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are (third from left) S. Narayana Aiyar, Chief Accountant of the Madras Port
Trust Office, and (fourth from left) P.V. Seshu Aiyar, Ramanujan’s mathe-
matics instructor at the Government College of Kumbakonam. Sitting in the
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Mathematical Society, and (third from right) R. Ramachandra Rao, who pro-
vided a stipend for Ramanujan for 15 months. Standing in the third row is
(second from left) S.R. Ranganathan, who wrote the first book-length biogra-
phy of Ramanujan in English. Identifications of the remainder of the delegates
in the photograph may be found in Volume 11 of the Journal of the Indian
Mathematical Society or [65, p. 27].
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It was not until today that I discovered at last what I had been so
long searching for. The treasure hidden here is greater than that of the
richest king in the world and to find it, the meaning of only one more
sign had to be deciphered.

—Rabindranath Tagore, “The Hidden Treasure”





Preface

This is the fourth of five volumes that the authors are writing in their exam-
ination of all the claims made by S. Ramanujan in The Lost Notebook and
Other Unpublished Papers. Published by Narosa in 1988, the treatise contains
the “Lost Notebook,” which was discovered by the first author in the spring
of 1976 at the library of Trinity College, Cambridge. Also included in this
publication are partial manuscripts, fragments, and letters that Ramanujan
wrote to G.H. Hardy from nursing homes during 1917–1919. Although some
of the claims examined in our fourth volume are found in the original lost
notebook, most of the claims examined here are from the partial manuscripts
and fragments. Classical analysis and classical analytic number theory are
featured.

University Park, PA, USA George E. Andrews
Urbana, IL, USA Bruce C. Berndt
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1

Introduction

In contrast to our first three volumes [12–14] devoted to Ramanujan’s Lost
Notebook and Other Unpublished Papers [269], this volume does not focus
on q-series. Number theory and classical analysis are in the spotlight in the
present book, which is the fourth of five projected volumes, wherein the au-
thors plan to discuss all the claims made by Ramanujan in [269]. As in our
previous volumes, in the sequel, we liberally interpret lost notebook not only
to include the original lost notebook found by the first author in the library
at Trinity College, Cambridge, in March 1976, but also to include all of the
material published in [269]. This includes letters that Ramanujan wrote to
G.H. Hardy from nursing homes, several partial manuscripts, and miscella-
neous papers. Some of these manuscripts are located at Oxford University,
are in the handwriting of G.N. Watson, and are “copied from loose papers.”
However, it should be emphasized that the original manuscripts in Ramanu-
jan’s handwriting can be found at Trinity College Library, Cambridge.

We now relate some of the highlights in this volume, while at the same
time offering our thanks to several mathematicians who helped prove some of
these results.

Chapter 2 is devoted to two intriguing identities involving double series of
Bessel functions found on page 335 of [269]. One is connected with the classical
circle problem, while the other is conjoined to the equally famous Dirichlet
divisor problem. The double series converge very slowly, and the identities were
extremely difficult to prove. Initially, the second author and his collaborators,
Sun Kim and Alexandru Zaharescu, were not able to prove the identities
with the order of summation as prescribed by Ramanujan, i.e., the identities
were proved with the order of summation reversed [57, 71]. It is possible
that Ramanujan intended that the summation indices should tend to infinity
“together.” The three authors therefore also proved the two identities with
the product of the summation indices tending to ∞ [57]. Finally, these authors
proved Ramanujan’s first identity with the order of summation as prescribed
by Ramanujan [60]. It might be remarked here that the proofs under the three
interpretations of the summation indices are entirely different; the authors
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2 1 Introduction

did not use any idea from one proof in the proofs of the same identity under
different interpretations. In Chap. 2, we provide proofs of the two identities
with the order of summation indicated by Ramanujan in the first identity
and with the order of summation reversed in the second identity. We also
establish the identities when the product of the two indices of summation
tends to infinity. In addition to thanking Sun Kim and Alexandru Zaharescu
for their collaborations, the present authors also thank O-Yeat Chan, who
performed several calculations to discern the convergence of these and related
series.

It came as a huge surprise to us while examining pages in [269] when
we espied famous formulas of N.S. Koshliakov and A.P. Guinand, although
Ramanujan wrote them in slightly disguised forms. Moreover, we discovered
that Ramanujan had found some consequences of these formulas that had not
theretofore been found by any other authors. We are grateful to Yoonbok Lee
and Jaebum Sohn for their collaboration on these formulas, which are the
focus of Chap. 3.

Chapter 4, on the classical gamma function, features two sets of claims.
We begin the chapter with some integrals involving the gamma function in
the integrands. Secondly, we examine a claim that reverts to a problem [260]
that Ramanujan submitted to the Journal of the Indian Mathematical Society,
which was never completely solved. On page 339 in [269], Ramanujan offers
a refinement of this problem, which was proved by the combined efforts of
Ekaterina Karatsuba [177] and Horst Alzer [4].

Hypergeometric functions are featured in Chap. 5. This chapter contains
two particularly interesting results. The first is an explicit representation for
a quotient of two particular bilateral hypergeometric series, which was proved
in a paper [50] by the second author and Wenchang Chu, whom we thank
for his expert collaboration. We also appreciate correspondence with Tom
Koornwinder about one particular formula on bilateral series that was crucial
in our proof. Ramanujan’s formula is so unexpected that no one but Ramanu-
jan could have discovered it! The second is a beautiful continued fraction, for
which Soon-Yi Kang, Sung-Geun Lim, and Sohn [175] found two entirely dif-
ferent proofs, each providing a different understanding of the entry. A further
beautiful continued fraction of Ramanujan was only briefly examined in [175],
but Kang supplied us with a very nice proof, which appears here for the first
time.

Chapter 6 contains accounts of two incomplete manuscripts on Euler’s
constant γ, one of which was coauthored by the second author with Doug
Bowman [46] and the other of which was coauthored by the second author
with Tim Huber [55].

Sun Kim kindly collaborated with the second author on Chap. 7, on
an unusual problem examined in a rough manuscript by Ramanujan on
Diophantine approximation [56]. She also worked with the second author
and Zaharescu on another partial manuscript providing the best possible
Diophantine approximation to e2/a, where a is any nonzero integer [61].
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This manuscript was another huge surprise to us, for it had never been no-
ticed by anyone, to the best of our knowledge, that Ramanujan had derived
the best possible Diophantine approximation to e2/a, which was first proved
in print approximately 60 years after Ramanujan had found his proof. A third
manuscript on Diophantine approximation in [269] turned out to be without
substance, unless we have grossly misinterpreted Ramanujan’s claims on page
343 of [269].

We next collect some results from number theory, not all of which are
correct. At the beginning of Chap. 8, in Sect. 8.1, we relate that Ramanujan
had anticipated the famous work of L.G. Sathe [275–278] and A. Selberg [281]
on the distribution of primes, although Ramanujan did not state any specific
theorems. In prime number theory, Dickman’s function is a famous and useful
function, but in Sect. 8.2, we see that Ramanujan had discovered Dickman’s
function at least 10 years before Dickman did in 1930 [106]. A.J. Hildebrand, a
colleague of the second author, supplied a clever proof of Ramanujan’s formula
for, in standard notation, Ψ(x, xε) and then provided us with a heuristic argu-
ment that might have been the approach used by Ramanujan. We then turn
to a formula for ζ(12 ), first given in Sect. 8 of Chap. 15 in Ramanujan’s second
notebook. In [269], Ramanujan offers an elegant reinterpretation of this for-
mula, which renders an already intriguing result even more fascinating. Next,
we examine a fragment on sums of powers that was very difficult to interpret;
our account of this fragment is taken from a paper by D. Schultz and the
second author [67]. One of the most interesting results in the chapter yields
an unusual algorithm for generating solutions to Euler’s diophantine equa-
tion a3 + b3 = c3 + d3. This result was established in different ways by Mike
Hirschhorn in a series of papers [141, 158–160].

Chapter 9 is devoted to discarded fragments of manuscripts and partial
manuscripts concerning the divisor functions σk(n) and d(n), respectively, the
sum of the kth powers of the divisors of n, and the number of divisors of n.
Some of this work is related to Ramanujan’s paper [265]. An account of one of
these fragments appeared in a paper that the second author coauthored with
Prapanpong Pongsriiam [63].

In the next chapter, Chap. 10, we prove all of the results on page 196
of [269]. Two of the results evaluating certain Dirichlet series are especially
interesting. A more detailed examination of these results can be found in a
paper that the second author coauthored with Heng Huat Chan and Yoshio
Tanigawa [47].

Chapter 11 contains some unusual old and new results on primes arranged
in two rough, partial manuscripts. Ramanujan’s manuscripts contain several
errors, and we conjecture that this work predates his departure for England in
1914. Harold Diamond helped us enormously in both interpreting and correct-
ing the claims made by Ramanujan in the two partial manuscripts examined
in Chap. 11.

In Chap. 12, we discuss a manuscript that was either intended to be a
paper by itself or, more probably, was slated to be the concluding portion of
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Ramanujan’s paper [263]. The results in this paper hark back to Ramanujan’s
early preoccupation with infinite series identities and the material in Chap. 14
of his second notebook [38, 268]. The second author had previously published
an account of this manuscript [42]. Our account here includes a closer exam-
ination of two of Ramanujan’s series by Johann Thiel, to whom we are very
grateful for his contributions.

Perhaps the most fascinating formula found in the three manuscripts on
Fourier analysis in the handwriting of Watson is a transformation formula
involving the Riemann Ξ-function and the logarithmic derivative of the
gamma function in Chap. 13. We are pleased to thank Atul Dixit, who collab-
orated with the second author on several proofs of this formula. One of the
hallmarks of Ramanujan’s mathematics is that it frequently generates fur-
ther interesting mathematics, and this formula is no exception. In a series of
papers [108–111], Dixit found analogues of this formula and found new bonds
with the Ξ-function, in particular, with the beautiful formulas of Guinand
and Koshliakov.

The second of the aforementioned manuscripts features integrals that pos-
sess transformation formulas like those satisfied by theta functions. Two of
the integrals were examined by Ramanujan in two papers [256, 258], [267,
pp. 59–67, 202–207], where he considered the integrals to be analogues of
Gauss sums, a view that we corroborate in Chap. 14. One of the integrals, to
which page 198 of [269] is devoted, was not examined earlier by Ramanujan.
Ping Xu and the second author established Ramanujan’s claims for this inte-
gral in [69]; the account given in Chap. 14 is slightly improved in places over
that in [69]. (The authors are grateful to Noam Elkies for a historical note at
the end of Sect. 14.1.)

In the third manuscript, on Fourier analysis, which we discuss in Chap. 15,
Ramanujan considers some problems on Mellin transforms.

The next three chapters pertain to some of Ramanujan’s earlier published
papers. We then consider miscellaneous collections of results in classical anal-
ysis and elementary mathematics in the next two chapters.

Chapter 21 is devoted to some strange, partially incorrect claims of Ra-
manujan that likely originate from an early part of his career.

In summary, the second author is exceedingly obliged to his coauthors
Doug Bowman, O.-Yeat Chan, Wenchang Chu, Atul Dixit, Tim Huber, Sun
Kim, Yoonbok Lee, Sung-Geun Lim, Prapanpong Pongsriiam, Dan Schultz,
Jaebum Sohn, Ping Xu, and Alexandru Zaharescu for their contributions.

As with earlier volumes, Jaebum Sohn carefully read several chapters and
offered many corrections and helpful comments, for which we are especially
grateful. Michael Somos offered several proofs for Chap. 20 and numerous
corrections in several other chapters. Mike Hirschhorn also contributed many
useful remarks.

We offer our gratitude to Harold Diamond, Andrew Granville, A.J. Hilde-
brand, Pieter Moree, Kannan Soundararajan, Gérald Tenenbaum, and Robert
Vaughan for their comments that greatly enhanced our discussion of the
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Sathe–Selberg results and Dickman’s function in Sects. 8.1 and 8.2, respectively.
Atul Dixit uncovered several papers by Guinand and Koshliakov of which the
authors had not previously been aware. Most of Sect. 8.7 was kindly supplied
to us by Jean-Louis Nicolas, with M.Tip Phaovibul also providing valuable
insights. Useful correspondence with Ron Evans about Mersenne primes is
greatly appreciated.

We offer our sincere thanks to Springer’s TEX experts, Suresh Kumar
and Rajiv Monsurate, for much technical advice, and to Springer copy editor
David Kramer for several corrections and helpful remarks.

We thank the Master and Fellows of Trinity College, Cambridge, for
providing the authors with the manuscripts to which this book is devoted.

The first author thanks both the National Science Foundation and the
National Security Agency for financial support. The second author also thanks
the NSA for support, and is particularly grateful to the Sloan Foundation for
one year of financial support that enabled the authors to complete this book.



2

Double Series of Bessel Functions

and the Circle and Divisor Problems

2.1 Introduction

In this chapter we establish identities that express certain finite trigonometric
sums as double series of Bessel functions. These results, stated in Entries 2.1.1
and 2.1.2 below, are identities claimed by Ramanujan on page 335 in his lost
notebook [269], for which no indications of proofs are given. (Technically,
page 335 is not in Ramanujan’s lost notebook; this page is a fragment pub-
lished by Narosa with the original lost notebook.) As we shall see in the
sequel, the identities are intimately connected with the famous circle and
divisor problems, respectively. The first identity involves the ordinary Bessel
function J1(z), where the more general ordinary Bessel function Jν(z) is
defined by

Jν(z) :=

∞∑

n=0

(−1)n

n!Γ (ν + n+ 1)

(z
2

)ν+2n

, 0 < |z| <∞, ν ∈ C. (2.1.1)

The second identity involves the Bessel function of the second kind Y1(z) [314,
p. 64, Eq. (1)], with Yν(z) more generally defined by

Yν(z) :=
Jν(z) cos(νπ) − J−ν(z)

sin(νπ)
, (2.1.2)

and the modified Bessel function K1(z), with Kν(z) [314, p. 78, Eq. (6)]
defined, for −π < arg z < 1

2π, by

Kν(z) :=
π

2

eπiν/2J−ν(iz)− e−πiν/2Jν(iz)

sin(νπ)
. (2.1.3)

If ν is an integer n, then it is understood that we define the functions by
taking the limits as ν → n in (2.1.2) and (2.1.3).

To state Ramanujan’s claims, we need to next define
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8 2 Double Series of Bessel Functions and the Circle and Divisor Problems

F (x) =

{
[x], if x is not an integer,

x− 1
2 , if x is an integer,

(2.1.4)

where, as customary, [x] is the greatest integer less than or equal to x.

Entry 2.1.1 (p. 335). Let F (x) be defined by (2.1.4). If 0 < θ < 1 and
x > 0, then

∞∑

n=1

F
(x
n

)
sin(2πnθ) = πx

(
1

2
− θ
)
− 1

4
cot(πθ)

+
1

2

√
x

∞∑

m=1

∞∑

n=0

⎧
⎨

⎩
J1

(
4π
√
m(n+ θ)x

)

√
m(n+ θ)

−
J1

(
4π
√
m(n+ 1− θ)x

)

√
m(n+ 1− θ)

⎫
⎬

⎭ .

(2.1.5)

Entry 2.1.2 (p. 335). Let F (x) be defined by (2.1.4). Then, for x > 0 and
0 < θ < 1,

∞∑

n=1

F
(x
n

)
cos(2πnθ) =

1

4
− x log(2 sin(πθ))

+
1

2

√
x

∞∑

m=1

∞∑

n=0

⎧
⎨

⎩
I1

(
4π
√
m(n+ θ)x

)

√
m(n+ θ)

+
I1

(
4π
√
m(n+ 1− θ)x

)

√
m(n+ 1− θ)

⎫
⎬

⎭ ,

(2.1.6)

where

Iν(z) := −Yν(z)−
2

π
Kν(z). (2.1.7)

Ramanujan’s formulation of (2.1.5) is given in the form

[x
1

]
sin(2πθ) +

[x
2

]
sin(4πθ) +

[x
3

]
sin(6πθ) +

[x
4

]
sin(8πθ) + · · ·

= πx

(
1

2
− θ
)
− 1

4
cot(πθ) +

1

2

√
x

∞∑

m=1

{
J1(4π

√
mθx)√
mθ

− J1(4π
√
m(1 − θ)x)√
m(1− θ)

+
J1(4π

√
m(1 + θ)x)√
m(1 + θ)

− J1(4π
√
m(2− θ)x)√
m(2− θ)

+
J1(4π

√
m(2 + θ)x)√
m(2 + θ)

− · · ·
}
,

(2.1.8)

“where [x] denotes the greatest integer in x if x is not an integer and x − 1
2

if x is an integer.” His formulation of (2.1.6) is similar. Since Ramanujan
employed the notation [x] in a nonstandard fashion, we think it is advisable
to introduce the alternative notation (2.1.4). As we shall see in the sequel,
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there is some evidence that Ramanujan did not intend the double sums to be
interpreted as iterated sums, but as double sums in which the product mn of
the summation indices tends to ∞.

Note that the series on the left-hand sides of (2.1.5) and (2.1.6) are finite,
and discontinuous if x is an integer. To examine the right-hand side of (2.1.5),
we recall [314, p. 199] that, as x→ ∞,

Jν(x) =

(
2

πx

)1/2

cos
(
x− 1

2νπ −
1
4π
)
+O

(
1

x3/2

)
. (2.1.9)

Hence, as m,n→ ∞, the terms of the double series on the right-hand side of
(2.1.5) are asymptotically equal to

1

π
√
2x1/4m3/4

⎛

⎝
cos
(
4π
√
m(n+ θ)x − 3

4π
)

(n+ θ)3/4

−
cos
(
4π
√
m(n+ 1− θ)x − 3

4π
)

(n+ 1− θ)3/4

⎞

⎠.

Thus, if indeed the double series on the right side of (2.1.5) does converge,
it converges conditionally and not absolutely. A similar argument clearly per-
tains to (2.1.6).

We now discuss in detail Entry 2.1.1; our discourse will then be followed
by a detailed account of Entry 2.1.2.

It is natural to ask what led Ramanujan to the double series on the right
side of (2.1.5). Let r2(n) denote the number of representations of the positive
integer n as a sum of two squares. Recall that the famous circle problem is
to determine the precise order of magnitude, as x→ ∞, for the “error term”
P (x), defined by

∑′

0≤n≤x

r2(n) = πx+ P (x), (2.1.10)

where the prime ′ on the summation sign on the left side indicates that if x
is an integer, only 1

2r2(x) is counted. Moreover, we define r2(0) = 1. In [144],

Hardy showed that P (x) �= O(x1/4), as x tends to ∞. (He actually showed a
slightly stronger result.)

In 1906, W. Sierpiński [288] proved that P (x) = O(x1/3), as x→ ∞. After
Sierpiński’s work, most efforts toward obtaining an upper bound for P (x) have
ultimately rested upon the identity

∑′

0≤n≤x

r2(n) = πx+
∞∑

n=1

r2(n)
(x
n

)1/2
J1(2π

√
nx), (2.1.11)

(2.1.9), and methods of estimating the resulting trigonometric series. Here,
the prime ′ on the summation sign on the left side has the same meaning as
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above. The identity (2.1.11) was first published and proved in Hardy’s paper
[144], [150, pp. 243–263]. In a footnote, Hardy [150, p. 245] remarks, “The form
of this equation was suggested to me by Mr. S. Ramanujan, to whom I had
communicated the analogous formula for d(1)+d(2)+ · · ·+d(n), where d(n) is
the number of divisors of n.” Thus, it is possible that Ramanujan was the first
to prove (2.1.11), although we do not know anything about his derivation.

