");
 #endif
 	read_lock(&tasklist_lock);
 	do_each_thread(g, p) {
 		/*
 		 * reset the NMI-timeout, listing all files on a slow
 		 * console might take alot of time:
 		 */
 		touch_nmi_watchdog();
 		show_task(p);
 	} while_each_thread(g, p);
 
 	read_unlock(&tasklist_lock);
 }
 
 void __devinit init_idle(task_t *idle, int cpu)
 {
 	runqueue_t *rq = cpu_rq(cpu);
 	unsigned long flags;
 
 	idle->sleep_avg = 0;
 	idle->interactive_credit = 0;
 	idle->array = NULL;
 	idle->prio = MAX_PRIO;
 	idle->state = TASK_RUNNING;
 	set_task_cpu(idle, cpu);
 
 	spin_lock_irqsave(&rq->lock, flags);
 	rq->curr = rq->idle = idle;
 	set_tsk_need_resched(idle);
 	spin_unlock_irqrestore(&rq->lock, flags);
 
 	/* Set the preempt count _outside_ the spinlocks! */
 #ifdef CONFIG_PREEMPT
 	idle->thread_info->preempt_count = (idle->lock_depth >= 0);
 #else
 	idle->thread_info->preempt_count = 0;
 #endif
 }
 
 /*
  * In a system that switches off the HZ timer nohz_cpu_mask
  * indicates which cpus entered this state. This is used
  * in the rcu update to wait only for active cpus. For system
  * which do not switch off the HZ timer nohz_cpu_mask should
  * always be CPU_MASK_NONE.
  */
 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
 
 #ifdef CONFIG_SMP
 /*
  * This is how migration works:
  *
  * 1) we queue a migration_req_t structure in the source CPU's
  *    runqueue and wake up that CPU's migration thread.
  * 2) we down() the locked semaphore => thread blocks.
  * 3) migration thread wakes up (implicitly it forces the migrated
  *    thread off the CPU)
  * 4) it gets the migration request and checks whether the migrated
  *    task is still in the wrong runqueue.
  * 5) if it's in the wrong runqueue then the migration thread removes
  *    it and puts it into the right queue.
  * 6) migration thread up()s the semaphore.
  * 7) we wake up and the migration is done.
  */
 
 /*
  * Change a given task's CPU affinity. Migrate the thread to a
  * proper CPU and schedule it away if the CPU it's executing on
  * is removed from the allowed bitmask.
  *
  * NOTE: the caller must have a valid reference to the task, the
  * task must not exit() & deallocate itself prematurely.  The
  * call is not atomic; no spinlocks may be held.
  */
 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
 {
 	unsigned long flags;
 	int ret = 0;
 	migration_req_t req;
 	runqueue_t *rq;
 
 	rq = task_rq_lock(p, &flags);
 	if (!cpus_intersects(new_mask, cpu_online_map)) {
 		ret = -EINVAL;
 		goto out;
 	}
 
 	p->cpus_allowed = new_mask;
 	/* Can the task run on the task's current CPU? If so, we're done */
 	if (cpu_isset(task_cpu(p), new_mask))
 		goto out;
 
 	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
 		/* Need help from migration thread: drop lock and wait. */
 		task_rq_unlock(rq, &flags);
 		wake_up_process(rq->migration_thread);
 		wait_for_completion(&req.done);
 		tlb_migrate_finish(p->mm);
 		return 0;
 	}
 out:
 	task_rq_unlock(rq, &flags);
 	return ret;
 }
 
 EXPORT_SYMBOL_GPL(set_cpus_allowed);
 
 /*
  * Move (not current) task off this cpu, onto dest cpu.  We're doing
  * this because either it can't run here any more (set_cpus_allowed()
  * away from this CPU, or CPU going down), or because we're
  * attempting to rebalance this task on exec (sched_exec).
  *
  * So we race with normal scheduler movements, but that's OK, as long
  * as the task is no longer on this CPU.
  */
 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
 {
 	runqueue_t *rq_dest, *rq_src;
 
 	if (unlikely(cpu_is_offline(dest_cpu)))
 		return;
 
 	rq_src = cpu_rq(src_cpu);
 	rq_dest = cpu_rq(dest_cpu);
 
 	double_rq_lock(rq_src, rq_dest);
 	/* Already moved. */
 	if (task_cpu(p) != src_cpu)
 		goto out;
 	/* Affinity changed (again). */
 	if (!cpu_isset(dest_cpu, p->cpus_allowed))
 		goto out;
 
 	set_task_cpu(p, dest_cpu);
 	if (p->array) {
 		/*
 		 * Sync timestamp with rq_dest's before activating.
 		 * The same thing could be achieved by doing this step
 		 * afterwards, and pretending it was a local activate.
 		 * This way is cleaner and logically correct.
 		 */
 		p->timestamp = p->timestamp - rq_src->timestamp_last_tick
 				+ rq_dest->timestamp_last_tick;
 		deactivate_task(p, rq_src);
 		activate_task(p, rq_dest, 0);
 		if (TASK_PREEMPTS_CURR(p, rq_dest))
 			resched_task(rq_dest->curr);
 	}
 
 out:
 	double_rq_unlock(rq_src, rq_dest);
 }
 
 /*
  * migration_thread - this is a highprio system thread that performs
  * thread migration by bumping thread off CPU then 'pushing' onto
  * another runqueue.
  */
 static int migration_thread(void * data)
 {
 	runqueue_t *rq;
 	int cpu = (long)data;
 
 	rq = cpu_rq(cpu);
 	BUG_ON(rq->migration_thread != current);
 
 	set_current_state(TASK_INTERRUPTIBLE);
 	while (!kthread_should_stop()) {
 		struct list_head *head;
 		migration_req_t *req;
 
 		if (current->flags & PF_FREEZE)
 			refrigerator(PF_FREEZE);
 
 		spin_lock_irq(&rq->lock);
 
 		if (cpu_is_offline(cpu)) {
 			spin_unlock_irq(&rq->lock);
 			goto wait_to_die;
 		}
 
 		if (rq->active_balance) {
 			active_load_balance(rq, cpu);
 			rq->active_balance = 0;
 		}
 
 		head = &rq->migration_queue;
 
 		if (list_empty(head)) {
 			spin_unlock_irq(&rq->lock);
 			schedule();
 			set_current_state(TASK_INTERRUPTIBLE);
 			continue;
 		}
 		req = list_entry(head->next, migration_req_t, list);
 		list_del_init(head->next);
 
 		if (req->type == REQ_MOVE_TASK) {
 			spin_unlock(&rq->lock);
 			__migrate_task(req->task, smp_processor_id(),
 					req->dest_cpu);
 			local_irq_enable();
 		} else if (req->type == REQ_SET_DOMAIN) {
 			rq->sd = req->sd;
 			spin_unlock_irq(&rq->lock);
 		} else {
 			spin_unlock_irq(&rq->lock);
 			WARN_ON(1);
 		}
 
 		complete(&req->done);
 	}
 	__set_current_state(TASK_RUNNING);
 	return 0;
 
 wait_to_die:
 	/* Wait for kthread_stop */
 	set_current_state(TASK_INTERRUPTIBLE);
 	while (!kthread_should_stop()) {
 		schedule();
 		set_current_state(TASK_INTERRUPTIBLE);
 	}
 	__set_current_state(TASK_RUNNING);
 	return 0;
 }
 
 #ifdef CONFIG_HOTPLUG_CPU
 /* Figure out where task on dead CPU should go, use force if neccessary. */
 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
 {
 	int dest_cpu;
 	cpumask_t mask;
 
 	/* On same node? */
 	mask = node_to_cpumask(cpu_to_node(dead_cpu));
 	cpus_and(mask, mask, tsk->cpus_allowed);
 	dest_cpu = any_online_cpu(mask);
 
 	/* On any allowed CPU? */
 	if (dest_cpu == NR_CPUS)
 		dest_cpu = any_online_cpu(tsk->cpus_allowed);
 
 	/* No more Mr. Nice Guy. */
 	if (dest_cpu == NR_CPUS) {
 		cpus_setall(tsk->cpus_allowed);
 		dest_cpu = any_online_cpu(tsk->cpus_allowed);
 