Observe that the summands in the series on the right side of (2.1.11) are
similar to those on the right side of (2.1.5). Moreover, the sums on the left
side in each formula are finite sums over n ≤ x. Thus, it seems plausible that
there is a connection between these two formulas, and as we shall see, indeed
there is. Ramanujan might therefore have derived (2.1.5) in anticipation of
applying it to the circle problem.

In his paper [144], Hardy relates a beautiful identity of Ramanujan con-
nected with r2(n), namely, for a, b > 0, [144, p. 283], [150, p. 263],

∞∑

n=0

r2(n)√
n+ a

e−2π
√

(n+a)b =

∞∑

n=0

r2(n)√
n+ b

e−2π
√

(n+b)a,

which is not given elsewhere in any of Ramanujan’s published or unpublished
work. If we differentiate the identity above with respect to b, let a→ 0, replace
2π

√
b by s, and use analytic continuation, we find that for Re s > 0,

∞∑

n=1

r2(n)e
−s

√
n =

2π

s2
− 1 + 2πs

∞∑

n=1

r2(n)

(s2 + 4π2n)3/2
,

which was the key identity in Hardy’s proof that P (x) �= O(x1/4), as x→ ∞.
In summary, there is considerable evidence that while Ramanujan was at

Cambridge, he and Hardy discussed the circle problem, and it is likely that
Entry 2.1.1 was motivated by these discussions.

Note that if the factors sin(2πnθ) were missing on the left side of (2.1.5),
then this sum would coincide with the number of integral points (n, l) with
n, l ≥ 1 and nl ≤ x, where the pairs (n, l) satisfying nl = x are counted with
weight 1

2 . Hence,

∞∑

n=1

F
(x
n

)
=
∑′

1≤n≤x

d(n), (2.1.12)

where d(n) denotes the number of divisors of n, and the prime ′ on the sum-
mation sign indicates that if x is an integer, only 1

2d(x) is counted. Of course,
similar remarks hold for the left side of (2.1.6). Therefore one may interpret
the left sides of (2.1.5) and (2.1.6) as weighted divisor sums.

Berndt and A. Zaharescu [71] first proved Entry 2.1.1, but with the order
of summation on the double sum reversed from that recorded by Ramanujan.
The authors of [71] proved this emended version of Ramanujan’s claim by first
replacing Entry 2.1.1 with the following equivalent theorem.
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Theorem 2.1.1. For 0 < θ < 1 and x > 0,

∞∑

n=1

F
(x
n

)
sin(2πnθ)− πx

(
1

2
− θ
)

=
1

π

∞∑

n=0

∞∑

m=1

(
1

n+ θ
sin2

(
π(n+ θ)x

m

)
− 1

n+ 1− θ sin
2

(
π(n+ 1− θ)x

m

))
.

(2.1.13)

It should be emphasized that this reformulation fails to exist for Ramanu-
jan’s original formulation in Entry 2.1.1. After proving the aforementioned
alternative version of Entry 2.1.1, the authors of [71] derived an identity
involving the twisted character sums

dχ(n) =
∑

k|n
χ(k), (2.1.14)

where χ is an odd primitive character modulo q. The following theorem on
twisted character sums is proved in [71]; we have corrected the sign on the
second expression on the right-hand side. The prime ′ on the summation sign
has the same meaning as it does in our discussions above, e.g., as in (2.1.10).

Theorem 2.1.2. Let q be a positive integer, let χ be an odd primitive char-
acter modulo q, and let dχ(n) be defined by (2.1.14). Then, for any x > 0,

∑′

1≤n≤x

dχ(n) = L(1, χ)x+
iτ(χ)

2π
L(1, χ̄) +

i
√
x

τ(χ̄)

∑

1≤h<q/2

χ̄(h)

×
∞∑

n=0

∞∑

m=1

⎧
⎨

⎩
J1

(
4π
√
m(n+ h

q )x
)

√
m(n+ h

q )
−
J1

(
4π
√
m(n+ 1− h

q )x
)

√
m(n+ 1− h

q )

⎫
⎬

⎭ , (2.1.15)

where L(s, χ) denotes the Dirichlet L-function associated with the character
χ, and τ(χ) denotes the Gauss sum

τ(χ) =

q∑

m=1

χ(m)e2πim/q. (2.1.16)

Using Theorem 2.1.2, Berndt and Zaharescu [71] derived a representation
for
∑′

0≤n≤x r2(n).

Corollary 2.1.1. For any x > 0,

∑

0≤n≤x

′
r2(n) = πx

+ 2
√
x

∞∑

n=0

∞∑

m=1

⎧
⎪⎨

⎪⎩

J1

(
4π
√
m(n+ 1

4 )x
)

√
m(n+ 1

4 )
−
J1

(
4π
√
m(n+ 3

4 )x
)

√
m(n+ 3

4 )

⎫
⎪⎬

⎪⎭
. (2.1.17)
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A possible advantage in using (2.1.17) in the circle problem is that r2(n)
does not occur on the right side of (2.1.17), as in (2.1.11). On the other hand,
the double series is likely to be more difficult to estimate than a single infinite
series.

The summands in (2.1.17) have a remarkable resemblance to those in
(2.1.11). It is therefore natural to ask whether the two identities are equivalent.
We next show that (2.1.11) and (2.1.17) are formally equivalent. The key to
this equivalence is a famous result of Jacobi. Let χ be the nonprincipal Dirich-
let character modulo 4. Then Jacobi’s formula [167], [44, p. 56, Theorem 3.2.1]
is given by

r2(n) = 4
∑

d|n
d odd

(−1)(d−1)/2 =: 4dχ(n), (2.1.18)

for all positive integers n. Therefore,

∞∑

k=1

r2(k)
(x
k

)1/2
J1(2π

√
kx)

= 4

∞∑

k=1

∑

d|k
d odd

(−1)(d−1)/2
(x
k

)1/2
J1(2π

√
kx)

= 4
√
x

∞∑

n=0

∞∑

m=1

(
J1(2π

√
m(4n+ 1)x)√
m(4n+ 1)

− J1(2π
√
m(4n+ 3)x)√
m(4n+ 3)

)

= 2
√
x

∞∑

n=0

∞∑

m=1

⎛

⎝
J1(4π

√
m(n+ 1

4 )x)√
m(n+ 1

4 )
−
J1(4π

√
m(n+ 3

4 )x)√
m(n+ 3

4 )

⎞

⎠ . (2.1.19)

Hence, we have shown that (2.1.11) and (2.1.17) are versions of the same
identity, provided that the rearrangement of series in (2.1.19) is justified.
(J.L. Hafner [139] independently has also shown the formal equivalence of
(2.1.11) and (2.1.17).)

In this chapter, we prove Entry 2.1.1 under two different interpretations,
the first with the double series on the right-hand side summed in the order
specified by Ramanujan, and the second with the double series on the right
side interpreted as a double sum in which the product mn of the summation
indices m and n tends to infinity. The former proof first appeared in a paper
by Berndt, S. Kim, and Zaharescu [60], while the latter proof is taken from
another paper [57] by the same trio of authors. We do not here give a proof
of Entry 2.1.1 with the order of summation on the right-hand side of (2.1.5)
reversed [71]. We emphasize that the three proofs of Entry 2.1.1 under different
interpretations of the double sum on the right-hand side are entirely different;
we are unable to use any portion or any idea of one proof in any of the other
two proofs.
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Having thoroughly discussed Entry 2.1.1, we turn our attention to
Entry 2.1.2. Entry 2.1.2 was examined in detail in [48], where numerical cal-
culations were extensively discussed with the conclusion that the entry might
not be correct, because, in particular, the authors were not convinced that the
double series of Bessel functions converges. Further evidence for the falsity of
Entry 2.1.2 was also presented. Finding a proof of Entry 2.1.2, either in the
form in which Ramanujan recorded it, or in the form in which the order of
the double series is reversed, turned out to be more difficult than establishing
a proof of Entry 2.1.2 in [71] for the following reasons: The Bessel functions
Y1(z) and K1(z) have singularities at the origin. There is a lack of the “can-
cellation” in the pairs of Bessel functions on the right-hand side of (2.1.6)
(where a plus sign separates the pairs of Bessel functions) that is evinced
in (2.1.5) (where a minus sign separates the pairs of Bessel functions). We
have a much less convenient intermediary theorem, Theorem 2.4.2, instead of
Theorem 2.1.1, which replaces the proposed double Bessel series identity by
a double trigonometric series identity. At this writing, we are unable to prove
Entry 2.1.1 with the order of summation prescribed by Ramanujan. However,
we can prove Entry 2.1.2 if we invert the order of summation or if we let the
product of the indices of summation tend to infinity. Moreover, as we shall
see in our proof, we need to make one further assumption in order to prove
Entry 2.1.2 with the double series summed in reverse order.

As noted above, let d(n) denote the number of positive divisors of the
positive integer n. Define the “error term” Δ(x), for x > 0, by

∑′

n≤x

d(n) = x (log x+ (2γ − 1)) +
1

4
+Δ(x), (2.1.20)

where γ denotes Euler’s constant, and where the prime ′ on the summation
sign on the left side indicates that if x is an integer, then only 1

2d(x) is counted.
The famous Dirichlet divisor problem asks for the correct order of magnitude
of Δ(x) as x→ ∞. M.G. Voronöı [310] established a representation for Δ(x)
in terms of Bessel functions with his famous formula

∑

n≤x

′
d(n) = x (log x+ (2γ − 1)) +

1

4
+

∞∑

n=1

d(n)
(x
n

)1/2
I1(4π

√
nx), (2.1.21)

where x > 0 and I1(z) is defined by (2.1.7). Since the appearance of (2.1.21)
in 1904, this identity has been the starting point for most attempts at finding
an upper bound for Δ(x). Readers will note a remarkable similarity between
the Bessel functions in (2.1.6) and those in (2.1.21), indicating that there must
be a connection between these two formulas.

From the argument that we made in (2.1.19), it is reasonable to guess
that Ramanujan might have regarded the double series in (2.1.5) symmet-
rically, i.e., that Ramanujan really was thinking of the double sum in the
form limN→∞

∑
mn≤N . Thus, as with (2.1.5), we also prove (2.1.6) with the
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double series being interpreted symmetrically. Our proof uses (2.1.21) and
twisted, or weighted, divisor sums. Our proofs of Entry 2.1.2 under the two
interpretations that we have discussed first appeared in [57].

The identities in Entries 2.1.1 and 2.1.2, with the double series interpreted
as iterated double series, might give researchers new tools in approaching the
circle and divisor problems, respectively. The additional parameter θ in the
two primary Bessel function identities might be useful in a yet unforeseen way.

In summary, there are three ways to interpret the double series in En-
tries 2.1.1 and 2.1.2. Our proofs in this volume cover both entries in two of
the three possible interpretations.

Analogues of the problems of estimating the error terms P (x) and Δ(x)
exist for many other arithmetic functions a(n) generated by Dirichlet series
satisfying a functional equation involving the gamma function Γ (s). See, for
example, a paper by K. Chandrasekharan and R. Narasimhan [90]. As with
the cases of r2(n) and d(n), representations in terms of Bessel functions for∑

n≤x a(n) and more generally for
∑

n≤x a(n)(x−n)q , which are occasionally
called Riesz sums, play a critical role. See, for example, [26, 89], and [31].
A Bessel function identity for

∑′
n≤x a(n)(x−n)q is, in fact, equivalent to the

functional equation involving Γ (s) of the corresponding Dirichlet series [89].
The second author, S. Kim, and Zaharescu [59] have established a Riesz sum
identity for

∑′

n≤x

(x − n)ν−1
∑

r|n
sin(2πrθ),

which in the special case ν = 1 reduces to (2.1.5). One might also ask
whether Ramanujan’s identities in Entries 2.1.1 and 2.1.2 are isolated results,
or whether they are forerunners of further theorems of this sort. To that end,
the second author, S. Kim, and Zaharescu [58] have found three additional
results akin to the aforementioned entries. We provide one example.

Define, for Dirichlet characters χ1 modulo p and χ2 modulo q,

dχ1,χ2(n) =
∑

d|n
χ1(d)χ2(n/d).

Also, for arithmetic functions f and g, we define

∑′

nm≤x

f(n)g(m) =

{∑
nm≤x f(n)g(m), if x /∈ Z,∑
nm≤x f(n)g(m)− 1

2

∑
nm=x f(n)g(m), if x ∈ Z.

Theorem 2.1.3. Let I1(x) be defined by (2.1.7). If 0 < θ, σ < 1, and x > 0,
then
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∑′

nm≤x

cos(2πnθ) cos(2πmσ)

=
1

4
+

√
x

4

∑

n,m≥0

{
I1(4π

√
(n+ θ)(m+ σ)x)√

(n+ θ)(m+ σ)
+
I1(4π

√
(n+ 1− θ)(m+ σ)x)√

(n+ 1− θ)(m+ σ)

+
I1(4π

√
(n+ θ)(m+ 1− σ)x)√

(n+ θ)(m + 1− σ)
+
I1(4π

√
(n+ 1− θ)(m+ 1− σ)x)√

(n+ 1− θ)(m+ 1− σ)

}
,

(2.1.22)

where in the double sum on the right-hand side of (2.1.22), the product mn
of the two summation indices tends to infinity.

The remaining two theorems in [58] involve sums of products of sines and
sums of products of sines and cosines, respectively. The employment of sums
of dχ1,χ2(n) is crucial in all of the proofs.

2.2 Proof of Ramanujan’s First Bessel Function
Identity (Original Form)

In this section we provide a proof of Entry 2.1.1 in the form given by Ramanu-
jan. Our proof is a more detailed exposition of the proof given by the second
author, S. Kim, and Zaharescu [60]. On the other hand, these authors actu-
ally prove a more general theorem. First, they introduce a family of Dirichlet
series. For x > 0 and 0 < θ < 1, let

G(x, θ, s) =

∞∑

m=1

a(x, θ,m)

ms , (2.2.1)

where the coefficients a(x, θ,m) are given by

a(x, θ,m) =
∞∑

n=0

⎧
⎨

⎩
J1

(
4π
√
m(n+ θ)x

)

√
n+ θ

−
J1

(
4π
√
m(n+ 1− θ)x

)

√
n+ 1− θ

⎫
⎬

⎭ .

(2.2.2)

For x > 0 and 0 < θ < 1, by (2.1.9), the series in (2.2.1) is absolutely
convergent in the half-plane Re s > 5

4 . Second, to prove Ramanujan’s claim
in Entry 2.1.1, we need to establish an analytic continuation of G(x, θ, s) to a
larger region. In [60], the aforementioned authors prove the following theorem.

Theorem 2.2.1. For x > 0 and 0 < θ < 1, G(x, θ, s) has an analytic con-
tinuation to the half-plane Re s > 8

17 . For s in this half-plane, and x > 0,
the series in (2.2.1) converges uniformly with respect to θ in every compact
subinterval of (0, 1). If x is not an integer, these conclusions hold in the larger
half-plane Re s > 1

3 .

Fourier analysis is then employed to recover the value of G(x, θ, s) at s = 1
2 ,

and in this way, Entry 2.1.1 is established.
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2.2.1 Identifying the Source of the Poles

Fix x > 0, and define, for 0 < θ < 1,

g(θ) :=
1

2

√
x

∞∑

m=1

∞∑

n=0

⎧
⎨

⎩
J1

(
4π
√
m(n+ θ)x

)

√
m(n+ θ)

−
J1

(
4π
√
m(n+ 1− θ)x

)

√
m(n+ 1− θ)

⎫
⎬

⎭ .

(2.2.3)

In order for Ramanujan’s Entry 2.1.1 to be valid, the double series in (2.2.3)
needs to converge, and the function g(θ) needs to be continuous on (0, 1).
We prove this by showing that the double series converges uniformly with
respect to θ in every compact subinterval of (0, 1). Also, in order for Entry 2.1.1
to hold, g(θ) needs to have simple poles at θ = 0 and θ = 1. We start by
employing a heuristic argument, which allows us to identify that part of the
double series that is responsible for these poles.

Setting a = 4π
√
x and taking the terms from the right-hand side of (2.1.5)

when n = 0, we are led to examine the series

T (θ) :=
∞∑

m=1

J1(a
√
θm)√
m

.

We consider the Mellin transform of T (θ), for σ sufficiently large, and make
the change of variable t2 = a2θm to find that

∫ ∞

0

T (θ)θs−1dθ =

∞∑

m=1

1√
m

∫ ∞

0

J1(a
√
θm)θs−1dθ

=
2

a2s

∞∑

m=1

1

ms+1/2

∫ ∞

0

J1(t)t
2s−1dt

=
2

a2s
ζ(s+ 1

2 )2
2s−1Γ (

1
2 + s)

Γ (32 − s)
, (2.2.4)

where we used a well-known Mellin transform for Bessel functions [126, p. 707,
formula 6.561, no. 14], which is valid for − 1

2 < σ < 3
4 . Applying Mellin’s

inversion formula in (2.2.4), for 1
2 < c <

3
4 , we find that

T (θ) =
1

2πi

∫ c+i∞

c−i∞
ζ(s+ 1

2 )
Γ (12 + s)

Γ (32 − s)

(
a2θ

4

)−s

ds. (2.2.5)

We would now like to shift the line of integration to the left of σ = 1
2 by

integrating over a rectangle with vertices c ± iT, b ± iT , where T > 0 and
0 < b < 1

2 , and then letting T → ∞. Thus, since the integrand has a simple
pole at s = 1

2 with residue

(
a2θ

4

)−1/2

=
2

a
√
θ
,
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we find that

T (θ) =
2

a
√
θ
+ · · · .

We assume that the missing terms represented by · · · above are bounded
as θ → 0+. Returning to (2.1.5) and recalling the notation a = 4π

√
x, we

find that the portion of (2.1.5) corresponding to the terms when n = 0 is
asymptotically equal to, as θ → 0+,

1

2

√
x

θ

2

4π
√
xθ

=
1

4πθ
.

Since

−1

4
cot(πθ) = − 1

4πθ
+O(θ),

as θ → 0, we see that the right-hand side of (2.1.5) is continuous at θ = 0.
A similar argument holds for θ = 1.

By this heuristic argument, if we remove from the definition of g(θ) all
the terms with n = 0, we should obtain a function that can be extended by
continuity to [0, 1]. We prove that this is indeed the case, by showing that
the sum of terms with n ≥ 1 converges uniformly with respect to θ in [0, 1].
As for the terms with n = 0, we will show that their sum converges uniformly
with respect to θ in every compact subinterval of (0, 1), and that if each of
these terms is multiplied by sin2(πθ), then their sum converges uniformly with
respect to θ in (0, 1) to a continuous function on (0, 1), which tends to 0 as
θ → 0+ or θ → 1−. If we assume that the aforementioned statements have
been proved, it follows that the function G(θ) defined on [0, 1] by G(0) = 0,
G(1) = 0, and G(θ) = sin2(πθ)g(θ) is well-defined and continuous on [0, 1].
We return to the function G(θ) in Sect. 2.2.10. We now proceed to study the
uniform convergence of the double series on the right side of Entry 2.1.1.
In what follows, by “uniform convergence with respect to θ” of any series or
double series below, we mean that one simultaneously has uniform convergence
with respect to θ on every compact subinterval of (0, 1) for the given series,
and uniform convergence with respect to θ in [0, 1] for the series obtained by
removing the terms with n = 0 from the given series.