 		/*
 		 * Don't tell them about moving exiting tasks or
 		 * kernel threads (both mm NULL), since they never
 		 * leave kernel.
 		 */
 		if (tsk->mm && printk_ratelimit())
 			printk(KERN_INFO "process %d (%s) no "
 			       "longer affine to cpu%d\n",
 			       tsk->pid, tsk->comm, dead_cpu);
 	}
 	__migrate_task(tsk, dead_cpu, dest_cpu);
 }
 
 /* Run through task list and migrate tasks from the dead cpu. */
 static void migrate_live_tasks(int src_cpu)
 {
 	struct task_struct *tsk, *t;
 
 	write_lock_irq(&tasklist_lock);
 
 	do_each_thread(t, tsk) {
 		if (tsk == current)
 			continue;
 
 		if (task_cpu(tsk) == src_cpu)
 			move_task_off_dead_cpu(src_cpu, tsk);
 	} while_each_thread(t, tsk);
 
 	write_unlock_irq(&tasklist_lock);
 }
 
 /* Schedules idle task to be the next runnable task on current CPU.
  * It does so by boosting its priority to highest possible and adding it to
  * the _front_ of runqueue. Used by CPU offline code.
  */
 void sched_idle_next(void)
 {
 	int cpu = smp_processor_id();
 	runqueue_t *rq = this_rq();
 	struct task_struct *p = rq->idle;
 	unsigned long flags;
 
 	/* cpu has to be offline */
 	BUG_ON(cpu_online(cpu));
 
 	/* Strictly not necessary since rest of the CPUs are stopped by now
 	 * and interrupts disabled on current cpu.
 	 */
 	spin_lock_irqsave(&rq->lock, flags);
 
 	__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
 	/* Add idle task to _front_ of it's priority queue */
 	__activate_idle_task(p, rq);
 
 	spin_unlock_irqrestore(&rq->lock, flags);
 }
 
 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
 {
 	struct runqueue *rq = cpu_rq(dead_cpu);
 
 	/* Must be exiting, otherwise would be on tasklist. */
 	BUG_ON(tsk->state != TASK_ZOMBIE && tsk->state != TASK_DEAD);
 
 	/* Cannot have done final schedule yet: would have vanished. */
 	BUG_ON(tsk->flags & PF_DEAD);
 
 	get_task_struct(tsk);
 
 	/*
 	 * Drop lock around migration; if someone else moves it,
 	 * that's OK.  No task can be added to this CPU, so iteration is
 	 * fine.
 	 */
 	spin_unlock_irq(&rq->lock);
 	move_task_off_dead_cpu(dead_cpu, tsk);
 	spin_lock_irq(&rq->lock);
 
 	put_task_struct(tsk);
 }
 
 /* release_task() removes task from tasklist, so we won't find dead tasks. */
 static void migrate_dead_tasks(unsigned int dead_cpu)
 {
 	unsigned arr, i;
 	struct runqueue *rq = cpu_rq(dead_cpu);
 
 	for (arr = 0; arr < 2; arr++) {
 		for (i = 0; i < MAX_PRIO; i++) {
 			struct list_head *list = &rq->arrays[arr].queue[i];
 			while (!list_empty(list))
 				migrate_dead(dead_cpu,
 					     list_entry(list->next, task_t,
 							run_list));
 		}
 	}
 }
 #endif /* CONFIG_HOTPLUG_CPU */
 
 /*
  * migration_call - callback that gets triggered when a CPU is added.
  * Here we can start up the necessary migration thread for the new CPU.
  */
 static int migration_call(struct notifier_block *nfb, unsigned long action,
 			  void *hcpu)
 {
 	int cpu = (long)hcpu;
 	struct task_struct *p;
 	struct runqueue *rq;
 	unsigned long flags;
 