2.2.2 Large Values of n

Fix an x > 0, and set a =
√
4πx. With the use of (2.1.9), the problem of the

uniform convergence with respect to θ of the double series on the right side
of Entry 2.1.1 reduces to the study of the uniform convergence with respect
to θ of the double series

S1(a, θ) :=

∞∑

m=1

∞∑

n=0

1

m3/4

(
cos(a

√
m(n+ θ)− 3π

4 )

(n+ θ)3/4

−
cos(a

√
m(n+ 1− θ)− 3π

4 )

(n+ 1− θ)3/4

)
. (2.2.6)
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We first truncate the inner sum in order to further reduce the problem to one
in which the summation over n is finite. Accordingly,

∣∣∣∣∣
cos(a

√
m(n+ θ)− 3π

4 )

(n+ θ)3/4
−

cos(a
√
m(n+ 1− θ)− 3π

4 )

(n+ 1− θ)3/4

∣∣∣∣∣

≤

∣∣∣cos(a
√
m(n+ θ)− 3π

4 )− cos(a
√
m(n+ 1− θ)− 3π

4 )
∣∣∣

(n+ θ)3/4

+

∣∣∣∣
1

(n+ θ)3/4
− 1

(n+ 1− θ)3/4

∣∣∣∣ | cos(a
√
m(n+ 1− θ)− 3π

4 )|

≤ |a
√
m(n+ θ)− a

√
m(n+ 1− θ)|

(n+ θ)3/4
+

∣∣∣∣
1

(n+ θ)3/4
− 1

(n+ 1− θ)3/4

∣∣∣∣ .

(2.2.7)

For n ≥ 1, uniformly with respect to θ ∈ [0, 1],

∣∣∣
√
n+ θ −

√
n+ 1− θ

∣∣∣ = O
(

1√
n

)
(2.2.8)

and ∣∣∣∣
1

(n+ θ)3/4
− 1

(n+ 1− θ)3/4

∣∣∣∣ = O
(

1

n7/4

)
. (2.2.9)

Thus, by (2.2.7)–(2.2.9),

∣∣∣∣∣
cos(a

√
m(n+ θ)− 3π

4 )

(n+ θ)3/4
−

cos(a
√
m(n+ 1− θ)− 3π

4 )

(n+ 1− θ)3/4

∣∣∣∣∣ = Oa

(√
m

n5/4

)
.

(2.2.10)
(Here, and in what follows, if the constant implied by O is dependent on a
parameter a, then we write Oa.) It follows that

∑

n≥m3 log5 m

1

m3/4

∣∣∣∣∣
cos(a

√
m(n+ θ)− 3π

4 )

(n+ θ)3/4
−

cos(a
√
m(n+ 1− θ)− 3π

4 )

(n+ 1− θ)3/4

∣∣∣∣∣

= Oa

⎛

⎝ 1

m1/4

∑

n≥m3 log5 m

1

n5/4

⎞

⎠ = Oa

(
1

m log5/4m

)
, (2.2.11)

which shows that the sum over m at the left-hand side of (2.2.11) is conver-
gent. Therefore the double sum S1(a, θ) is convergent, respectively uniformly
convergent, if and only if the sum
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S2(a, θ) :=

∞∑

m=1

∑

0≤n<m3 log5 m

1

m3/4

(
cos(a

√
m(n+ θ)− 3π

4 )

(n+ θ)3/4

−
cos(a

√
m(n+ 1− θ)− 3π

4 )

(n+ 1− θ)3/4

)

(2.2.12)

is convergent, respectively uniformly convergent.

2.2.3 Small Values of n

Our next goal is to remove from the sum those terms in which n is much
smaller than m. To this end, let us consider a general sum of the form

S(α, β, μ,H1, H2) :=
∑

H1<m≤H2

cos(α
√
m+ μ+ β)

(m+ μ)3/4
, (2.2.13)

where α > 0, β ∈ R, μ ∈ [0, 1], and H1 < H2 are large positive integers. Define

f(y) :=
cos(α

√
y + μ+ β)

(y + μ)3/4
. (2.2.14)

We fix a small real number δ > 0 and assume that H1 and α satisfy the
inequalities

c1 ≤ α ≤ c2H(1−δ)/2
1 , (2.2.15)

for some constants c1 > 0, c2 > 0 that depend only on a (which, in turn,
depends only on x). Next, we fix a positive integer k ≥ 2 such that

kδ ≥ 2. (2.2.16)

So we may take k = 1 + [2/δ].
We apply the Euler–Maclaurin summation formula of order k in the form

S(α, β, μ,H1, H2) =
∑

H1<m≤H2

f(m) =

∫ H2

H1

(
f(y)− (−1)k

k!
ψk(y)f

(k)(y)

)
dy

+

k∑

�=1

(−1)�

�!

(
f (�−1)(H2)− f (�−1)(H1)

)
B�, (2.2.17)

where f(y) is defined in (2.2.14), B�, � ≥ 0, is the �th Bernoulli number, and
ψk(y) is the kth Bernoulli function, defined by

ψk(y) := −k!
∞∑

n=−∞
n�=0

(2πin)−ke(ny), k ≥ 0, (2.2.18)
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where e(x) = e2πix. Since k ≥ 2, the Fourier series on the right side of (2.2.18)
converges absolutely.

Let us note that the integral of f(y) on [H1, H2] can be bounded via a
change of variable followed by an integration by parts, namely,
∫ H2

H1

f(y)dy =

∫ √
H2+μ

√
H1+μ

2 cos(αt+ β)√
t

dt

=
2 sin(αt + β)

α
√
t

∣∣∣∣

√
H2+μ

√
H1+μ

+
1

α

∫ √
H2+μ

√
H1+μ

sin(αt+ β)

t3/2
dt = O

(
1

H
1/4
1

)
,

(2.2.19)

uniformly with respect to β and μ.
Let us also observe that for each � ∈ {0, 1, . . . , k}, the derivative f (�)(y)

can be expressed as a sum of the form

f (�)(y) =

r�∑

j=1

c�,jα
a�,j (y + μ)b�,j sin(α

√
y + μ+ β)

+

r′�∑

j=1

c′�,jα
a′
�,j (y + μ)b

′
�,j cos(α

√
y + μ+ β), (2.2.20)

where r� and r′� depend only on �, the coefficients c�,j and the exponents
a�,j, b�,j depend only on � and j, and similarly, c′�,j and the exponents a′�,j,
b′�,j depend only on � and j. Consider the collection of all pairs (a�,j , b�,j),
1 ≤ j ≤ r�, and (a′�,j , b

′
�,j), 1 ≤ j ≤ r′�, and denote this collection by C�.

Differentiating (2.2.3) with respect to y, and taking into account the possible
cancellation of terms, we conclude that C�+1 is a subset of the set of all pairs
of the form (a, b − 1) and (a + 1, b − 1

2 ), with (a, b) ∈ C�. Taking also into
account that C0 consists of the single pair (0,− 3

4 ) and using induction on �,
we see that each pair (a, b) in C� satisfies 0 ≤ a ≤ � and −�− 3

4 ≤ b ≤ − 1
2�−

3
4 .

As a consequence, we derive that for each � and for each y ∈ [H1, H2],

f (�)(y) = O�

(
1

y3/4
·
(
α
√
y

)�
)
, (2.2.21)

uniformly with respect to β and μ. Therefore, recalling (2.2.15), we find that

k∑

�=1

(−1)�

�!

(
f (�−1)(H2)− f (�−1)(H1)

)
B� = Ok

(
1

H
3/4
1

)
, (2.2.22)

uniformly with respect to β and μ. Also,
∣∣∣∣∣

∫ H2

H1

(−1)k

k!
ψk(y)f

(k)(y)dy

∣∣∣∣∣ = Ok

(∫ H2

H1

|f (k)(y)|dy
)

= Ok

(∫ H2

H1

1

y3/4

(
α
√
y

)k

dy

)
= Ok

⎛

⎝ αk

H
1
2k−

1
4

1

⎞

⎠ = Oa,k

⎛

⎝ 1

H
1
2kδ−

1
4

1

⎞

⎠ .

(2.2.23)
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Thus, by (2.2.16), (2.2.17), (2.2.19), (2.2.22), and (2.2.23), we find that,
subject to (2.2.15) holding,

∑

H1<m≤H2

cos(α
√
m+ μ+ β)

(m+ μ)3/4
= Oa,k

(
1

αH
1/4
1

)
. (2.2.24)

We now consider the sum

S3(a, θ, δ) :=

∞∑

m=1

∑

0≤n<m1−δ

1

m3/4

(
cos(a

√
m(n+ θ)− 3π

4 )

(n+ θ)3/4

−
cos(a

√
m(n+ 1− θ)− 3π

4 )

(n+ 1− θ)3/4

)
.

(2.2.25)

For each M ≥ 1, we denote by S3,M (a, θ, δ) the corresponding restricted sum
in S3(a, θ, δ), where the summation over m is restricted to 1 ≤ m ≤ M .
We intend to show that the sum S3(a, θ, δ) is convergent, and in order to do
this, we apply Cauchy’s criterion. Fix ε > 0. We need to show that there exists
an Mε such that for every M1,M2 > Mε,

|S3,M2(a, θ, δ)− S3,M1(a, θ, δ)| < ε. (2.2.26)

Let M1 < M2 be large, and interchange the order of summation to rewrite
S3,M2(a, θ, δ)− S3,M1(a, θ, δ) in the form

S3,M2(a, θ, δ) − S3,M1(a, θ, δ) =
∑

0≤n≤M1−δ
2

⎛

⎝
∑

max{n1/(1−δ),M1}<m≤M2

× 1

(n+ θ)3/4
cos(a

√
m(n+ θ)− 3π

4 )

m3/4

− 1

(n+ 1− θ)3/4
cos(a

√
m(n+ 1− θ)− 3π

4 )

m3/4

)
. (2.2.27)

Using (2.2.24) with β = −3π/4, μ = 0, H1 = max{n1/(1−δ),M1}, H2 = M2,
and α = a

√
n+ θ, a

√
n+ 1− θ, respectively, and noting that (2.2.15) holds,

we conclude from (2.2.24) that

|S3,M2(a, θ, δ)− S3,M1(a, θ, δ)|

= Oa,δ

⎛

⎝
∑

0≤n≤M1−δ
2

{
1

(n+ θ)3/4
· 1
√
n+ θ (max{n1−δ,M1})1/4

+
1

(n+ 1− θ)3/4 · 1
√
n+ 1− θ

(
max{n1/(1−δ),M1}

)1/4

})
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= Oa,δ

⎛

⎝
∑

0≤n≤M1−δ
2

1

n5/4max{n1/(4(1−δ)),M
1/4
1 }

⎞

⎠

= Oa,δ

⎛

⎝
∑

0≤n≤M1−δ
1

1

n5/4M
1/4
1

⎞

⎠+Oa,δ

⎛

⎝
∑

M1−δ
1 <n≤M1−δ

2

1

n5/4+1/(4(1−δ))

⎞

⎠

= Oa,δ

(
1

M
1/4
1

)
+Oa,δ

(
1

(M1−δ
1 )1/4+1/(4(1−δ))

)

= Oa,δ

(
1

M
1/4
1

)
+Oa,δ

(
1

M
(1−δ)/4+1/4
1

)
= Oa,δ

(
1

M
1/4
1

)
. (2.2.28)

The foregoing analysis implies (2.2.26) for M1 sufficiently large, and proves
the convergence of S3(a, θ, δ). Therefore the convergence of S1(a, θ, δ) reduces
to the convergence, respectively uniform convergence, of

S4(a, θ, δ) :=

∞∑

m=1

∑

m1−δ≤n<m3 log5 m

1

m3/4

(
cos(a

√
m(n+ θ)− 3π

4 )

(n+ θ)3/4

−
cos(a

√
m(n+ 1− θ)− 3π

4 )

(n+ 1− θ)3/4

)
. (2.2.29)

2.2.4 Further Reductions

The remaining series under consideration, S4(a, θ, δ), does not contain any
terms with n = 0. Therefore, in what follows, uniform convergence means
uniform convergence with respect to θ in [0, 1]. Next, we write

S4(a, θ, δ) = S5(a, θ, δ) + S6(a, θ, δ), (2.2.30)

where S5(a, θ, δ) denotes the sum of those terms in S4(a, θ, δ) for which
n > m1+δ, and S6(a, θ, δ) is the sum of terms with n ≤ m1+δ. The exami-
nation of S5(a, θ, δ) is like that for S3(a, θ, δ). In this case, we take the sum
over n as the inner sum, and apply (2.2.24) with β = −3π/4, α = a

√
m, and

μ = θ, 1 − θ, respectively. We accordingly find that the sum S5(a, θ, δ) con-
verges uniformly with respect to θ. It follows that the convergence of S1(a, θ, δ)
reduces to that of S6(a, θ, δ).

Let us consider now the sum

S7(a, θ, δ)

:=

∞∑

m=1

∑

m1−δ≤n≤m1+δ

sin

(
a

√

m

(
n+

1

2

)
− 3π

4

)
sin

(
a(1− 2θ)

4

√
m

n

)

m3/4n3/4
.

(2.2.31)
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We claim that S6(a, θ, δ) is uniformly convergent if and only if S7(a, θ, δ) is.
Indeed,

1

(n+ θ)3/4
=

1

n3/4
+O

(
1

n7/4

)
,

1

(n+ 1− θ)3/4 =
1

n3/4
+O

(
1

n7/4

)
,

(2.2.32)

and it is easily seen that the error terms in (2.2.32) are small enough so that
the denominators (n + θ)3/4 and (n + 1 − θ)3/4 in S6(a, θ, δ) can both be
replaced by n3/4 without influencing the uniform convergence of the sum.
Also,

cos

(
a
√
m(n+ θ)− 3π

4

)
− cos

(
a
√
m(n+ 1− θ)− 3π

4

)

= 2 sin

(
a
√
m
(√
n+ 1− θ −

√
n+ θ

)

2

)

× sin

(
a
√
m
(√
n+ 1− θ +

√
n+ θ

)

2
− 3π

4

)
. (2.2.33)

Here
√
n+ 1− θ −

√
n+ θ =

1− 2θ

2
√
n

+O

(
1

n3/2

)
(2.2.34)

and √
n+ 1− θ +

√
n+ θ

2
=

√
n+

1

2
+O

(
1

n3/2

)
. (2.2.35)

By (2.2.33)–(2.2.35),

cos

(
a
√
m(n+ θ)− 3π

4

)
− cos

(
a
√
m(n+ 1− θ)− 3π

4

)

= 2 sin

(
a(1− 2θ)

4

√
m

n

)
sin

(
a

√

m

(
n+

1

2

)
− 3π

4

)
+O

(√
m

n3/2

)
.

(2.2.36)

Again, it is easily checked that the error term in (2.2.36) is small enough so
that the left side of (2.2.36) may be replaced by the main term from the right
side of (2.2.36) in the modified version of S6(a, θ, δ) above without influencing
the uniform convergence of the series. This proves our claim, and it remains
to show the uniform convergence of S7(a, θ, δ).

We replace S7(a, θ, δ) by another series that has the same terms, but the
double summation is performed over a union of rectangles. To be precise,
for each positive integer r, we consider those m satisfying the inequalities
2r ≤ m < 2r+1, and for each such m we replace the range of summation for
n, which in S7(a, θ, δ) is m

1−δ ≤ n ≤ m1+δ, with the somewhat larger range
2r(1−δ) ≤ n ≤ 2(r+1)(1+δ). This does not influence the uniform convergence of
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the series, because the extra terms added by this procedure are contained in
the sums S3(a, θ, δ) and S5(a, θ, δ), which we have previously examined. More
specifically, the extra terms arise from the ranges 2r(1−δ) ≤ n < m1−δ and
m1+δ < n ≤ 2(r+1)(1+δ). In both these ranges, either n is significantly smaller
than m (n < m1−δ), or n is significantly larger than m (n > m1+δ), and
so an appropriate use of (2.2.24) can be made in both cases. In conclusion,
S7(a, θ, δ) is uniformly convergent if and only if the same is true for the sum

S8(a, θ, δ) :=

∞∑

r=1

∑

2r≤m<2r+1

∑

2r(1−δ)≤n≤2(r+1)(1+δ)

×
sin

(
b

√
m

n

)
sin

(
a

√

m

(
n+

1

2

)
− 3π

4

)

m3/4n3/4
, (2.2.37)

where, henceforth, we define, for simplicity,

b =
a(1− 2θ)

4
= π

√
x(1− 2θ). (2.2.38)

2.2.5 Refining the Range of Summation

In order to prove that S8(a, θ, δ) is uniformly convergent with respect to θ
in [0, 1], we need to show that the right side of (2.2.37) converges uniformly
with respect to b in [−π

√
x, π

√
x]. To do this, we use Cauchy’s criterion.

Fix ε > 0 and denote, as usual, for any M > 1, the partial sum in (2.2.37)
corresponding to 1 ≤ m ≤M by S8,M (a, θ, δ). LetM1 < M2 be large, and set
r1 = [log2M1] and r2 = [log2M2]. Then S8,M2(a, θ, δ) − S8,M1(a, θ, δ) can be
written as a sum over integral pairs (m,n) in the union of r2−r1+1 rectangles,
which we denote by R0, R1, . . . , Rr2−r1 , as follows. We let R0 =

(
M1, 2

r1+1
)
×

[2r1(1−δ), 2(r1+1)(1+δ)], Rj = [2r1+j , 2r1+j+1)× [2(r1+j)(1−δ), 2(r1+j+1)(1+δ)] for
1 ≤ j ≤ r2 − r1 − 1, and Rr2−r1 = [2r2 ,M2]× [2r2(1−δ), 2r2(1+δ)]. Then

S8,M2(a, θ, δ)− S8,M1(a, θ, δ)

=

r2−r1∑

j=0

∑

(m,n)∈Rj

sin

(
b

√
m

n

)
sin

(
a

√
m

(
n+

1

2

)
− 3π

4

)

m3/4n3/4
. (2.2.39)

We now proceed to obtain bounds for the inner sum on the right side of
(2.2.39) for each individual Rj . Fix such an Rj , and, to make a choice, assume
that 1 ≤ j ≤ r2 − r1 − 1. The cases j = 0 and j = r2−r1 can be examined in a
similar fashion. Also, for simplicity, we set T = 2r1+j . Then the corresponding
inner sum on the right side of (2.2.39), which depends on a, b, δ, and T , and
which we denote by

∑
a,b,δ,T , or simply by

∑
, has the form
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∑

a,b,δ,T

=
∑

T≤m<2T

∑

T 1−δ≤n≤(2T )1+δ

sin

(
b

√
m

n

)
sin

(
a

√

m

(
n+

1

2

)
− 3π

4

)

m3/4n3/4
.

(2.2.40)

At this point, we fix a number λ, with 0 < λ < 1
2 , whose precise value will

be given later, and set L = [T λ]. Then we subdivide the rectangle [T, 2T )×
[T 1−δ, (2T )1+δ] into squares of size L×L. An explanation as to why we break
the range of summation into such small squares of size [T λ]×[T λ], with λ < 1

2 ,
is in order. This choice may seem surprising, because for almost all exponential
sums, the best one can hope to achieve is a square-root-type cancellation. And
in our case, square-root cancellation over a square of size [T λ]× [T λ] means a
savings over the trivial bound by a factor of T λ. But this is not enough in our
case, even if we achieve a square-root cancellation for each individual square
of size L × L, because the trivial bound for the entire sum

∑
a,b,δ,T , even

ignoring the small but strictly positive δ, is of order O(T 1/2). Thus we need
cancellation in

∑
a,b,δ,T by a factor larger than T 1/2, and so a cancellation by

a factor of T λ with λ < 1
2 will not suffice.

Our approach below, which proceeds via subdividing the range of sum-
mation into small squares of size [T λ] × [T λ], with λ < 1

2 , is based on two
fundamental ideas. The first one is that on such small squares, the functions
(m,n) 
→ m−3/4n−3/4 and (m,n) 
→ b

√
m/n are almost constant, and the

function a
√
m(n+ 1

2 ) is almost linear. This gives us a chance to approximate

locally the corresponding sums on the right side of (2.2.40) by geometric series,
for which we have better than square-root cancellation. The second idea is to
approximate the function

(m,n) 
→
sin

(
b

√
m

n

)
sin

(
a

√

m

(
n+

1

2

)
− 3π

4

)

m3/4n3/4

by a short sum in which each term is a product of a function of m and a
function of n. This, in turn, reduces the problem of bounding the right side of
(2.2.40) to the problem of bounding certain sums that are products of a sum
overm and a sum over n. This gives us the opportunity to combine the savings
achieved due to cancellation in the sum over m with the savings achieved in
the sum over n.

To proceed, we consider the set of integral points (m,n) in [T, 2T ) ×
[T 1−δ, (2T )1+δ] for which both m and n are divisible by L. We also con-
sider all the squares of size L × L with vertices in the aforementioned set.
These squares almost cover the rectangle above. We first examine the portion
of the rectangle left uncovered, and bound its contribution on the right side
of (2.2.40).
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Let

T1 :=

[
T

L

]
+1, T2 :=

[
2T

L

]
−1, T3 :=

[
T 1−δ

L

]
+1, T4 :=

[
(2T )1+δ

L

]
−1.

(2.2.41)
For each m1 ∈ {T1, T1 + 1, . . . , T2} and n1 ∈ {T3, T3 + 1, . . . , T4}, we consider
the L × L square whose southwest corner has coordinates (Lm1, Ln1), and
denote by

∑
m1,n1

its contribution on the right-hand side of (2.2.40). To be
precise, we define

∑

m1,n1

:=
∑

Lm1≤m<L(m1+1)

∑

Ln1≤n<L(n1+1)

×
sin

(
b

√
m

n

)
sin

(
a

√
m

(
n+

1

2

)
− 3π

4

)

m3/4n3/4
. (2.2.42)

Then we approximate the right side of (2.2.40) by the sum
∑

m1,n1
with

(m1, n1) running over the pairs of integral points in the rectangle [T1, T2] ×
[T3, T4]. The error made in this approximation is bounded as follows. Note that
each integral point (m,n) in [T, 2T ) × [T 1−δ, (2T )1+δ] that does not belong
to any of the L×L squares of the form [Lm1, L(m1 + 1))× [Ln1, L(n1 + 1)),
with T1 ≤ m1 ≤ T2, T3 ≤ n1 ≤ T4, is at distance at most L from one of the
four sides of the rectangle [T, 2T )× [T 1−δ, (2T )1+δ]. Therefore,

∣∣∣∣∣∣

∑

a,b,δ,T

−
∑

T1≤m1≤T2

∑

T3≤n1≤T4

∑

m1,n1

∣∣∣∣∣∣

= O

⎛

⎜⎜⎜⎜⎝

∑

|m−T |≤L
or

|m−2T |≤L

∑

T 1−δ≤n≤(2T )1+δ

1

m3/4n3/4

⎞

⎟⎟⎟⎟⎠

+O

⎛

⎜⎜⎜⎜⎝

∑

|n−T 1−δ|≤L
or

|n−(2T )1+δ|≤L

∑

T≤m≤2T

1

m3/4n3/4

⎞

⎟⎟⎟⎟⎠

= O

(
L

T 3/4
· T (1+δ)/4

)
+O

(
L

T 3(1−δ)/4
· T 1/4

)

= O

(
L

T
1
2−

3
4 δ

)

= O

(
1

T
1
2−λ− 3

4 δ

)
. (2.2.43)
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In our approach, we first fix λ, and then we fix δ depending on λ. In particular,
δ is chosen small enough so that 1

2 − λ − 3
4δ > 0, which ensures that the far

right side of (2.2.43) is negligible.
Next, we proceed to bound each sum

∑
m1,n1

. Fixm1 ∈ {T1, T1+1, . . . , T2}
and n1 ∈ {T3, T3+1, . . . , T4}. For each m and n, with Lm1 ≤ m < L(m1+1)
and Ln1 ≤ n < L(n1 + 1), we find that, with several uses of (2.2.41) below,

1

m3/4
=

1

L3/4m
3/4
1 (1 + O(1/m1))

=
1

L3/4m
3/4
1

(
1 +O

(
1

T 1−λ

))
, (2.2.44)

1

n3/4
=

1

L3/4n
3/4
1 (1 +O(1/n1))

=
1

L3/4n
3/4
1

(
1 +O

(
1

T 1−λ−δ

))
, (2.2.45)

√
m

n
=

√
Lm1 · (1 +O(1/m1))√
Ln1 · (1 +O(1/n1))

=

√
m1

n1

(
1 + O

(
1

T 1−λ−δ

))
, (2.2.46)

and, noting the definition of b given in (2.2.38), we further see that

sin

(
b

√
m

n

)
= sin

(
b

√
m1

n1
+O

( |b|√m1√
n1 T 1−λ−δ

))

= sin

(
b

√
m1

n1

)
+Ox

(
1

T 1−λ−3
2 δ

)
, (2.2.47)

uniformly with respect to θ in [0, 1]. Hence, by (2.2.42) and (2.2.44)–(2.2.47),

∑

m1,n1

=
∑

Lm1≤m<L(m1+1)

∑

Ln1≤n<L(n1+1)

1

L3/2m
3/4
1 n

3/4
1

(
1 +O

(
1

T 1−λ−δ

))

×
(
sin

(
b

√
m1

n1

)
+Ox

(
1

T 1−λ−3
2 δ

))
· sin

(
a

√

m

(
n+

1

2

)
− 3π

4

)

=
sin
(
b
√
m1/n1

)

L3/2m
3/4
1 n

3/4
1

∑

Lm1≤m<L(m1+1)

∑

Ln1≤n<L(n1+1)

× sin

(
a

√

m

(
n+

1

2

)
− 3π

4

)
+Ox

⎛

⎝
√
L

m
3/4
1 n

3/4
1 T 1−λ−3

2 δ

⎞

⎠ . (2.2.48)

Here,

m
3/4
1 n

3/4
1 ≥ T 3/4

1 T
3/4
3 >

(
T

L

)3/4(
T 1−δ

L

)3/4

∼ T
3
2−

3
2λ−

3
4 δ. (2.2.49)
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By (2.2.48) and (2.2.49),

∣∣∣∣∣
∑

m1,n1

∣∣∣∣∣�
1

T
3
2−

3
4 δ

∣∣∣∣∣∣

∑

Lm1≤m<L(m1+1)

∑

Ln1≤n<L(n1+1)

× sin

(
a

√

m

(
n+

1

2

)
− 3π

4

)∣∣∣∣∣+Ox

(
1

T
5
2−3λ− 9

4 δ

)
. (2.2.50)

2.2.6 Short Exponential Sums

Consider now the exponential sum

Em1,n1 :=
∑

Lm1≤m<L(m1+1)

∑

Ln1≤n<L(n1+1)

e

(
2
√
xm(n+ 1

2 )

)
, (2.2.51)

where, as customary, e(t) := e2πit. Observe that

∑

Lm1≤m<L(m1+1)

∑

Ln1≤n<L(n1+1)

sin

(
a

√

m

(
n+

1

2

)
− 3π

4

)

= Im

(
e

(
−3

8

)
Em1,n1

)
. (2.2.52)

Since ∣∣∣∣Im
(
e

(
−3

8

)
Em1,n1

)∣∣∣∣ ≤
∣∣∣∣e
(
−3

8

)
Em1,n1

∣∣∣∣ = |Em1,n1 | ,

by (2.2.50), we see that

∣∣∣∣∣
∑

m1,n1

∣∣∣∣∣ = O
(
|Em1,n1 |

T
3
2−

3
4 δ

)
+O

(
1

T
5
2−3λ− 9

4 δ

)
. (2.2.53)

Adding the estimates (2.2.53) for all relevant values of m1 and n1 and using
the bound

T2T4 = O
(
T 2−2λ+δ

)
,

we see that

∑

T1≤m1≤T2

∑

T3≤n1≤T4

∣∣∣∣∣
∑

m1,n1

∣∣∣∣∣ = O

⎛

⎝ 1

T
3
2−3

4 δ

∑

T1≤m1≤T2

∑

T3≤n1≤T4

|Em1,n1 |

⎞

⎠

+O

(
1

T
1
2−λ− 13

4 δ

)
. (2.2.54)
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From (2.2.43) and (2.2.54), we deduce that
∣∣∣∣∣∣

∑

a,b,δ,T

∣∣∣∣∣∣
= O

⎛

⎝ 1

T
3
2−

3
4 δ

∑

T1≤m1≤T2

∑

T3≤n1≤T4

|Em1,n1 |

⎞

⎠+O

(
1

T
1
2−λ− 13

4 δ

)
.

(2.2.55)
For fixed λ < 1

2 and δ small enough so that 1
2 − λ−

13
4 δ > 0, the second error

term on the right-hand side of (2.2.55) is negligible. In order to estimate the
first error term on the right side of (2.2.55), fix m1 and n1. We write each m
and n with Lm1 ≤ m < L(m1 + 1) and Ln1 ≤ n < L(n1 + 1) in the forms

m = Lm1 +m2, n = Ln1 + n2, m2, n2 ∈ {0, 1, . . . , L− 1}. (2.2.56)

Then,

√
m =

√
Lm1

(
1 +

m2

Lm1

)1/2

=
√
Lm1

(
1 +

m2

2Lm1
− m2

2
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, (2.2.57)

√
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√
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2
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−

(n2 +
1
2 )

2

8L2n21
+O

(
(n2 +

1
2 )

3

L3n31

))

=
√
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−

(n2 +
1
2 )

2

8L2n21
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(
1

T 3−3λ−3δ

))
. (2.2.58)

Also, by (2.2.41) and (2.2.56),

m2

2Lm1
·
(n2 +

1
2 )

2

8L2n21
= O

(
L

T
· L2

T 2−2δ

)
= O

(
1
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)
, (2.2.59)

m2
2

8L2m2
1
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1
2 )

2Ln1
= O

(
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T 2
· L
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)
= O

(
1
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)
, (2.2.60)

m2
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· L2
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(
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)
. (2.2.61)

By (2.2.57)–(2.2.61),

√
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√
m1n1
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(
1
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. (2.2.62)
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Next, again with the use of (2.2.41) and (2.2.56),

L
√
m1n1 ·

1

T 3−3λ−3δ
= O

(
T 1+δ/2

T 3−3λ−3δ

)
= O

(
1

T 2−3λ−7δ/2

)
, (2.2.63)

L
√
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1
2m2

4L2m1n1
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(
T λ

L
√
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)
= O

(
1
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)
, (2.2.64)

L
√
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1
4

8L2n21
= O

(√
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)
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(
1
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)
. (2.2.65)

By (2.2.62)–(2.2.65), we see that

√
m(n+ 1

2 ) = L
√
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)
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√
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(
1
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)
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(2.2.66)

Note that for
3δ < 1− 2λ,

which we may assume in what follows, T 2−3λ−7δ/2 > T 1−λ−δ/2. Therefore, by
(2.2.66), we find that

e

(
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√
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)
. (2.2.67)

Summing up the relations (2.2.67) overm2 and n2 in their appropriate ranges,
taking absolute values on both sides, and recalling (2.2.51), we find that
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∣∣∣∣e
(
−2L

√
xm1n1

(
1 +

1

4Ln1

))
·Em1,n1

∣∣∣∣

=

∣∣∣∣∣∣

∑

0≤m2<L

∑

0≤n2<L

e

(√
xn1
m1
m2

)
e

(√
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)
. (2.2.68)
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We now use the Taylor expansion for

e

(
−
√
xm1n1
4L

(
m2

m1
− n2
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)2
)
.

Observe that
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)
. (2.2.69)

In what follows we fix a positive integer r, depending on λ only, such that
(r + 1)(12 − λ) ≥ 1. For example, we may take

r =

[
1

1
2 − λ

]
. (2.2.70)

We also assume that δ is small enough so that

3δ < 1− 2λ.

Then 1− 2λ− 3
2δ >

1
2 − λ, and so by (2.2.69),
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(
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)
. (2.2.71)

We may then truncate the Taylor series expansion mentioned above as

e
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)
, (2.2.72)
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by (2.2.71). Inserting (2.2.72) in (2.2.68), and noticing that the error term on
the right side of (2.2.72) is small enough so that when inserted on the right
side of (2.2.68) it can be subsumed in the existing error term from (2.2.68),
we deduce that

|Em1,n1 | =

∣∣∣∣∣∣
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3
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, (2.2.73)

where we have defined

Aj,�(m1, n1) :=
(−1)jxj/2

4jj!

(
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)
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1
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1 n
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and

Vj,�(m1, n1) :=
∑

0≤m2<L

∑
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e
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)
e
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)
m�

2n
2j−�
2 .

(2.2.75)
In order to bound the coefficients Aj,�(m1, n1), we distinguish two cases: � ≥
3j/2 and � < 3j/2. If � ≥ 3j/2, in order to produce an upper bound for the
right side of (2.2.74), we need an upper bound for n1, which is T 1−λ+δ. When
� < 3j/2, we need a lower bound for n1, which is T 1−λ−δ. For m1, both upper
and lower bounds have the same size, T 1−λ. Combining the two cases, we find
that

|Aj,�(m1, n1)| = Ox,λ,δ

⎛
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)
, (2.2.76)

uniformly for � ∈ {0, 1, . . . , 2j}.
The exponential sum on the right-hand side of (2.2.75), as hinted earlier,

can be written as the product of two exponential sums, each in one variable,
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(2.2.77)
In the case j = � = 0, the exponential sums above are geometric series, which
can be accurately estimated. For any real number α, any integer M , and any
positive integer H , we recall the well-known uniform upper bound

∣∣∣∣∣

M+H∑

n=M+1

e(αn)
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(
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{
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‖α‖

})
, (2.2.78)
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where ‖α‖ denotes the distance from α to the nearest integer. Using (2.2.78)
in (2.2.77), we find that, for j = � = 0,

|V0,0(m1, n1)| = O
(
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}
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.

(2.2.79)
For general j and �, a familiar argument based on (2.2.78) in combination

with summation by parts for each of the two exponential sums on the right-
hand side of (2.2.77) gives
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(2.2.80)
Using (2.2.76) and (2.2.80) for all 0 ≤ j ≤ r, 0 ≤ � ≤ 2j and defining r by
(2.2.70), we find from (2.2.73) that
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Here L2/T 1−3
2 δ < 1 for δ < 2

3 (1− 2λ), which we assume in the sequel, and so

the maximum value of L2j/T j−3
2 δj is attained at j = 0. Thus, by (2.2.81),
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Next, we employ (2.2.82) on the right side of (2.2.55). In doing so, note
that the error term on the right side of (2.2.82) produces an error term on
the right side of (2.2.55) that is bounded by

Ox,λ,δ

(
1

T
3
2−

3
4 δ

· T2 · T4 · T 3λ+
3
2 δ−1

)
= Ox,λ,δ

(
1

T
1
2−λ− 13

4 δ

)
.