 	switch (action) {
 	case CPU_UP_PREPARE:
 		p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
 		if (IS_ERR(p))
 			return NOTIFY_BAD;
 		p->flags |= PF_NOFREEZE;
 		kthread_bind(p, cpu);
 		/* Must be high prio: stop_machine expects to yield to it. */
 		rq = task_rq_lock(p, &flags);
 		__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
 		task_rq_unlock(rq, &flags);
 		cpu_rq(cpu)->migration_thread = p;
 		break;
 	case CPU_ONLINE:
 		/* Strictly unneccessary, as first user will wake it. */
 		wake_up_process(cpu_rq(cpu)->migration_thread);
 		break;
 #ifdef CONFIG_HOTPLUG_CPU
 	case CPU_UP_CANCELED:
 		/* Unbind it from offline cpu so it can run.  Fall thru. */
 		kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
 		kthread_stop(cpu_rq(cpu)->migration_thread);
 		cpu_rq(cpu)->migration_thread = NULL;
 		break;
 	case CPU_DEAD:
 		migrate_live_tasks(cpu);
 		rq = cpu_rq(cpu);
 		kthread_stop(rq->migration_thread);
 		rq->migration_thread = NULL;
 		/* Idle task back to normal (off runqueue, low prio) */
 		rq = task_rq_lock(rq->idle, &flags);
 		deactivate_task(rq->idle, rq);
 		rq->idle->static_prio = MAX_PRIO;
 		__setscheduler(rq->idle, SCHED_NORMAL, 0);
 		migrate_dead_tasks(cpu);
 		task_rq_unlock(rq, &flags);
 		BUG_ON(rq->nr_running != 0);
 
 		/* No need to migrate the tasks: it was best-effort if
 		 * they didn't do lock_cpu_hotplug().  Just wake up
 		 * the requestors. */
 		spin_lock_irq(&rq->lock);
 		while (!list_empty(&rq->migration_queue)) {
 			migration_req_t *req;
 			req = list_entry(rq->migration_queue.next,
 					 migration_req_t, list);
 			BUG_ON(req->type != REQ_MOVE_TASK);
 			list_del_init(&req->list);
 			complete(&req->done);
 		}
 		spin_unlock_irq(&rq->lock);
 		break;
 #endif
 	}
 	return NOTIFY_OK;
 }
 
 /* Register at highest priority so that task migration (migrate_all_tasks)
  * happens before everything else.
  */
 static struct notifier_block __devinitdata migration_notifier = {
 	.notifier_call = migration_call,
 	.priority = 10
 };
 
 int __init migration_init(void)
 {
 	void *cpu = (void *)(long)smp_processor_id();
 	/* Start one for boot CPU. */
 	migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
 	register_cpu_notifier(&migration_notifier);
 	return 0;
 }
 #endif
 
 /*
  * The 'big kernel lock'
  *
  * This spinlock is taken and released recursively by lock_kernel()
  * and unlock_kernel().  It is transparently dropped and reaquired
  * over schedule().  It is used to protect legacy code that hasn't
  * been migrated to a proper locking design yet.
  *
  * Don't use in new code.
  *
  * Note: spinlock debugging needs this even on !CONFIG_SMP.
  */
 spinlock_t kernel_flag __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
 EXPORT_SYMBOL(kernel_flag);
 
 #ifdef CONFIG_SMP
 /* Attach the domain 'sd' to 'cpu' as its base domain */
 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
 {
 	migration_req_t req;
 	unsigned long flags;
 	runqueue_t *rq = cpu_rq(cpu);
 	int local = 1;
 
 	lock_cpu_hotplug();
 
 	spin_lock_irqsave(&rq->lock, flags);
 
 	if (cpu == smp_processor_id() || !cpu_online(cpu)) {
 		rq->sd = sd;
 	} else {
 		init_completion(&req.done);
 		req.type = REQ_SET_DOMAIN;
 		req.sd = sd;
 		list_add(&req.list, &rq->migration_queue);
 		local = 0;
 	}
 
 	spin_unlock_irqrestore(&rq->lock, flags);
 
 	if (!local) {
 		wake_up_process(rq->migration_thread);
 		wait_for_completion(&req.done);
 	}
 
 	unlock_cpu_hotplug();
 }
 
 /*
  * To enable disjoint top-level NUMA domains, define SD_NODES_PER_DOMAIN
  * in arch code. That defines the number of nearby nodes in a node's top
  * level scheduling domain.
  */
 #if defined(CONFIG_NUMA) && defined(SD_NODES_PER_DOMAIN)
 /**
  * find_next_best_node - find the next node to include in a sched_domain
  * @node: node whose sched_domain we're building
  * @used_nodes: nodes already in the sched_domain
  *
  * Find the next node to include in a given scheduling domain.  Simply
  * finds the closest node not already in the @used_nodes map.
  *
  * Should use nodemask_t.
  */
 static int __init find_next_best_node(int node, unsigned long *used_nodes)
 {
 	int i, n, val, min_val, best_node = 0;
 
 	min_val = INT_MAX;
 
 	for (i = 0; i < numnodes; i++) {
 		/* Start at @node */
 		n = (node + i) % numnodes;
 