This is smaller than the existing error term on the right side of (2.2.55), and
we deduce that
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2.2.7 Uniform Convergence When x Is Not an Integer

Our next idea is based on the observation that if for some m1 and n1, both
‖
√
xn1/m1‖ and ‖

√
xm1/n1‖ are simultaneously small, thus producing a

large term on the right side of (2.2.83), then each of
√
xn1/m1 and

√
xm1/n1

is close to an integer, and hence their product is correspondingly close to an
integer. But their product equals x, which is fixed throughout the proof, so
this event cannot happen unless x is an integer. Fix an x that is not an inte-
ger. Then ‖x‖ = min{|x − y| : y ∈ Z} > 0. For each m1 ∈ {T1, . . . , T2} and
n1 ∈ {T3, . . . , T4}, let d1 and d2 be integers, depending on m1 and n1, such
that ∥∥∥∥

√
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∣∣∣∣ . (2.2.85)

Using (2.2.84) and (2.2.85) and the fact that d1d2 is an integer, we find that
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Here, √
xm1

n1
= Ox,δ(T

δ) (2.2.87)

and
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√
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+
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2
= Ox,δ(T
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Thus, by (2.2.86)–(2.2.88),
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It follows from (2.2.89) that, uniformly for m1 ∈ {T1, . . . , T2} and n1 ∈
{T3, . . . , T4},
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‖
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}
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By (2.2.90), it follows that
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(2.2.91)

Inserting (2.2.91) into the right side of (2.2.83), we deduce that
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The summation in the first of the two error terms on the right side of (2.2.92)
yields two double sums. For the first, we keep the order of summation as in
(2.2.92) and focus on the inner sum

F (x, δ, λ, T,m1) :=
∑

T3≤n1≤T4

min

{
T λ,

1

‖
√
xn1/m1‖

}
, (2.2.93)

while for the second, we interchange the order of summation, so that the inner
sum becomes

G(x, δ, λ, T, n1) :=
∑
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√
xm1/n1‖

}
. (2.2.94)

We proceed to derive an upper bound for F (x, δ, λ, T,m1). Each term in the
sum on the right side of (2.2.93) lies in [2, T λ]. We subdivide this interval
into dyadic intervals [2, 4), [4, 8), . . . , [2s, T λ], where s = [λ log2 T ]. For each
j = 1, 2, . . . , s, set

Bj,m1 :=

{
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Then

F (x, δ, λ, T,m1)

≤
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}
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Now fix j ∈ {1, 2, . . . , s}. We need an accurate upper bound for #{Bj,m1}.
For each n1 ∈ Bj,m1 , we let, as before, d1 denote the closest integer to√
xn1/m1. Then using (2.2.41), as we often have done and will continue to

do, we see that, for T sufficiently large,
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√
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By (2.2.95) and (2.2.97), it follows that
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(2.2.98)

For each interval I of real numbers,

#{Z ∩ I} ≤ 1 + length(I). (2.2.99)

From (2.2.98) and (2.2.99), we find that

#{Bj,m1} ≤
[
√
3xT δ]∑

d1=0

(
1 +

m1

x

(
d1 +

1

2j

)2

− m1

x

(
d1 −

1

2j

)2
)

= 1 +
[√

3xT δ
]
+
m1

x

[
√
3xT δ ]∑

d1=0

4d1
2j

= Ox

(
T δ/2

)
+ Ox

(m1

2j
· T δ

)
. (2.2.100)

Similarly,
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(2.2.101)



2.2 Proof of Ramanujan’s First Bessel Function Identity (Original Form) 37

Employing (2.2.100) and (2.2.101) on the right-hand side of (2.2.96), we de-
duce that

F (x, δ, λ, T,m1) = Ox
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where we have recalled the definition s = [λ log2 T ]. Reversing the roles of m1

and n1, using the same argument as above, appealing to (2.2.41), and invoking
the inequalities
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in place of (2.2.97), we also deduce that

G(x, δ, λ, T, n1) = Ox,λ,δ(T
λ+δ/2 + n1T

δ logT ). (2.2.104)

Combining (2.2.92)–(2.2.94), (2.2.102), and (2.2.104), we find that
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)
⎞

⎠

+Ox,λ,δ

⎛

⎝ 1

T
3
2−

7
4 δ

∑

T3≤n1≤T4

(
T λ+δ/2 + n1T

δ logT
)
⎞

⎠

+Ox,λ,δ

(
1

T
1
2−λ− 13

4 δ

)

= Ox,λ,δ

(
1

T
3
2−

7
4 δ

(
T 1+δ/2 + T 2−2λ+δ logT

))

+Ox,λ,δ

(
1

T
3
2−

7
4 δ

(
T 1+3δ/2 + T 2−2λ+3δ logT

))

+Ox,λ,δ

(
1

T
1
2−λ− 13

4 δ

)

= Ox,λ,δ

(
logT

T 2λ−1
2−

19
4 δ

)
+Ox,λ,δ

(
1

T
1
2−λ− 13

4 δ

)
. (2.2.105)

So far, the only condition we have put on λ is that λ ∈ (0, 12 ). We now see
that in order for the argument above to work, we also need λ > 1

4 . Then the
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first error term on the far right side of (2.2.105) will be small enough. In order
to balance the exponents not involving δ in the two error terms on the far
right side of (2.2.105), we now choose λ = 1

3 . Then by (2.2.105) and the fact

that logT is smaller than T δ/4 for fixed δ > 0 and T sufficiently large,

∣∣∣∣∣∣

∑

a,b,δ,T

∣∣∣∣∣∣
= Ox,δ

(
1

T
1
6−5δ

)
. (2.2.106)

Let us recall that
∑

a,b,δ,T is one of the inner sums on the right-hand side of

(2.2.40), with, from the discourse prior to (2.2.40), T = 2r1+j . Using (2.2.106)
for each of these sums and recalling the definition r1 = [log2M1], we find from
(2.2.39) that

|S8,M2(a, θ, δ)− S8,M1(a, θ, δ)| = Ox,δ

⎛

⎝
r2−r1∑

j=0

1

2(r1+j)(
1
6−5δ)

⎞

⎠

= Ox,δ

⎛

⎝ 1

2r1(
1
6−5δ)

∞∑

j=0

1

2j(
1
6−5δ)

⎞

⎠

= Ox,δ

(
1

2r1(
1
6−5δ)

)

= Ox,δ

⎛

⎝ 1

M
(
1
6−5δ)

1

⎞

⎠ , (2.2.107)

uniformly with respect to θ in [0, 1]. This completes the proof that the sum
S8(a, θ, δ) converges uniformly with respect to θ in [0, 1], which in turn implies
a corresponding statement for the initial double sum S1(a, θ).

2.2.8 The Case That x Is an Integer

We now proceed to examine the case that x is an integer. In the case above, in
which x is not an integer, the relations (2.2.106) and consequently (2.2.107)
were stronger than needed, in the sense that a weaker savings, where the
exponent 1

6 is replaced by any smaller strictly positive constant, would have
sufficed. The fact that we had some room to spare in the proof above naturally
leads us to expect that exactly the same argument as above would cover as
well, at least partially, the case that x is an integer. With this in mind, we
subdivide the sum

∑
a,b,δ,T into two sums, one for which the argument above

applies, to be examined first, and the second, to be examined later.
We begin by fixing a positive integer x. Next, we fix an arbitrary small real

number η > 0. With η fixed, we then choose a real number λ < 1
2 , depending

on η. The exact dependence of λ on η will be clarified later, with the crux of
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the matter being that λ is chosen such that 1
2−λ is much smaller than η. With

η and λ fixed, we then choose δ > 0, depending on η and λ. The dependence
of δ on η and λ will be made explicit later, with the goal being that δ will be
chosen to be much smaller than 1

2 − λ. Once η, λ, and δ are fixed, we start
by following the same reduction procedure from the foregoing beginning of
the proof, which reduces the convergence, respectively uniform convergence,
of S1(a, θ) to that of S8(a, θ, δ). In order to investigate the convergence of
S8(a, θ, δ), we again employ Cauchy’s criterion, and arrive at (2.2.40). We need
to show that the right side of (2.2.40) is in absolute value less than ε, for an
arbitrary fixed ε > 0. We again bound each of the inner sums on the right-
hand side of (2.2.40) separately. As before, we fix j, with 1 ≤ j ≤ r2 − r1 − 1,
set T = 2r1+j , and consider the sum

∑
a,b,δ,T , defined in (2.2.42). At this

point, we divide the sum
∑

a,b,δ,T into two parts, depending on η, as follows.

Consider in R2 the rectangle

D(δ, T ) := [T, 2T )× [T 1−δ, (2T )1+δ].

For each divisor d of x, draw the ray from the origin with slope d2/x. Around
this ray, consider the thin trapezoidal region, say V (x, d, η, δ, T ), that consists
of all the points in D(δ, T ) for which the slope of the line from the origin
through the point lies in the interval

[
d2

x
− 1

T
1
2−η

,
d2

x
+

1

T
1
2−η

]
. (2.2.108)

Set

U1(a, b, δ, T, η)

:=
∑

(m,n)∈D(δ,T )\∪d|xV (x,d,η,δ,T )

sin

(
b

√
m

n

)
sin

(
a

√
m

(
n+

1

2

)
− 3π

4

)

m3/4n3/4

(2.2.109)

and

U2(a, b, δ, T, η)

:=
∑

d|x

∑

(m,n)∈V (x,d,η,δ,T )

sin

(
b

√
m

n

)
sin

(
a

√
m

(
n+

1

2

)
− 3π

4

)

m3/4n3/4
. (2.2.110)

Thus, ∑

a,b,δ,T

= U1(a, b, δ, T, η) + U2(a, b, δ, T, η). (2.2.111)
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Before proceeding further, we observe that although the trapezoids
V (x, d, η, δ, T ) are very thin, we cannot afford to trivially estimate
U2(a, b, δ, T, η), as we did in (2.2.45). Indeed, V (x, d, η, δ, T ) is a trapezoid

with (horizontal) height T lying inside an angle of measure roughly 1/T
1
2−η,

and so the two bases have size of the order of magnitude of T
1
2+η. Therefore

the area of V (x, d, η, δ, T ) is of order T
3
2+η. The number of integral points

(m,n) in V (x, d, η, δ, T ) is asymptotic to this area, since the perimeter of
the trapezoid is of smaller order, O(T ). On the other hand, the denominator
m3/4n3/4 on the right side of (2.2.110) is of precise order of magnitude T 3/2.
To see this, note that n/m lies between 1/x and x. For other points in the
trapezoid V (x, d, η, δ, T ), for T sufficiently large, n/m lies between 1/2x and
2x, say. Since T < m < 2T , this implies that T/2x < n < 4xT . Therefore, if
we estimate the sum on the right side of (2.2.110) trivially, we obtain

|U2(a, b, δ, T, η)| = Ox,η,δ(T
η), (2.2.112)

which is not sufficient for our purposes. This discussion also shows that any
cancellation on the right side of (2.2.110) allowing us to save a factor of T c0,
for some constant c0 > 0 independent of η, would suffice (by taking η smaller
than c0).

Taking into account the shape of these trapezoids, we see that it does not
appear appropriate to consider subdividing them into small squares as before.
Instead, it is more natural to try to achieve cancellation on large exponential
sums taken along parallel lines of corresponding slope d2/x, which is what we
will do later.

We first bound U1(a, b, δ, T, η). Subdivide D(δ, T )\∪d|xV (x, d, η, δ, T ) into
squares of size L × L, where, as before, L = [T λ]. Let T1, T2, T3, and T4 be
as defined in (2.2.41). For each m1 ∈ {T1, . . . , T2} and n1 ∈ {T3, . . . , T4}, we
define

∑
m1,n1

by (2.2.42). We consider all those squares [Lm1, L(m1 + 1))×
[Ln1, L(n1 + 1)) for which the lower left corner does not belong to any of the
trapezoids V (x, d, η, δ, T ). Since the slope of the ray from the origin to this
lower left corner equals n1/m1, the condition above can be stated as

n1
m1

/∈ ∪d|x

[
d2

x
− 1

T
1
2−η

,
d2

x
+

1

T
1
2−η

]
. (2.2.113)

Note that all the integral points (m,n) in D(δ, T ) \ ∪d|xV (x, d, η, δ, T ) that
do not belong to the union of squares [Lm1, L(m1 + 1)) × [Ln1, L(n1 + 1)),
m1 ∈ {T1, . . . , T2} and n1 ∈ {T3, . . . , T4}, and that satisfy (2.2.113) are at a
distance O(L) from the boundary of D(δ, T ) \ ∪d|xV (x, d, η, δ, T ). We bound
the contribution of these points (m,n) on the right side of (2.2.109) as follows.
The contribution of those points (m,n) that are at a distance O(L) from the
four edges of the rectangle D(δ, T ) was estimated in (2.2.43), and it was found
to be
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O

(
1

T
1
2−λ− 3

4 δ

)
.

The remaining points, namely, those (m,n) lying inside the rectangle D(δ, T )
that are at a distance O(L) from the union over d | x of the rays from the
origin of slopes

d2

x
− 1

T
1
2−η

and
d2

x
+

1

T
1
2−η

can be bounded in a similar manner. One then finds that their contribution
to the right side of (2.2.109) is

Ox

(
1

T
1
2−λ

)
.

Combining all these bounds, we deduce that

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U1(a, b, δ, T, η)−
∑

T1≤m1≤T2
T3≤n1≤T4

n1

m1
/∈∪d|x

⎡
⎣d2

x − 1

T
1
2−η

,
d2

x +
1

T
1
2−η

⎤
⎦

∑

m1,n1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= Ox

(
1

T
1
2−λ− 3

4 δ

)
.

(2.2.114)
Next, we apply (2.2.53) to each

∑
m1,n1

in (2.2.114), and obtain a relation
analogous to (2.2.55), namely,

|U1(a, b, δ, T, η)| = O
(

1

T
3
2−

3
4 δ

∑

T1≤m1≤T2
T3≤n1≤T4

n1

m1
/∈∪d|x

⎡
⎣d2

x − 1

T
1
2−η

,
d2

x +
1

T
1
2−η

⎤
⎦

|Em1,n1 |
)

+Ox

(
1

T
1
2−λ− 13

4 δ

)
, (2.2.115)

where Em1,n1 is defined in (2.2.51). The exponential sums Em1,n1 were
bounded in (2.2.82). Employing those bounds on the right-hand side of
(2.2.115), we derive a relation analogous to (2.2.83), namely,
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|U1(a, b, δ, T, η)| = Ox,λ,δ

(
1

T
3
2−

3
4 δ

∑

T1≤m1≤T2
T3≤n1≤T4

n1

m1
/∈∪d|x

⎡
⎣d2

x − 1

T
1
2−η

,
d2

x +
1

T
1
2−η

⎤
⎦

min

{
T λ,

1

‖
√
xn1/m1‖

}
·min

{
T λ,

1

‖
√
xm1/n1‖

})

+Ox

(
1

T
1
2−λ− 13

4 δ

)
. (2.2.116)

Unlike the previous case, in which x was not an integer and ‖
√
xn1/m1‖ and

‖
√
xm1/n1‖ cannot be simultaneously small, in the present case in which

x is an integer, ‖
√
xn1/m1‖ and ‖

√
xm1/n1‖ can be small simultaneously.

This can happen only if n1/m1 is close to a number of the form d2/x with d|x.
Conversely, if n1/m1 is close to d

2/x for some divisor d of x, then automatically

m1/n1 is close to d′2/x, where dd′ = x, and ‖
√
xn1/m1‖ and ‖

√
xm1/n1‖

are simultaneously small. The extra condition on n1/m1 in the summation
on the right side of (2.2.116) assures us that ‖

√
xn1/m1‖ and ‖

√
xm1/n1‖

cannot be simultaneously small. This does not prevent the possibility that one
of ‖

√
xn1/m1‖ and ‖

√
xm1/n1‖ is much smaller than the other, of course.

But in that case, the other is larger than 1/T δ, by (2.2.41), and so the term
corresponding to the pair (m1, n1) on the right side of (2.2.116) is harmless,
as we have seen before.

With this in mind, we proceed as follows. Consider the sets of integral
points (m1, n1) defined by

B1(x, η, λ, δ, T ) :=

{
(m1, n1) : T1 ≤ m1 ≤ T2, T3 ≤ n1 ≤ T4,

n1
m1

/∈ ∪d|x

⎡

⎣d
2

x
− 1

T
1
2
−η
,
d2

x
+

1

T
1
2
−η

⎤

⎦ ,max

{∥∥∥∥
√
xn1
m1

∥∥∥∥ ,
∥∥∥∥
√
xm1

n1

∥∥∥∥

}
>

1

T δ

}

(2.2.117)

and

B2(x, η, λ, δ, T ) :=

{
(m1, n1) : T1 ≤ m1 ≤ T2, T3 ≤ n1 ≤ T4,

n1
m1

/∈ ∪d|x

⎡

⎣d
2

x
− 1

T
1
2
−η
,
d2

x
+

1

T
1
2
−η

⎤

⎦ ,
∥∥∥∥
√
xn1
m1

∥∥∥∥ ≤ 1

T δ
,

∥∥∥∥
√
xm1

n1

∥∥∥∥ ≤ 1

T δ

}
.

(2.2.118)
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The last condition in the definition of B1(x, η, λ, δ, T ) is equivalent to

min

{
1

‖
√
xn1/m1‖

,
1

‖
√
xm1/n1‖

}
< T δ, (2.2.119)

which is analogous to (2.2.90). Therefore the contribution of B1(x, η, λ, δ, T )
on the right side of (2.2.116) can be estimated as in the previous case when
x was not an integer. In the present case, we arrive at (2.2.91) and proceed
similarly as in the proof that previously led to (2.2.105), but now there remains
the estimate of the summation over (m1, n1) in B2(x, η, λ, δ, T ). Accordingly,
up to this point, we obtain the bounds

|U1(a, b, δ, T, η)|

= Ox,λ,δ

⎛
⎝ 1

T
3
2
− 3

4
δ

∑
(m1,n1)∈B2(x,η,λ,δ,T )

min

{
T λ,

1

‖
√
xn1/m1‖

}

×min

{
T λ,

1

‖
√
xm1/n1‖

})
+Ox,λ,δ

(
log T

T 2λ− 1
2
− 19

4
δ

)
+Ox,λ,δ

(
1

T
1
2
−λ− 13

4
δ

)
.

(2.2.120)

Next, let us observe that for each (m1, n1) ∈ B2(x, η, λ, δ, T ), if we denote
by d1 and d2 the closest integers to

√
xn1/m1 and

√
xm1/n1, respectively,

then

|d1d2 − x| =
∣∣∣∣

(
d1 −

√
xn1
m1

)
d2 +

√
xn1
m1

(
d2 −

√
xm1

n1

)∣∣∣∣

=

∥∥∥∥
√
xn1
m1

∥∥∥∥ |d2 +
√
xn1
m1

∥∥∥∥
√
xm1

n1

∥∥∥∥ . (2.2.121)

Here, by (2.2.41),

√
xn1
m1

= Ox(T
δ/2) and d2 =

√
xm1

n1
+O(1) = Ox(T

δ/2),

while
∥∥∥∥
√
xn1
m1

∥∥∥∥ ≤ 1

T δ
and

∥∥∥∥
√
xm1

n1

∥∥∥∥ ≤ 1

T δ
,

by (2.2.118). On using the foregoing estimates in (2.2.121), we find that

|d1d2 − x| = Ox

(
1

T δ/2

)
, (2.2.122)

and since d1, d2, and x are integers, (2.2.122) implies that d1d2 = x. Let us fur-
ther observe that for (m1, n1) ∈ B2(x, η, λ, δ, T ), the quantities 1/‖

√
xn1/m1‖
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and 1/‖
√
xm1/n1‖, which are both larger than T δ by (2.2.118), have the same

order of magnitude. Indeed,

∥∥∥∥
√
xn1
m1

∥∥∥∥
∥∥∥∥
√
xm1

n1

∥∥∥∥
=

∣∣∣∣d1 −
√
xn1
m1

∣∣∣∣
∣∣∣∣d2 −

√
xm1

n1

∣∣∣∣
=

∣∣∣∣d
2
1 −

xn1
m1

∣∣∣∣

(
d2 +

√
xm1

n1

)

∣∣∣∣d22 −
xm1

n1

∣∣∣∣

(
d1 +

√
xn1
m1

) . (2.2.123)

Here, by (2.2.41),

d2 +

√
xm1

n1
= 2d2 +O

(
1

T δ

)
= 2d2

(
1 +Ox

(
1

T δ

))
, (2.2.124)

d1 +

√
xn1
m1

= 2d1

(
1 + Ox

(
1

T δ

))
, (2.2.125)

∣∣∣∣d
2
1 −

xn1
m1

∣∣∣∣ =
1

m1

∣∣d21m1 − d1d2n1
∣∣ = d1

m1
|d1m1 − d2n1|, (2.2.126)

and

∣∣∣∣d
2
2 −

xm1

n1

∣∣∣∣ =
d2
n1

|d2n1 − d1m1|. (2.2.127)

By (2.2.123)–(2.2.127), we see that unless d2n1 = d1m1,

∥∥∥∥
√
xn1
m1

∥∥∥∥
∥∥∥∥
√
xm1

n1

∥∥∥∥
=
n1
m1

(
1 +Ox

(
1

T δ

))
. (2.2.128)

But

n1
m1

=

√
xn1
m1√
xm1

n1

=

d1 +Ox

(
1

T δ

)

d2 +Ox

(
1

T δ

) =
d1
d2

(
1 +Ox

(
1

T δ

))
. (2.2.129)

By (2.2.128) and (2.2.129), it follows that

∥∥∥∥
√
xn1
m1

∥∥∥∥
∥∥∥∥
√
xm1

n1

∥∥∥∥
=
d1
d2

(
1 +Ox

(
1

T δ

))
, (2.2.130)

unless d2n1 = d1m1, in which case both quantities ‖
√
xn1/m1‖ and

‖
√
xm1/n1‖ are equal to zero. In both cases, we can conclude that
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min

{
T λ,

1

‖
√
xm1/n1‖

}
= Ox

(
min

{
T λ,

1

‖
√
xn1/m1‖

})
. (2.2.131)

Inserting (2.2.131) into the right-hand side of (2.2.120), we find that

|U1(a, b, δ, T, η)|

= Ox,λ,δ

⎛

⎝ 1

T
3
2−

3
4 δ

∑

(m1,n1)∈B2(x,η,λ,δ,T )

(
min

{
T λ,

1

‖
√
xn1/m1‖

})2
⎞

⎠

+Ox,λ,δ

(
logT

T 2λ−1
2−

19
4 δ

)
+Ox,λ,δ

(
1

T
1
2−λ− 13

4 δ

)
. (2.2.132)

We proceed to estimate the sum in the first error term on the right-hand
side of (2.2.132). Recall that for any (m1, n1) ∈ B2(x, η, λ, δ, T ), on the one
hand, ‖

√
xn1/m1‖ ≤ 1/T δ, and on the other hand,

n1
m1

/∈ ∪d|x

⎡

⎣d
2

x
− 1

T
1
2
−η
,
d2

x
+

1

T
1
2
−η

⎤

⎦ ,

and so, in particular, ∣∣∣∣
n1
m1

− d
2
1

x

∣∣∣∣ ≥
1

T
1
2−η

, (2.2.133)

where as before, d1 is the closest integer to
√
xn1/m1. By (2.2.133) and

(2.2.125),

∥∥∥∥
√
xn1
m1

∥∥∥∥ =

∣∣∣∣d1 −
√
xn1
m1

∣∣∣∣ =
x

∣∣∣∣
d21
x

− n1
m1

∣∣∣∣

d1 +

√
xn1
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≥ x

T
1
2−η

(
d1 +

√
xn1
m1

)

=
x

2d1T
1
2−η

(
1 +Ox

(
1

T δ

))
>

1

4T
1
2−η

, (2.2.134)

for sufficiently large T .
We next subdivide the interval

[
1

4T
1
2−η

,
1

T δ

]

into dyadic intervals of the form

[
1

2j+1
,
1

2j

]
,
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and, for each j, bound the contribution to the first O-term on the right side
of (2.2.132) of those pairs (m1, n1) for which

∥∥∥∥
√
xn1
m1

∥∥∥∥ ∈
[

1

2j+1
,
1

2j

]
.