 		/* Skip already used nodes */
 		if (test_bit(n, used_nodes))
 			continue;
 
 		/* Simple min distance search */
 		val = node_distance(node, i);
 
 		if (val < min_val) {
 			min_val = val;
 			best_node = n;
 		}
 	}
 
 	set_bit(best_node, used_nodes);
 	return best_node;
 }
 
 /**
  * sched_domain_node_span - get a cpumask for a node's sched_domain
  * @node: node whose cpumask we're constructing
  * @size: number of nodes to include in this span
  *
  * Given a node, construct a good cpumask for its sched_domain to span.  It
  * should be one that prevents unnecessary balancing, but also spreads tasks
  * out optimally.
  */
 cpumask_t __init sched_domain_node_span(int node)
 {
 	int i;
 	cpumask_t span;
 	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
 
 	cpus_clear(span);
 	bitmap_zero(used_nodes, MAX_NUMNODES);
 
 	for (i = 0; i < SD_NODES_PER_DOMAIN; i++) {
 		int next_node = find_next_best_node(node, used_nodes);
 		cpumask_t  nodemask;
 
 		nodemask = node_to_cpumask(next_node);
 		cpus_or(span, span, nodemask);
 	}
 
 	return span;
 }
 #else /* CONFIG_NUMA && SD_NODES_PER_DOMAIN */
 cpumask_t __init sched_domain_node_span(int node)
 {
 	return cpu_possible_map;
 }
 #endif /* CONFIG_NUMA && SD_NODES_PER_DOMAIN */
 
 #ifdef CONFIG_SCHED_SMT
 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
 static struct sched_group sched_group_cpus[NR_CPUS];
 __init static int cpu_to_cpu_group(int cpu)
 {
 	return cpu;
 }
 #endif
 
 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
 static struct sched_group sched_group_phys[NR_CPUS];
 __init static int cpu_to_phys_group(int cpu)
 {
 #ifdef CONFIG_SCHED_SMT
 	return first_cpu(cpu_sibling_map[cpu]);
 #else
 	return cpu;
 #endif
 }
 
 #ifdef CONFIG_NUMA
 
 static DEFINE_PER_CPU(struct sched_domain, node_domains);
 static struct sched_group sched_group_nodes[MAX_NUMNODES];
 __init static int cpu_to_node_group(int cpu)
 {
 	return cpu_to_node(cpu);
 }
 #endif
 
 /* Groups for isolated scheduling domains */
 static struct sched_group sched_group_isolated[NR_CPUS];
 
 /* cpus with isolated domains */
 cpumask_t __initdata cpu_isolated_map = CPU_MASK_NONE;
 
 __init static int cpu_to_isolated_group(int cpu)
 {
 	return cpu;
 }
 
 /* Setup the mask of cpus configured for isolated domains */
 static int __init isolated_cpu_setup(char *str)
 {
 	int ints[NR_CPUS], i;
 
 	str = get_options(str, ARRAY_SIZE(ints), ints);
 	cpus_clear(cpu_isolated_map);
 	for (i = 1; i <= ints[0]; i++)
 		cpu_set(ints[i], cpu_isolated_map);
 	return 1;
 }
 
 __setup ("isolcpus=", isolated_cpu_setup);
 
 /*
  * init_sched_build_groups takes an array of groups, the cpumask we wish
  * to span, and a pointer to a function which identifies what group a CPU
  * belongs to. The return value of group_fn must be a valid index into the
  * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
  * keep track of groups covered with a cpumask_t).
  *
  * init_sched_build_groups will build a circular linked list of the groups
  * covered by the given span, and will set each group's ->cpumask correctly,
  * and ->cpu_power to 0.
  */
 __init static void init_sched_build_groups(struct sched_group groups[],
 			cpumask_t span, int (*group_fn)(int cpu))
 {
 	struct sched_group *first = NULL, *last = NULL;
 	cpumask_t covered = CPU_MASK_NONE;
 	int i;
 
 	for_each_cpu_mask(i, span) {
 		int group = group_fn(i);
 		struct sched_group *sg = &groups[group];
 		int j;
 
 		if (cpu_isset(i, covered))
 			continue;
 
 		sg->cpumask = CPU_MASK_NONE;
 		sg->cpu_power = 0;
 
 		for_each_cpu_mask(j, span) {
 			if (group_fn(j) != group)
 				continue;
 
 			cpu_set(j, covered);
 			cpu_set(j, sg->cpumask);
 		}
 		if (!first)
 			first = sg;
 		if (last)
 			last->next = sg;
 		last = sg;
 	}
 	last->next = first;
 }
 