Recall that 1
2 − λ is smaller than η, and so 1/T λ < 1/(4T

1
2−η). Hence,

min

{
T λ,

1

‖
√
xn1/m1‖

}
=

1

‖
√
xn1/m1‖

(2.2.135)

for all (m1, n1) ∈ B2(x, η, λ, δ, T ). In conclusion, if we set s1 := [δ log2 T ] and
s2 := 2 +

[(
1
2 − η

)
log2 T

]
, then, with the use of (2.2.99) below,

∑

(m1,n1)∈B2(x,η,λ,δ,T )

(
min

{
T λ,

1

||
√
xn1/m1||

})2

≤
s2∑

j=s1

22j+2#

{
(m1, n1) ∈ B2(x, η, λ, δ, T ) :

∥∥∥∥
√
xn1
m1

∥∥∥∥ ∈
[

1

2j+1
,
1

2j

]}

≤
s2∑

j=s1

22j+2
∑

d|x

∑

T1≤m1≤T2

#

{
n1 :

∣∣∣∣
√
xn1
m1

− d
∣∣∣∣ ∈
[

1

2j+1
,
1

2j

]}

≤
s2∑

j=s1

22j+2
∑

d|x

∑

T1≤m1≤T2

#

{
Z ∩

[
m1

x

(
d− 1

2j

)2

,
m1

x

(
d+

1

2j

)2
]}

≤
s2∑

j=s1

22j+2
∑

d|x

∑

T1≤m1≤T2

(
1 +

dm1

x2j−2

)

= Ox

⎛

⎝
s2∑

j=s1

22jT2

⎞

⎠+Ox

⎛

⎝
s2∑

j=s1

2j
∑

T1≤m1≤T2

m1

⎞

⎠

= Ox,η,δ,λ

(
22s2T 1−λ

)
+Ox,η,δ,λ

(
2s2T 2−2λ

)

= Ox,η,δ,λ(T
2−2η−λ) +Ox,η,δ,λ(T

5
2−η−2λ). (2.2.136)

Combining (2.2.136) and (2.2.132), we finally deduce that

|U1(a, b, δ, T, η)| = Ox,λ,δ,η

(
1

T λ+2η− 1
2−

3
4 δ

)
+Ox,λ,δ,η

(
1

T 2λ+η−1−3
4 δ

)

+Ox,λ,δ

(
logT

T 2λ−1
2−

19
4 δ

)
+Ox,λ,δ

(
1

T
1
2−λ− 13

4 δ

)
.

(2.2.137)
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We now see that for any fixed η > 0, we can make all the O-terms on
the right side of (2.2.137) sufficiently small by choosing λ close to 1

2 and then
choosing δ > 0 small enough. To be precise, we fix a small η > 0, and then let
λ = 1

2 − 1
3η. Thus, (2.2.137) takes the shape

|U1(a, b, δ, T, η)| = Ox,δ,η

(
1

T
5
3η−

3
4 δ

)
+Ox,δ,η

(
1

T
1
3η−

3
4 δ

)

+Ox,δ,η

(
logT

T
1
2−

2
3 η− 19

4 δ

)
+Ox,δ,η

(
1

T
1
3η−

13
4 δ

)

= Ox,δ,η

(
1

T
1
3η−

13
4 δ

)
. (2.2.138)

We now let δ = η/39, and so from (2.2.137) we can now deduce that

|U1(a, b, T, η)| = Ox,η

(
1

T η/4

)
, (2.2.139)

where, for simplicity, we deleted the symbol δ on the left-hand side of (2.2.139),
because δ is a function of η.

There remains the problem of obtaining a suitable bound for the sum
U2(a, b, δ, T, η). As above, we delete δ from the notations V (x, d, η, δ, T ) and
U2(a, b, δ, T, η), which we now proceed to estimate.

2.2.9 Estimating U2(a, b, T, η)

In order to bound U2(a, b, T, η), we estimate, for each divisor d of x, the inner
sum on the right side of (2.2.110). For each (m,n) ∈ V (x, d, η, T ), by (2.2.108),

∣∣∣∣
n

m
− d

2

x

∣∣∣∣ ≤
1

T
1
2−η

. (2.2.140)

By (2.2.140),

sin

(
b

√
m

n

)
= sin

(
b
√
x

d

)
+Ox

(
1

T
1
2−η

)
(2.2.141)

and

1

m3/4n3/4
=

x3/4

d3/2m3/2

(
1 +Ox

(
1

T
1
2−η

))
. (2.2.142)
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Hence, by (2.2.110),

U2(a, b, T, η) = x
3/4
∑

d|x

sin

(
b
√
x

d

)

d3/2

∑

(m,n)∈V (x,d,η,T )

sin

(
a
√
m(n+ 1

2 )−
3π

4

)

m3/2

+Ox

⎛

⎝ 1

T
1
2−η

∑

d|x

∑

(m,n)∈V (x,d,η,T )

1

m3/2

⎞

⎠ . (2.2.143)

Recall from the reasoning leading to (2.2.112) that the number of integral

pairs (m,n) in each V (x, d, η, T ) is of the order of T
3
2+η. Thus, using this

estimate in the O-term above and recalling that T ≤ m < 2T , we find that
(2.2.143) reduces to

U2(a, b, T, η) = x
3/4
∑

d|x

sin

(
b
√
x

d

)

d3/2

∑

(m,n)∈V (x,d,η,T )

sin

(
a
√
m(n+ 1

2 )−
3π

4

)

m3/2

+Ox

(
1

T
1
2−2η

)
. (2.2.144)

From the inequalities T ≤ m < 2T combined with (2.2.140), it follows that
∣∣∣∣n−

d2m

x

∣∣∣∣ ≤ 2T
1
2+η (2.2.145)

and

√
m(n+ 1

2 ) =

√

m

(
d2m

x
+

1

2
+ n− d

2m

x

)

=
dm√
x

⎛

⎝1 +
x
(

1
2 + n− d2m

x

)

d2m

⎞

⎠
1/2

=
dm√
x

⎛

⎜⎝1 +
x
(

1
2 + n− d2m

x

)

2d2m
−
x2
(

1
2 + n− d2m

x

)2

8d4m2

+Ox

⎛

⎜⎝

∣∣∣ 12 + n− d2m
x

∣∣∣
3

m3

⎞

⎟⎠

⎞

⎟⎠

=
dm√
x
+

√
x

4d
+

√
xn

2d
− dm

2
√
x
−
x3/2

(
1
2 + n− d2m

x

)2

8d3m
+Ox

(
1

T
1
2−3η

)
.

(2.2.146)
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Recall that a = 4π
√
x. Therefore,

sin

(
a
√
m(n+ 1

2 )−
3π

4

)

= sin

⎛

⎜⎝2πdm+
πx

d
+

2πxn

d
−
πx2

(
1
2 + n− d2m

x

)2

2d3m
− 3π

4

⎞

⎟⎠

+Ox

(
1

T
1
2−3η

)
. (2.2.147)

Here, 2πdm + 2πxn/d is an integral multiple of 2π, and πx/d is an integral
multiple of π, which is a multiple of 2π if and only if x/d is even. It follows
from (2.2.147) and (2.2.144) that

U2(a, b, T, η)

= x3/4
∑

d|x

1

d3/2
sin

(
b
√
x

d

)

×
∑

(m,n)∈V (x,d,η,T )

(−1)x/d

m3/2
sin

⎛

⎜⎝−
πx2

(
1
2 + n− d2m

x

)2

2d3m
− 3π

4

⎞

⎟⎠

+Ox

⎛

⎝ 1

T
1
2−3η

∑

d|x

∑

(m,n)∈V (x,d,η,T )

1

m3/2

⎞

⎠+Ox

(
1

T
1
2−2η

)

= x3/4
∑

d|x

(−1)x/d+1

d3/2
sin

(
b
√
x

d

)

×
∑

(m,n)∈V (x,d,η,T )

1

m3/2
sin

⎛

⎜⎝
πx2

(
1
2 + n− d2m

x

)2

2d3m
+

3π

4

⎞

⎟⎠

+Ox

(
1

T
1
2−4η

)
. (2.2.148)

Furthermore, by (2.2.145) and the inequalities T ≤ m < 2T ,

πx2
(

1
2 + n− d2m

x

)2

2d3m
=
π(xn− d2m)2

2d3m
+Ox

(
1

T
1
2−η

)
, (2.2.149)
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which, when inserted in (2.2.148), gives

U2(a, b, T, η) = x
3/4
∑

d|x

(−1)x/d+1

d3/2
sin

(
b
√
x

d

)

×
∑

(m,n)∈V (x,d,η,T )

1

m3/2
sin

(
π(xn − d2m)2

2d3m
+

3π

4

)

+Ox

(
1

T
1
2−4η

)
. (2.2.150)

Next, for each divisor d of x, consider the function Hd(u, v) of two real
variables defined on [T, 2T )× [T 1−δ, (2T )1+δ] by

Hd(u, v) :=
1

u3/2
sin

(
π(xv − d2u)2

2d3u
+

3π

4

)
. (2.2.151)

Note that on V (x, d, η, T ), |xv − d2u| ≤ 2xT
1
2+η, by (2.2.145), and so

∣∣∣∣
∂Hd

∂v

∣∣∣∣ =
∣∣∣∣

1

u3/2
cos

(
π(xv − d2u)2

2d3u
+

3π

4

)
· πx
d3u

(xv − d2u)
∣∣∣∣ = Ox

(
1

T 2−η

)

(2.2.152)

and∣∣∣∣
∂Hd

∂u

∣∣∣∣ ≤
∣∣∣∣

3

2u5/2
sin

(
π(xv − d2u)2

2d3u
+

3π

4

)∣∣∣∣

+

∣∣∣∣
1

u3/2
cos

(
π(xv − d2u)2

2d3u
+

3π

4

)∣∣∣∣
π

2d3
|2(d2u− xv)d2u− (d2u− xv)2|

u2

= Ox

(
1

T 2−η

)
. (2.2.153)

Using (2.2.152) and (2.2.153), we may replace each sum on the right side of
(2.2.150) by a double integral. More precisely, for each (m,n) ∈ V (x, d, η, T ),∣∣∣∣∣∣∣∣

sin

(
π(xn− d2m)2

2d3m
+

3π

4

)

m3/2
−
∫ m+

1
2

m− 1
2

∫ n+
1
2

n− 1
2

Hd(u, v)dv du

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫ m+
1
2

m− 1
2

∫ n+
1
2

n− 1
2

{Hd(u, v)−Hd(m,n)} dv du

∣∣∣∣∣∣

= O

⎛

⎜⎜⎝sup
u∈[m−1

2 ,m+
1
2 ]

v∈[n− 1
2 ,n+

1
2 ]

{∣∣∣∣
∂Hd

∂u
(u, v)

∣∣∣∣+
∣∣∣∣
∂Hd

∂v
(u, v)

∣∣∣∣

}
⎞

⎟⎟⎠

= Ox

(
1

T 2−η

)
. (2.2.154)
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Adding relations (2.2.154) for all (m,n) ∈ V (x, d, η, T ), we see that

∑

(m,n)∈V (x,d,η,T )

1

m3/2
sin

(
π(xn− d2m)2

2d3m
+

3π

4

)

=
∑

(m,n)∈V (x,d,η,T )

∫ m+
1
2

m− 1
2

∫ n+
1
2

n− 1
2

Hd(u, v)dv du+Ox

(
1

T
1
2−2η

)
. (2.2.155)

Let us observe that if we define

V ∗(x, d, η, T ) = ∪(m,n)∈V (x,d,η,T )[m− 1
2 ,m+ 1

2 ]× [n− 1
2 , n+

1
2 ], (2.2.156)

then

Area (V (x, d, η, T )\V ∗(x, d, η, T )) ∪ (V ∗(x, d, η, T )\V (x, d, η, T )) = Ox(T ),
(2.2.157)

because the perimeter of the trapezoid defining V (x, d, η, T ) is O(T ). Since

|Hd(u, v)| = O
(

1

T 3/2

)

on V (x, d, η, T ) ∪ V ∗(x, d, η, T ), by (2.2.157), it follows that

∑

(m,n)∈V (x,d,η,T )

∫ m+
1
2

m− 1
2

∫ n+
1
2

n− 1
2

Hd(u, v)dv du

=

∫ ∫

V (x,d,η,T )

Hd(u, v)dv du +Ox

(
1

T 1/2

)
. (2.2.158)

Combining (2.2.150) with (2.2.155) and (2.2.158), we find that

U2(a, b, T, η) = x
3/4
∑

d|x

(−1)x/d+1

d3/2
sin

(
b
√
x

d

)∫ ∫

V (x,d,η,T )

Hd(u, v)dv du

+Ox

(
1

T
1
2−4η

)
. (2.2.159)

To evaluate the double integrals on the right side of (2.2.159), we perform
the change of variable v = u(w + d2/x) to deduce that

∫∫

V (x,d,η,T )

Hd(u, v)dvdu =

∫ 2T

T

∫ 1/T
1
2−η

−1/T
1
2−η

Hd(u, u(w + d2/x))u dw du

=

∫ 2T

T

∫ 1/T
1
2−η

−1/T
1
2−η

sin

(
πx2uw2

2d3
+

3π

4

)

√
u

dw du.

(2.2.160)
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Next, we make a second change of variable to balance the shape of the region
of integration by setting u = T t and w = z/

√
T . Then (2.2.160) reduces to

∫∫

V (x,d,η,T )

Hd(u, v)dv du =

∫ 2

1

1√
t

∫ Tη

−Tη

sin

(
πx2tz2

2d3
+

3π

4

)
dz dt.

(2.2.161)

In the inner integral we make a further change of variable, z = d3/2y/(xt1/2),
so that (2.2.161) now takes the form

∫∫

V (x,d,η,T )

Hd(u, v)dv du =
d3/2

x

∫ 2

1

1

t

∫ Tηxt1/2d−3/2

−Tηxt1/2d−3/2

sin

(
π

2
y2 +

3π

4

)
dy dt.

(2.2.162)
We approximate the inner integral by

c0 :=

∫ ∞

−∞
sin

(
π

2
y2 +

3π

4

)
dy. (2.2.163)

A change of variables followed by an integration by parts yields

∫ ∞

Tηxt1/2d−3/2

sin

(
π

2
y2 +

3π

4

)
dy =

1

2

∫ ∞

T 2ηx2td−3

sin

(
π

2
ρ+

3π

4

)

ρ1/2
dρ

= −
cos

(
π

2
ρ+

3π

4

)

πρ1/2

∣∣∣∣∣∣∣∣

∞

T 2ηx2td−3

− 1

2π

∫ ∞

T 2ηx2td−3

cos

(
π

2
ρ+

3π

4

)

ρ3/2
dρ.

(2.2.164)

By (2.2.164), it follows that, uniformly for 1 ≤ t ≤ 2,
∣∣∣∣
∫ ∞

Tηxt1/2d−3/2

sin

(
π

2
y2 +

3π

4

)
dy

∣∣∣∣ = Ox

(
1

T η

)
. (2.2.165)

It is clear that the same bound as in (2.2.165) also holds for the integral from
−∞ to −T ηxt1/2d−3/2. Using these relations in combination with (2.2.162),
we deduce that

∫∫

V (x,d,η,T )

Hd(u, v)dv du =
d3/2c0 log 2

x
+Ox

(
1

T η

)
. (2.2.166)

We now insert (2.2.166) into the right-hand side of (2.2.159) to deduce that

U2(a, b, T, η) = x
−1/4c0 log 2

∑

d|x
(−1)x/d+1 sin

(
b
√
x

d

)

+Ox

(
1

T η

)
+Ox

(
1

T
1
2−4η

)
. (2.2.167)



2.2 Proof of Ramanujan’s First Bessel Function Identity (Original Form) 53

Recall that b = π
√
x(1−2θ). Therefore, the series over d on the right-hand

side of (2.2.167) cannot cancel for general θ. Thus, in order for the convergence
of our initial series S1(a, θ) to hold for general θ, it is necessary that c0 be
equal to 0, and indeed it is. To that end [126, p. 435, formula 3.691, no. 1],

c0 =

∫ ∞

−∞
sin

(
π

2
y2 +

3π

4

)
dy

= − 1√
2

∫ ∞

−∞
sin
(π
2
y2
)
dy +

1√
2

∫ ∞

−∞
cos
(π
2
y2
)
dy

= − 1√
2
+

1√
2
= 0.

In particular, we note that the term 3π
4 in the argument of the sine on the

right side of (2.2.163) is essential in order to have c0 = 0. We conclude from
(2.2.167) that

|U2(a, b, T, η)| = Ox

(
1

T η

)
+Ox

(
1

T
1
2−4η

)
. (2.2.168)

By (2.2.168) and (2.2.139),

|U1(a, b, T, η)|+ |U2(a, b, T, η)| = Ox

(
1

T η/4

)
+Ox

(
1

T
1
2−4η

)
. (2.2.169)

We now let η = 2
17 . Then both O-terms on the right-hand side of (2.2.169)

are Ox(1/T
1/34), and so by (2.2.111),

∣∣∣∣∣∣

∑

a,b,T

∣∣∣∣∣∣
= Ox

(
1

T 1/34

)
, (2.2.170)

uniformly for θ ∈ [0, 1], where on the left side of (2.2.170) we deleted δ, which
is fixed (recall that δ = η/39 = 2/663). With (2.2.170) in hand, the proof
of the uniform convergence of the initial series S1(a, θ) can immediately be
completed, as in the previous case when x was not an integer.

2.2.10 Completion of the Proof of Entry 2.1.1

We return to the function G(θ) defined in Sect. 2.2.1, which we now know is
well-defined and continuous on [0, 1]. We want to prove that

sin2(πθ)

{ ∞∑

n=1

F
(x
n

)
sin(2πnθ)−πx

(
1

2
−θ
)
+
1

4
cot(πθ)

}

=
1

2

√
x

∞∑

m=1

∞∑

n=0

⎧
⎨

⎩
J1

(
4π
√
m(n+θ)x

)

√
m(n+θ)

−
J1

(
4π
√
m(n+1−θ)x

)

√
m(n+1−θ)

⎫
⎬

⎭ sin2(πθ)

= G(θ). (2.2.171)
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The identity G(θ) = −G(1−θ) is also satisfied. We find the Fourier sine series
of G(θ) on (0, 12 ), and so write

G(θ) =
∞∑

j=1

bj sin(2πjθ). (2.2.172)

For j ≥ 1, interchanging the order of integration and double summation by
the uniform convergence and continuity established in the foregoing sections,
we find that

bj = 2
√
x

∫ 1/2

0

∞∑

m=1

∞∑

n=0

⎧
⎨

⎩
J1

(
4π
√
m(n+ θ)x

)

√
m(n+ θ)

−
J1

(
4π
√
m(n+ 1− θ)x

)

√
m(n+ 1− θ)

⎫
⎬

⎭

× sin2(πθ) sin(2πjθ)dθ

=
√
x

∞∑

m=1

∞∑

n=0

∫ 1/2

0

⎧
⎨

⎩
J1

(
4π
√
m(n+ θ)x

)

√
m(n+ θ)

−
J1

(
4π
√
m(n+ 1− θ)x

)

√
m(n+ 1− θ)

⎫
⎬

⎭

×
(
sin(2πjθ)− 1

2
sin(2πθ(j + 1))− 1

2
sin(2πθ(j − 1))

)
dθ.

(2.2.173)

In the first set of integrals of the series on the far right-hand side of
(2.2.173), set

u = 4π
√
m(n+ θ)x, so that

dθ√
m(n+ θ)

=
du

2πm
√
x
,

and in the second set of integrals of the series, set

u = 4π
√
m(n+ 1− θ)x, so that

dθ√
m(n+ 1− θ)

= − du

2πm
√
x
.

Thus, we find that for each j ≥ 1,

√
x

∞∑

m=1

∞∑

n=0

∫ 1/2

0

⎧
⎨

⎩
J1

(
4π
√
m(n+ θ)x

)

√
m(n+ θ)

−
J1

(
4π
√
m(n+ 1− θ)x

)

√
m(n+ 1− θ)

⎫
⎬

⎭

× sin(2πjθ)dθ

=

∞∑

m=1

∞∑

n=0

1

2πm

{∫ 4π
√

m(n+1/2)x

4π
√
mnx

J1(u) sin

(
2πj

(
u2

16π2mx
− n

))
du

+

∫ 4π
√

m(n+1/2)x

4π
√

m(n+1)x

J1(u) sin

(
2πj

(
n+ 1− u2

16π2mx

))
du

}

=

∞∑

m=1

∞∑

n=0

1

2πm

{∫ 4π
√

m(n+1/2)x

4π
√
mnx

J1(u) sin

(
u2j

8πmx

)
du
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−
∫ 4π

√
m(n+1/2)x

4π
√

m(n+1)x

J1(u) sin

(
u2j

8πmx

)
du

}

=

∞∑

m=1

∞∑

n=0

1

2πm

∫ 4π
√

m(n+1)x

4π
√
mnx

J1(u) sin

(
u2j

8πmx

)
du

=

∞∑

m=1

1

2πm

∫ ∞

0

J1(u) sin

(
u2j

8πmx

)
du. (2.2.174)

Similar calculations hold for the integrals involving j+1 and j−1 in (2.2.173).
Thus, for each j ≥ 1,

bj =
∞∑

m=1

1

2πm

∫ ∞

0

J1(u)

{
sin

(
u2j

8πmx

)
− 1

2
sin

(
u2(j + 1)

8πmx

)

−1

2
sin

(
u2(j − 1)

8πmx

)}
du.

For a, b > 0, recall the formula [126, p. 759, formula 6.686, no. 5]
∫ ∞

0

sin(au2)J1(bu)du =
1

b
sin

(
b2

4a

)
.

Thus,

bj =

∞∑

m=1

1

2πm

{
sin
(2πmx

j

)
− 1

2
sin
(2πmx
j + 1

)
− 1

2
sin
(2πmx
j − 1

)}
,

(2.2.175)

where the last term is not present if j = 1. From the fact that for any real
number y,

−
∞∑

m=1

sin(2πmy)

πm
=

{
0, if y is an integer,

y − [y]− 1
2 , if y is not an integer,

(2.2.176)

we deduce that

∞∑

m=1

sin(2πmx/j)

πm
=

⎧
⎨

⎩

0, if x/j is an integer,

−x
j
+

[
x

j

]
+

1

2
, if x/j is not an integer,

= F

(
x

j

)
− x
j
+

1

2
. (2.2.177)

Hence, from (2.2.175) and (2.2.177), we find that

bj =
1

2

{
F

(
x

j

)
− x
j
+

1

2
− 1

2

(
F

(
x

j + 1

)
− x

j + 1
+

1

2

)

−1

2

(
F

(
x

j − 1

)
− x

j − 1
+

1

2

)}
,



56 2 Double Series of Bessel Functions and the Circle and Divisor Problems

where the last term is not present if j = 1. Thus,

b1 =
1

8
− 3x

8
+

1

2
F (x)− 1

4
F
(x
2

)
, (2.2.178)

and for j ≥ 2,

bj =
1

2
F

(
x

j

)
− 1

4
F

(
x

j + 1

)
− 1

4
F

(
x

j − 1

)
+

x

2j(j2 − 1)
. (2.2.179)

Next, we find the Fourier sine series on (0, 12 ) of the left-hand side of
(2.2.171). We have

F
(x
n

)
sin(2πnθ) sin2(πθ)

=
1

2
F
(x
n

){
sin(2πnθ)− 1

2
sin(2πθ(n+ 1))− 1

2
sin(2πθ(n− 1))

}

and

cot(πθ) sin2(πθ) = cos(πθ) sin(πθ) =
1

2
sin(2πθ).

Also, since 0 < θ < 1, by (2.2.176),

sin2(πθ)
(1
2
− θ
)
=

1

2

(
1− cos(2πθ)

) ∞∑

m=1

sin(2πmθ)

πm

=
1

2

∞∑

m=1

sin(2πmθ)

πm
− 1

4

∞∑

m=1

sin(2πθ(m+ 1))

πm
− 1

4

∞∑

m=1

sin(2πθ(m− 1))

πm
.

Thus, if the Fourier sine series of the left-hand side of (2.2.171) is

∞∑

j=1

cj sin(2πjθ),

then

c1 =
1

8
− 3x

8
+

1

2
F (x)− 1

4
F
(x
2

)
= b1,

by (2.2.178), and for j ≥ 2,

cj =
x

2j(j2 − 1)
+

1

2
F

(
x

j

)
− 1

4
F

(
x

j + 1

)
− 1

4
F

(
x

j − 1

)
= bj ,

by (2.2.179), which completes the proof of (2.1.5).
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2.3 Proof of Ramanujan’s First Bessel Function
Identity (Symmetric Form)

We prove Ramanujan’s first Bessel function identity (2.1.5), emphasizing that
the double sum on the right-hand side of (2.1.5) is being interpreted sym-
metrically, i.e., the product mn of the summation indices m and n tends to
infinity. A slight modification of the analysis from [26, pp. 354–356], in partic-
ular, Lemma 14 of [26], shows that the series on the right-hand side of (2.1.5)
converges uniformly with respect to θ on any interval 0 < θ1 ≤ θ ≤ θ2 < 1.

(There is a misprint in (3.5) of Theorem 4 in [26]; read b(n)/μ
σ−1/2m
n for

b(n)μ
σ−1/2m
n .) By continuity, it therefore suffices to prove Entry 2.1.1 for ra-

tional θ = a/q, where q is prime and 0 < a < q.
First define

H(a, q, x)

:=

√
x

2

∞∑

m=1

∞∑

n=0

{
J1
(
4π
√
m(n+a/q)x

)
√
m(n+a/q)

−
J1
(
4π
√
m(n+1−a/q)x

)
√
m(n+1−a/q)

}

=

√
qx

2

⎧
⎪⎨

⎪⎩

∞∑

m=1

∞∑

r=1
r≡a mod q

J1
(
4π
√
mrx/q

)
√
mr

−
∞∑

m=1

∞∑

r=1
r≡−a mod q

J1
(
4π
√
mrx/q

)
√
mr

⎫
⎪⎬

⎪⎭
.

With the restriction θ = a/q and with the notation above, we now refor-
mulate Entry 2.1.1.

Theorem 2.3.1. If q is prime and 0 < a < q, then

H(a, q, x) =

∞∑

n=1

F
(x
n

)
sin
(2πna
q

)
− πx

(1
2
− a
q

)
+

1

4
cot
(aπ
q

)
=: P (a, q, x).

In the analysis that follows, we demonstrate that in order to prove Theo-
rem 2.3.1, it suffices to prove the next theorem.

Theorem 2.3.2. Let q be a positive integer, and let χ be an odd primitive
character modulo q. Then, for any x > 0,

∑

n≤x

′
dχ(n) = L(1, χ)x+

iτ(χ)

2π
L(1, χ) +

i
√
q

τ(χ)

∞∑

n=1

dχ(n)

√
x

n
J1
(
4π
√
nx/q

)
.

(2.3.1)

Proof. Suppose that χ is a primitive nonprincipal odd character modulo q.
Then [101, p. 71]

(π
q

)−(2s+1)/2

Γ
(
s+

1

2

)
L(2s, χ) = − iτ(χ)√

q

(π
q

)−(1−s)

Γ (1− s)L(1− 2s, χ).

(2.3.2)
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Recall again the functional equation of ζ(s), namely,

π−sΓ (s)ζ(2s) = π−(1/2−s)Γ
(1
2
− s
)
ζ(1 − 2s). (2.3.3)

Multiply (2.3.2) and (2.3.3) to deduce that

π−2s−1/2

q−s−1/2
Γ (s)Γ

(
s+

1

2

)
ζ(2s)L(2s, χ)

= − iτ(χ)√
q

π−3/2+2s

q−1+s Γ (1− s)Γ
(1
2
− s
)
L(1− 2s, χ)ζ(1 − 2s).

(2.3.4)

If we invoke the duplication formula for the gamma function,

Γ (2s)
√
π = 22s−1Γ (s)Γ

(
s+

1

2

)
,

then (2.3.4) can be written as

π−2s−1/2

q−s−1/2

√
πΓ (2s)

22s−1 ζ(2s)L(2s, χ)

= − iτ(χ)√
q

π−3/2+2s

q−1+s

Γ
(
2(1/2− s)

)√
π

22(1/2−s)−1
L(1− 2s, χ)ζ(1 − 2s)

= − iτ(χ)√
q

π−1+2s

q−1+s

Γ (1− 2s)

2−2s L(1− 2s, χ)ζ(1 − 2s).

Thus,

( 2π√
q

)−2s

Γ (2s)L(2s, χ)ζ(2s)

= − iτ(χ)√
q

( 2π√
q

)2s−1

Γ (1− 2s)L(1− 2s, χ)ζ(1 − 2s).

Replacing s by s/2, we have

( 2π√
q

)−s

Γ (s)L(s, χ)ζ(s) = − iτ(χ)√
q

( 2π√
q

)s−1

Γ (1− s)L(1− s, χ)ζ(1 − s).

In the notation of Theorem 2 of [26], q = 0, r = m = 1, λn = μn = 2πn/
√
q,

a(n) = dχ(n), b(n) = −iτ(χ)dχ(n)/
√
q, and K1(2

√
μnx; 0; 1) = J1(2

√
μnx).

We therefore record the following special case of [26, Theorem 2]. Let x > 0.
Then

∑

λn≤x

′
dχ(n) =

−iτ(χ)
√
q

∞∑

n=1

dχ(n)

(
x

μn

)1/2

J1(2
√
μnx) +Q0(x), (2.3.5)
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where

Q0(x) =
1

2πi

∫

C

(2π/
√
q)−sL(s, χ)ζ(s)xs

s
ds,

where C is a positively oriented closed contour with the singularities of the
integrand in the interior.

We now replace x by 2πx/
√
q in (2.3.5) to obtain

∑

n≤x

′
dχ(n) =

−iτ(χ)
√
q

∞∑

n=1

dχ(n)
(x
n

)1/2
J1(4π

√
nx/q)+Q0(2πx/

√
q). (2.3.6)

Now, since ζ(0) = − 1
2 ,

Q0(2πx/
√
q) =

1

2πi

∫

C

L(s, χ)ζ(s)xs

s
ds = −1

2
L(0, χ) + L(1, χ)x. (2.3.7)

From the functional equation (2.3.2),

(π
q

)−1/2

Γ (1/2)L(0, χ) = −i τ(χ)√
q

q

π
L(1, χ).

So,

L(0, χ) = − iτ(χ)
π
L(1, χ).

Thus, from (2.3.7),

Q0(2πx/
√
q) = L(1, χ)x+

iτ(χ)

2π
L(1, χ). (2.3.8)

Lastly, putting (2.3.8) in (2.3.6) and using the identity τ(χ)τ(χ) = −q, since
χ is odd, we complete the proof of Theorem 2.3.2. ��

After proving the following lemma, we show that Theorem 2.3.2 implies
Theorem 2.3.1.

Lemma 2.3.1. If 0 < a < q and (a, q) = 1, then

∞∑

n=1

F
(x
n

)
sin
(2πna
q

)
= −i

∑

d|q
d>1

1

φ(d)

∑

χ mod d
χ odd

χ(a)τ(χ)
∑′

1≤n≤dx/q

dχ(n).

Proof. We have

∞∑

n=1

F
(x

n

)
sin

( 2πna

q

)
=

∑

d|q

∑

(n,q)=q/d

F
(x

n

)
sin

( 2πna

q

)

=
∑

d|q

∞∑

m=1
(m,d)=1

F
( dx

qm

)
sin

(2πma

d

)
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=
∞∑

m=1

F
( x

qm

)
+

∑

d|q
d>1

∞∑

m=1
(m,d)=1

F
( dx

qm

)
sin

(2πma

d

)

=
∞∑

m=1

F
( x

qm

)
+

1

2

∑

d|q
d>1

∞∑

m=1
(m,d)=1

F
( dx

qm

)(
e2πima/d − e−2πima/d

)
.

(2.3.9)

We know that for any positive integers a1, a2, and q,

∑

χ mod q

χ(a1)χ(a2) =

{
φ(q), if a1 ≡ a2 (mod q) and (a1, q) = 1,

0, otherwise.
(2.3.10)

Using (2.3.10) and the formula [101, p. 65]

χ(n)τ(χ) =

q∑

h=1

χ(h)e2πinh/q , (2.3.11)

for any character χ modulo q, we find that for m, d such that (m, d) = 1
and d > 1,

e2πima/d =
1

φ(d)

d∑

h=1

e2πimh/d
∑

χ mod d

χ(a)χ(h)

=
1

φ(d)

∑

χ mod d

χ(a)

d∑

h=1

χ(h)e2πimh/d

=
1

φ(d)

∑

χ mod d

χ(a)τ(χ)χ(m).

Thus,

1

2

∑

d|q
d>1

∞∑

m=1
(m,d)=1

F
( dx
qm

)(
e2πima/d − e−2πima/d

)

=
∑

d|q
d>1

1

2φ(d)

∞∑

m=1
(m,d)=1

F
( dx
qm

) ∑

χ mod d

χ(a)τ(χ)(χ(m) − χ(−m))

=
∑

d|q
d>1

1

φ(d)

∞∑

m=1
(m,d)=1

F
( dx
qm

) ∑

χ mod d
χ even

χ(a)τ(χ)χ(m)

=
∑

d|q
d>1

1

φ(d)

∑

χ mod d
χ even

χ(a)τ(χ)
∞∑

m=1
(m,d)=1

F
( dx
qm

)
χ(m)
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=
∑

d|q
d>1

1

φ(d)

∑

χ mod d
χ even

χ(a)τ(χ)

∞∑

m=1

F
( dx
qm

)
χ(m),

since χ(m) = 0 if (m, d) > 1. Hence, using the calculation above in (2.3.9),
we obtain

∞∑

n=1

F
(x
n

)
sin
(2πna
q

)

=
∞∑

m=1

F
( x
qm

)
+
∑

d|q
d>1

1

φ(d)

∑

χ mod d
χ odd

χ(a)τ(χ)
∞∑

m=1

F
( dx
qm

)
χ(m)

=
∑

1≤n≤x/q

′
d(n) +

∑

d|q
d>1

1

φ(d)

∑

χ mod d
χ odd

χ(a)τ(χ)
∑′

1≤n≤dx/q

dχ(n),

where we used (2.1.12). Thus, our proof of Lemma 2.3.1 is complete. ��

As promised, we now show that Theorem 2.3.2 implies Theorem 2.3.1.

Proof of Theorem 2.3.1. We easily see that H(a, q, x) = −H(q−a, q, x) and
P (a, q, x) = −P (q−a, q, x), and so we can assume that 0 < a < q/2. Consider

H(a, q, x)

=

√
x

2

∞∑

m=1

∞∑

n=0

{
J1
(
4π
√
m(n+ a/q)x

)
√
m(n+ a/q)

−
J1
(
4π
√
m(n+ 1− a/q)x

)
√
m(n+ 1− a/q)

}

=

√
qx

2

∞∑

m=1

⎧
⎪⎨

⎪⎩

∞∑

r=1
r≡a mod q

J1
(
4π
√
mrx/q

)
√
mr

−
∞∑

r=1
r≡−a mod q

J1
(
4π
√
mrx/q

)
√
mr

⎫
⎪⎬

⎪⎭

=

√
qx

2φ(q)

∞∑

m=1

∞∑

r=1

J1
(
4π
√
mrx/q

)
√
mr

∑

χ mod q

χ(r)
(
χ(a)− χ(−a)

)

=

√
qx

φ(q)

∞∑

m=1

∞∑

r=1

J1
(
4π
√
mrx/q

)
√
mr

∑

χ mod q
χ odd

χ(r)χ(a)

=
q

φ(q)

∑

χ mod q
χ odd

χ(a)

∞∑

m=1

∞∑

r=1

χ(r)

√
x

qmr
J1
(
4π
√
mrx/q

)

=
q

φ(q)

∑

χ mod q
χ odd

χ(a)
∞∑

n=1

dχ(n)

√
x

qn
J1
(
4π
√
nx/q

)
. (2.3.12)
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On the other hand, by Lemma 2.3.1,

P (a, q, x) =

∞∑

n=1

F
(x
n

)
sin
(2πna
q

)
− πx

(1
2
− a
q

)
+

1

4
cot
(aπ
q

)

=
−i
φ(q)

∑

χ mod q
χ odd

χ(a)τ(χ)
∑

1≤n≤x

′
dχ(n)− πx

(1
2
− a
q

)
+

1

4
cot
(aπ
q

)
.