 __init static void arch_init_sched_domains(void)
 {
 	int i;
 	cpumask_t cpu_default_map;
 
 	/*
 	 * Setup mask for cpus without special case scheduling requirements.
 	 * For now this just excludes isolated cpus, but could be used to
 	 * exclude other special cases in the future.
 	 */
 	cpus_complement(cpu_default_map, cpu_isolated_map);
 	cpus_and(cpu_default_map, cpu_default_map, cpu_possible_map);
 
 	/* Set up domains */
 	for_each_cpu(i) {
 		int group;
 		struct sched_domain *sd = NULL, *p;
 		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
 
 		cpus_and(nodemask, nodemask, cpu_default_map);
 
 		/*
 		 * Set up isolated domains.
 		 * Unlike those of other cpus, the domains and groups are
 		 * single level, and span a single cpu.
 		 */
 		if (cpu_isset(i, cpu_isolated_map)) {
 #ifdef CONFIG_SCHED_SMT
 			sd = &per_cpu(cpu_domains, i);
 #else
 			sd = &per_cpu(phys_domains, i);
 #endif
 			group = cpu_to_isolated_group(i);
 			*sd = SD_CPU_INIT;
 			cpu_set(i, sd->span);
 			sd->balance_interval = INT_MAX;	/* Don't balance */
 			sd->flags = 0;			/* Avoid WAKE_ */
 			sd->groups = &sched_group_isolated[group];
 			printk(KERN_INFO "Setting up cpu %d isolated.\n", i);
 			/* Single level, so continue with next cpu */
 			continue;
 		}
 
 #ifdef CONFIG_NUMA
 		sd = &per_cpu(node_domains, i);
 		group = cpu_to_node_group(i);
 		*sd = SD_NODE_INIT;
 		/* FIXME: should be multilevel, in arch code */
 		sd->span = sched_domain_node_span(i);
 		cpus_and(sd->span, sd->span, cpu_default_map);
 		sd->groups = &sched_group_nodes[group];
 #endif
 
 		p = sd;
 		sd = &per_cpu(phys_domains, i);
 		group = cpu_to_phys_group(i);
 		*sd = SD_CPU_INIT;
 #ifdef CONFIG_NUMA
 		sd->span = nodemask;
 #else
 		sd->span = cpu_possible_map;
 #endif
 		sd->parent = p;
 		sd->groups = &sched_group_phys[group];
 
 #ifdef CONFIG_SCHED_SMT
 		p = sd;
 		sd = &per_cpu(cpu_domains, i);
 		group = cpu_to_cpu_group(i);
 		*sd = SD_SIBLING_INIT;
 		sd->span = cpu_sibling_map[i];
 		cpus_and(sd->span, sd->span, cpu_default_map);
 		sd->parent = p;
 		sd->groups = &sched_group_cpus[group];
 #endif
 	}
 
 #ifdef CONFIG_SCHED_SMT
 	/* Set up CPU (sibling) groups */
 	for_each_cpu(i) {
 		cpumask_t this_sibling_map = cpu_sibling_map[i];
 		cpus_and(this_sibling_map, this_sibling_map, cpu_default_map);
 		if (i != first_cpu(this_sibling_map))
 			continue;
 
 		init_sched_build_groups(sched_group_cpus, this_sibling_map,
 						&cpu_to_cpu_group);
 	}
 #endif
 
 	/* Set up isolated groups */
 	for_each_cpu_mask(i, cpu_isolated_map) {
 		cpumask_t mask;
 		cpus_clear(mask);
 		cpu_set(i, mask);
 		init_sched_build_groups(sched_group_isolated, mask,
 						&cpu_to_isolated_group);
 	}
 
 #ifdef CONFIG_NUMA
 	/* Set up physical groups */
 	for (i = 0; i < MAX_NUMNODES; i++) {
 		cpumask_t nodemask = node_to_cpumask(i);
 
 		cpus_and(nodemask, nodemask, cpu_default_map);
 		if (cpus_empty(nodemask))
 			continue;
 
 		init_sched_build_groups(sched_group_phys, nodemask,
 						&cpu_to_phys_group);
 	}
 #else
 	init_sched_build_groups(sched_group_phys, cpu_possible_map,
 							&cpu_to_phys_group);
 #endif
 
 #ifdef CONFIG_NUMA
 	/* Set up node groups */
 	init_sched_build_groups(sched_group_nodes, cpu_default_map,
 					&cpu_to_node_group);
 #endif
 
 	/* Calculate CPU power for physical packages and nodes */
 	for_each_cpu_mask(i, cpu_default_map) {
 		int power;
 		struct sched_domain *sd;
 #ifdef CONFIG_SCHED_SMT
 		sd = &per_cpu(cpu_domains, i);
 		power = SCHED_LOAD_SCALE;
 		sd->groups->cpu_power = power;
 #endif
 
 		sd = &per_cpu(phys_domains, i);
 		power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
 				(cpus_weight(sd->groups->cpumask)-1) / 10;
 		sd->groups->cpu_power = power;
 
 #ifdef CONFIG_NUMA
 		if (i == first_cpu(sd->groups->cpumask)) {
 			/* Only add "power" once for each physical package. */
 			sd = &per_cpu(node_domains, i);
 			sd->groups->cpu_power += power;
 		}
 #endif
 	}
 
 	/* Attach the domains */
 	for_each_cpu(i) {
 		struct sched_domain *sd;
 #ifdef CONFIG_SCHED_SMT
 		sd = &per_cpu(cpu_domains, i);
 #else
 		sd = &per_cpu(phys_domains, i);
 #endif
 		cpu_attach_domain(sd, i);
 	}
 }
 
 #undef SCHED_DOMAIN_DEBUG
 #ifdef SCHED_DOMAIN_DEBUG
 void sched_domain_debug(void)
 {
 	int i;
 
 	for_each_cpu(i) {
 		runqueue_t *rq = cpu_rq(i);
 		struct sched_domain *sd;
 		int level = 0;
 
 		sd = rq->sd;
 
 		printk(KERN_DEBUG "CPU%d: %s\n",
 				i, (cpu_online(i) ? " online" : "offline"));
 
 		do {
 			int j;
 			char str[NR_CPUS];
 			struct sched_group *group = sd->groups;
 			cpumask_t groupmask;
 
 			cpumask_scnprintf(str, NR_CPUS, sd->span);
 			cpus_clear(groupmask);
 
 			printk(KERN_DEBUG);
 			for (j = 0; j < level + 1; j++)
 				printk(" ");
 			printk("domain %d: span %s\n", level, str);
 
 			if (!cpu_isset(i, sd->span))
 		printk(KERN_DEBUG "ERROR domain->span does not contain CPU%d\n", i);
 			if (!cpu_isset(i, group->cpumask))
 		printk(KERN_DEBUG "ERROR domain->groups does not contain CPU%d\n", i);
 			if (!group->cpu_power)
 				printk(KERN_DEBUG "ERROR domain->cpu_power not set\n");
 
 			printk(KERN_DEBUG);
 			for (j = 0; j < level + 2; j++)
 				printk(" ");
 			printk("groups:");
 			do {
 				if (!group) {
 					printk(" ERROR: NULL");
 					break;
 				}
 
 				if (!cpus_weight(group->cpumask))
 					printk(" ERROR empty group:");
 
 				if (cpus_intersects(groupmask, group->cpumask))
 					printk(" ERROR repeated CPUs:");
 
 				cpus_or(groupmask, groupmask, group->cpumask);
 
 				cpumask_scnprintf(str, NR_CPUS, group->cpumask);
 				printk(" %s", str);
 
 				group = group->next;
 			} while (group != sd->groups);
 			printk("\n");
 
 			if (!cpus_equal(sd->span, groupmask))
 	printk(KERN_DEBUG "ERROR groups don't span domain->span\n");
 
 			level++;
 			sd = sd->parent;
 
 			if (sd) {
 				if (!cpus_subset(groupmask, sd->span))
 	printk(KERN_DEBUG "ERROR parent span is not a superset of domain->span\n");
 			}
 
 		} while (sd);
 	}
 }
 #else
 #define sched_domain_debug() {}
 #endif
 
 void __init sched_init_smp(void)
 {
 	arch_init_sched_domains();
 	sched_domain_debug();
 }
 #else
 void __init sched_init_smp(void)
 {
 }
 #endif /* CONFIG_SMP */
 
 int in_sched_functions(unsigned long addr)
 {
 	/* Linker adds these: start and end of __sched functions */
 	extern char __sched_text_start[], __sched_text_end[];
 	return in_lock_functions(addr) ||
 		(addr >= (unsigned long)__sched_text_start
 		&& addr < (unsigned long)__sched_text_end);
 }
 
 void __init sched_init(void)
 {
 	runqueue_t *rq;
 	int i, j, k;
 
 #ifdef CONFIG_SMP
 	/* Set up an initial dummy domain for early boot */
 	static struct sched_domain sched_domain_init;
 	static struct sched_group sched_group_init;
 
 	memset(&sched_domain_init, 0, sizeof(struct sched_domain));
 	sched_domain_init.span = CPU_MASK_ALL;
 	sched_domain_init.groups = &sched_group_init;
 	sched_domain_init.last_balance = jiffies;
 	sched_domain_init.balance_interval = INT_MAX; /* Don't balance */
 	sched_domain_init.busy_factor = 1;
 
 	memset(&sched_group_init, 0, sizeof(struct sched_group));
 	sched_group_init.cpumask = CPU_MASK_ALL;
 	sched_group_init.next = &sched_group_init;
 	sched_group_init.cpu_power = SCHED_LOAD_SCALE;
 #endif
 
 	for (i = 0; i < NR_CPUS; i++) {
 		prio_array_t *array;
 
 		rq = cpu_rq(i);
 		spin_lock_init(&rq->lock);
 		rq->active = rq->arrays;
 		rq->expired = rq->arrays + 1;
 		rq->best_expired_prio = MAX_PRIO;
 
 #ifdef CONFIG_SMP
 		rq->sd = &sched_domain_init;
 		rq->cpu_load = 0;
 		rq->active_balance = 0;
 		rq->push_cpu = 0;
 		rq->migration_thread = NULL;
 		INIT_LIST_HEAD(&rq->migration_queue);
 #endif
 		atomic_set(&rq->nr_iowait, 0);
 
 		for (j = 0; j < 2; j++) {
 			array = rq->arrays + j;
 			for (k = 0; k < MAX_PRIO; k++) {
 				INIT_LIST_HEAD(array->queue + k);
 				__clear_bit(k, array->bitmap);
 			}
 			// delimiter for bitsearch
 			__set_bit(MAX_PRIO, array->bitmap);
 		}
 	}
 
 	/*
 	 * The boot idle thread does lazy MMU switching as well:
 	 */
 	atomic_inc(&init_mm.mm_count);
 	enter_lazy_tlb(&init_mm, current);
 
 	/*
 	 * Make us the idle thread. Technically, schedule() should not be
 	 * called from this thread, however somewhere below it might be,
 	 * but because we are the idle thread, we just pick up running again
 	 * when this runqueue becomes "idle".
 	 */
 	init_idle(current, smp_processor_id());
 }
 
 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
 void __might_sleep(char *file, int line)
 {
 #if defined(in_atomic)
 	static unsigned long prev_jiffy;	/* ratelimiting */
 
 	if ((in_atomic() || irqs_disabled()) &&
 	    system_state == SYSTEM_RUNNING) {
 		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
 			return;
 		prev_jiffy = jiffies;
 		printk(KERN_ERR "Debug: sleeping function called from invalid"
 				" context at %s:%d\n", file, line);
 		printk("in_atomic():%d, irqs_disabled():%d\n",
 			in_atomic(), irqs_disabled());
 		dump_stack();
 	}
 #endif
 }
 EXPORT_SYMBOL(__might_sleep);
 #endif
 
 
 
Оставьте свой комментарий !

Ваше имя:
Комментарий:
Оба поля являются обязательными

 Автор  Комментарий к данной статье