Applying Theorem 2.3.2 and using (2.3.12), we only need to show that

i

φ(q)

∑

χ mod q
χ odd

χ(a)τ(χ)
(
L(1, χ)x+

iτ(χ)

2π
L(1, χ)

)
= −πx

(1
2
− a
q

)
+
1

4
cot
(aπ
q

)
.

(2.3.13)

We use the following formulas, which are (2.5) and (2.8) in [71]:

τ(χ)L(1, χ) = 2πi
∑

1≤h<q/2

χ(h)
(1
2
− h
q

)
, (2.3.14)

τ(χ)L(1, χ) = − π

τ(χ)

∑

1≤h<q/2

χ(h) cot
(πh
q

)
. (2.3.15)

We also can easily deduce from (2.3.10) that

∑

χ even

χ(a)χ(h) =
∑

χ odd

χ(a)χ(h) =

{
φ(q)/2, if h ≡ a (mod q),

0, otherwise,
(2.3.16)

since (a, q) = 1.
Then, using (2.3.14)–(2.3.16), we deduce that

i

φ(q)

∑

χ mod q
χ odd

χ(a)τ(χ)
(
L(1, χ)x+

iτ(χ)

2π
L(1, χ)

)

=

⎧
⎨

⎩− 2πx

φ(q)

∑

1≤h<q/2

(1
2
− h
q

)
+

1

2φ(q)

∑

1≤h<q/2

cot
(πh
q

)
⎫
⎬

⎭
∑

χ mod q
χ odd

χ(a)χ(h)

= −πx
(1
2
− a
q

)
+

1

4
cot
(aπ
q

)
,

which completes the proof of (2.3.13) and therefore also of Theorem 2.3.1. ��

In fact, Theorem 2.3.1 is equivalent to the following theorem [57].
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Theorem 2.3.3. Let q be a positive integer, and let χ be an odd primitive
character modulo q. Then, for any x > 0,

∑

n≤x

′
dχ(n) = L(1, χ)x+

iτ(χ)

2π
L(1, χ) +

i
√
x

τ(χ)

∑

1≤h<q/2

χ(h)

× lim
N→∞

∑

mn≤N

{
J1
(
4π
√
m (n+ h/q)x

)
√
m (n+ h/q)

−
J1
(
4π
√
m (n+ 1− h/q)x

)
√
m (n+ 1− h/q)

}
.

(2.3.17)

2.4 Proof of Ramanujan’s Second Bessel Function
Identity (with the Order of Summation Reversed)

2.4.1 Preliminary Results

We now embark on a proof of Entry 2.1.2, where now we consider the double
series on the right side of (2.1.6) to be an iterated double sum. As emphasized
in the introduction, we will approach Entry 2.1.2 with the order of summation
on the double series reversed. Our proof depends upon the following formula-
tion of the Poisson summation formula due to A.P. Guinand [132, p. 595].

Theorem 2.4.1. If f(x) can be represented as a Fourier integral, f(x) tends
to 0 as x→ ∞, and xf ′(x) ∈ Lp(0,∞) for some p, 1 < p ≤ 2, then

lim
N→∞

{
N∑

n=1

f(n)−
∫ N

0

f(t) dt

}
= lim

N→∞

{
N∑

n=1

g(n)−
∫ N

0

g(t) dt

}
, (2.4.1)

where

g(x) := 2

∫ ∞

0

f(t) cos(2πxt) dt.

We need the following two lemmas from [48, Lemmas 3.5, 3.4].

Lemma 2.4.1. We have ∫ ∞

0

I1(x)dx = 0.

Lemma 2.4.2. With Iν defined by (2.1.7) and b, c > 0,

∫ ∞

0

cos(bx2)I1(cx)dx =
1

c
sin

(
c2

4b

)
. (2.4.2)
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2.4.2 Reformulation of Entry 2.1.2

Theorem 2.4.2. Let F (x) be defined by (2.1.4) and let I1(x) be defined by
(2.1.7). Then, for x > 0 and 0 < θ < 1,

1

2

√
x

∞∑

n=0

∞∑

m=1

⎧
⎨

⎩
I1

(
4π
√
m(n+θ)x

)

√
m(n+θ)

+
I1

(
4π
√
m(n+1−θ)x

)

√
m(n+1−θ)

⎫
⎬

⎭

=
1

2π

( ∞∑

n=0

1

n+θ
lim

M→∞

{
M∑

m=1

sin

(
2π(n+θ)x

m

)
−
∫ M

0

sin

(
2π(n+θ)x

t

)
dt

}

+

∞∑

n=0

1

n+1−θ lim
M→∞

{
M∑

m=1

sin

(
2π(n+1−θ)x

m

)

−
∫ M

0

sin

(
2π(n+1−θ)x

t

)
dt

})
. (2.4.3)

Proof. Let

f(t) =
I1(4π

√
t(n+ θ)x)√
t(n+ θ)

in Theorem 2.4.1. First, setting u = 4π
√
t(n+ θ)x and using Lemma 2.4.1,

we find that

lim
M→∞

{
M∑

m=1

I1(4π
√
m(n+ θ)x)√
m(n+ θ)

−
∫ M

0

I1(4π
√
t(n+ θ)x)√
t(n+ θ)

dt

}

= lim
M→∞

{
M∑

m=1

I1(4π
√
m(n+ θ)x)√
m(n+ θ)

}
− 1

2π(n+ θ)
√
x

∫ ∞

0

I1(u)du

=

∞∑

m=1

I1(4π
√
m(n+ θ)x)√
m(n+ θ)

. (2.4.4)

Second, putting u = 4π
√
t(n+ θ)x and using Lemma 2.4.2, we find that

g(m) = 2

∫ ∞

0

I1(4π
√
t(n+ θ)x)√
t(n+ θ)

cos(2πmt)dt

=
1

π(n+ θ)
√
x

∫ ∞

0

I1(u) cos

(
mu2

8π(n+ θ)x

)
du

=
1

π(n+ θ)
√
x
sin

(
2π(n+ θ)x

m

)
. (2.4.5)
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Hence,

lim
M→∞

{
M∑

m=1

g(m)−
∫ M

0

g(t) dt

}

=
1

π(n+ θ)
√
x

lim
M→∞

{
M∑

m=1

sin

(
2π(n+ θ)x

m

)
−
∫ M

0

sin

(
2π(n+ θ)x

t

)
dt

}
.

(2.4.6)

We make a digression here to demonstrate conclusively that the limit in
(2.4.6) actually does exist. Write, for a > 0,

lim
M→∞

{
M∑

m=1

sin
( a
m

)
−
∫ M

0

sin
(a
t

)
dt

}

= lim
M→∞

{
M∑

m=1

(
sin
( a
m

)
− a

m
+
a

m

)
−
∫ M

1

(
sin
(a
t

)
− a
t
+
a

t

)
dt

}

−
∫ 1

0

sin
(a
t

)
dt

= L1 − L2 + lim
M→∞

{
a

M∑

m=1

1

m
− a

∫ M

1

dt

t

}
−
∫ 1

0

sin
(a
t

)
dt

= L1 − L2 −
∫ 1

0

sin
(a
t

)
dt+ a {logM + γ + o(1)− logM}

= L1 − L2 −
∫ 1

0

sin
(a
t

)
dt+ aγ,

where γ denotes Euler’s constant and where

L1 = lim
M→∞

M∑

m=1

(
sin
( a
m

)
− a

m

)
,

L2 = lim
M→∞

∫ M

1

(
sin
(a
t

)
− a
t

)
dt.

Returning to our proof and putting together (2.4.4) and (2.4.6) in (2.4.1),
we find that

∞∑

m=1

I1(4π
√
m(n+ θ)x)√
m(n+ θ)

=
1

π(n+ θ)
√
x

lim
M→∞

{
M∑

m=1

sin

(
2π(n+ θ)x

m

)
−
∫ M

0

sin

(
2π(n+ θ)x

t

)
dt

}
.

(2.4.7)
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Now in (2.4.7) replace θ by 1−θ and add the result to (2.4.7). Sum both sides
on n, 0 ≤ n < ∞. Then multiply the resulting equality by 1

2

√
x to deduce

(2.4.3) and thus complete the proof of Theorem 2.4.2. ��

If we compare (2.1.6) with (2.4.3), we see that in order to prove Entry 2.1.2,
but with the order of summation reversed in the double series, we need to prove
that

∞∑

n=1

F
(x
n

)
cos(2πnθ)−1

4
+x log(2 sin(πθ))

=
1

2π

( ∞∑

n=0

1

n+θ
lim

M→∞

{
M∑

m=1

sin

(
2π(n+θ)x

m

)
−
∫ M

0

sin

(
2π(n+θ)x

t

)
dt

}

+

∞∑

n=0

1

n+1−θ lim
M→∞

{
M∑

m=1

sin

(
2π(n+1−θ)x

m

)

−
∫ M

0

sin

(
2π(n+1−θ)x

t

)
dt

})
.

2.4.3 The Convergence of (2.4.3)

Fix x > 0, and set a = 2πx. We are interested in the question of convergence
(pointwise, or uniformly with respect to θ on compact subintervals of the
interval (0, 1)) of the series

S(a, θ) :=

∞∑

n=0

1

n+ θ
lim

M→∞

{
M∑

m=1

sin

(
a(n+ θ)

m

)
−
∫ M

0

sin

(
a(n+ θ)

t

)
dt

}

+
∞∑

n=0

1

n+ 1− θ lim
M→∞

{
M∑

m=1

sin

(
a(n+ 1− θ)

m

)

−
∫ M

0

sin

(
a(n+ 1− θ)

t

)
dt

}
.

For m > 2,

sin

(
a(n+ θ)

m

)
−
∫ m

m−1

sin

(
a(n+ θ)

t

)
dt

=

∫ m

m−1

(
sin

(
a(n+ θ)

m

)
− sin

(
a(n+ θ)

t

))
dt

=

∫ m

m−1

2 sin
1

2

(
a(n+ θ)

m
− a(n+ θ)

t

)
cos

1

2

(
a(n+ θ)

m
− a(n+ θ)

t

)
dt.
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Thus,

∣∣∣∣sin
(
a(n+ θ)

m

)
−
∫ m

m−1

sin

(
a(n+ θ)

t

)
dt

∣∣∣∣

≤ 2

∫ m

m−1

∣∣∣∣sin
(
a(n+ θ)(t −m)

2mt

)∣∣∣∣ dt

≤
∫ m

m−1

a(n+ θ)(m − t)
mt

dt <
a(n+ θ)

m(m− 1)
. (2.4.8)

Fix δ1 > 0 and set M1 = [n1+δ1 ], where [x] denotes the greatest integer
≤ x. We write

lim
M→∞

{
M∑

m=1

sin

(
a(n+ θ)

m

)
−
∫ M

0

sin

(
a(n+ θ)

t

)
dt

}

=

M1∑

m=1

sin

(
a(n+ θ)

m

)
−
∫ M1

0

sin

(
a(n+ θ)

t

)
dt

+ lim
M→∞

{
M∑

m=M1+1

sin

(
a(n+ θ)

m

)
−
∫ M

M1

sin

(
a(n+ θ)

t

)
dt

}
.

Here the last limit exists, and, by (2.4.8), is a real number bounded by

∣∣∣∣∣

∞∑

m=M1+1

a(n+ θ)

m(m− 1)

∣∣∣∣∣ =
a(n+ θ)

M1
�a

1

nδ1
,

uniformly with respect to θ in [0, 1]. Therefore the series

∞∑

n=0

1

n+ θ
lim

M→∞

{
M∑

m=M1+1

sin

(
a(n+ θ)

m

)
−
∫ M

M1

sin

(
a(n+ θ)

t

)
dt

}

converges uniformly with respect to θ, and the same holds for the other, similar
series involving n+ 1− θ. We deduce that the series

S1(a, θ, δ1) :=
∞∑

n=0

1

n+ θ

{
M1∑

m=1

sin

(
a(n+ θ)

m

)
−
∫ M1

0

sin

(
a(n+ θ)

t

)
dt

}

+
∞∑

n=0

1

n+ 1− θ

{
M1∑

m=1

sin

(
a(n+ 1− θ)

m

)
−
∫ M1

0

sin

(
a(n+ 1− θ)

t

)
dt

}

converges pointwise if and only if the initial sum S(a, θ) converges pointwise,
and S1(a, θ, δ1) converges uniformly with respect to θ on compact subintervals
of (0, 1) if and only if this holds for S(a, θ).
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Next, we need a bound for

M1∑

m=1

sin

(
a(n+ θ)

m

)
−
∫ M1

0

sin

(
a(n+ θ)

t

)
dt.

We write this expression in the form

[
√
n]∑

m=1

sin

(
a(n+ θ)

m

)
−
∫ [

√
n]

0

sin

(
a(n+ θ)

t

)
dt

+

M1∑

m=[
√
n]+1

(
sin

(
a(n+ θ)

m

)
−
∫ m

m−1

sin

(
a(n+ θ)

t

)
dt

)
.

Here the first sum is bounded in absolute value by
√
n. The same bound holds

for the integral, i.e.,

∣∣∣∣∣

∫ [
√
n]

0

sin

(
a(n+ θ)

t

)
dt

∣∣∣∣∣ <
√
n.

As for the last sum above, we use (2.4.8) to bound each term in order to
conclude that

M1∑

m=[
√
n]+1

(
sin

(
a(n+ θ)

m

)
−
∫ m

m−1

sin

(
a(n+ θ)

t

)
dt

)

�
M1∑

m=[
√
n]+1

a(n+ θ)

m(m− 1)
<
a(n+ θ)

[
√
n]

.

We thus have shown that
∣∣∣∣∣

M1∑

m=1

sin

(
a(n+ θ)

m

)
−
∫ M1

0

sin

(
a(n+ θ)

t

)
dt

∣∣∣∣∣�a

√
n,

uniformly with respect to θ on compact subsets of (0, 1).
With this bound in hand, we now proceed to remove the dependence on θ

from the coefficients 1/(n+θ) and 1/(n+1−θ) in S1(a, θ, δ1). More specifically,
we consider the sum

S2(a, θ, δ1) :=

∞∑

n=0

1

n+ 1
2

{
M1∑

m=1

sin

(
a(n+ θ)

m

)
−
∫ M1

0

sin

(
a(n+ θ)

t

)
dt

+

M1∑

m=1

sin

(
a(n+ 1− θ)

m

)
−
∫ M1

0

sin

(
a(n+ 1− θ)

t

)
dt

}
.
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Note that the sum

∞∑

n=0

{(
1

n+ 1
2

− 1

n+ θ

){ M1∑

m=1

sin

(
a(n+ θ)

m

)
−
∫ M1

0

sin

(
a(n+ θ)

t

)
dt

}

+

(
1

n+ 1
2

− 1

n+ 1− θ

){ M1∑

m=1

sin

(
a(n+ 1− θ)

m

)

−
∫ M1

0

sin

(
a(n+ 1− θ)

t

)
dt

}}
(2.4.9)

is uniformly and absolutely convergent, since for each n,

∣∣∣∣
1

n+ 1
2

− 1

n+ θ

∣∣∣∣

∣∣∣∣∣

M1∑

m=1

sin

(
a(n+ θ)

m

)
−
∫ M1

0

sin

(
a(n+ θ)

t

)
dt

∣∣∣∣∣

�a

|θ − 1
2 |

(n+ 1
2 )(n+ θ)

√
n�a

1

n3/2
,

uniformly in θ. We obtain the same bound for the other sum in (2.4.9) by the
same argument. It follows that the sum S2(a, θ, δ1) is convergent for a given
value of θ if and only if S1(a, θ, δ1) is convergent for that value of θ. Also,
S2(a, θ, δ1) is uniformly convergent with respect to θ on closed subintervals of
(0, 1) if and only if S1(a, θ, δ1) has this property. Next, using the oscillatory
behavior of the function y 
→ sin y, we perform another truncation of the inner
sum in S2(a, θ, δ1), by replacing M1 by a smaller value M2, to be determined
later. Consider the sum

S3(a, θ) :=

∞∑

n=0

1

n+ 1
2

{
M2∑

m=1

(
sin

(
a(n+ θ)

m

)
+ sin

(
a(n+ 1− θ)

m

))

−
∫ M2+

1
2

0

(
sin

(
a(n+ θ)

t

)
+ sin

(
a(n+ 1− θ)

t

))
dt

⎫
⎬

⎭ .

In order to relate the convergence of S3(a, θ) to that of S2(a, θ, δ1), we esti-
mate, for each m ∈ {M2 + 1,M2 + 2, . . . ,M1}, the quantity

sin

(
a(n+ θ)

m

)
+ sin

(
a(n+ 1− θ)

m

)

−
∫ m+

1
2

m− 1
2

(
sin

(
a(n+ θ)

t

)
+ sin

(
a(n+ 1− θ)

t

))
dt

=

∫ 1
2

− 1
2

(
sin

(
a(n+ θ)

m

)
− sin

(
a(n+ θ)

m+ u

)

+sin

(
a(n+ 1− θ)

m

)
− sin

(
a(n+ 1− θ)
m+ u

))
du.
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Here,

a(n+ θ)

m+ u
=

a(n+ θ)

m(1 + u/m)
=
a(n+ θ)

m

(
1− u

m
+O

(
1

m2

))

=
a(n+ θ)

m
− a(n+ θ)u

m2
+Oa

( n
m3

)
,

uniformly in θ. So,

sin

(
a(n+ θ)

m+ u

)
= sin

(
a(n+ θ)

m
− a(n+ θ)u

m2

)
+Oa

( n
m3

)
.

We will choose M2 much larger than
√
n. Then the ratio a(n + θ)u/m2 will

be small, a is fixed, θ ∈ [0, 1], and u ∈ [− 1
2 ,

1
2 ]. Then, using the estimate

sin(α− ε) = sinα− ε cosα+O(ε2)

with α = a(n+ θ)/m and ε = a(n+ θ)u/m2, we see that

sin

(
a(n+ θ)

m+ u

)
= sin

(
a(n+ θ)

m

)
− a(n+ θ)u

m2
cos

(
a(n+ θ)

m

)

+O

(
n2

m4

)
+O

( n
m3

)
.

Since
∫ 1

2

− 1
2

a(n+ θ)u

m2
cos

(
a(n+ θ)

m

)
du = 0,

it follows that

sin

(
a(n+ θ)

m

)
−
∫ m+

1
2

m− 1
2

sin

(
a(n+ θ)

t

)
dt = O

(
n2

m4

)
+O

( n
m3

)
.

Similarly,

sin

(
a(n+ 1− θ)

m

)
−
∫ m+

1
2

m− 1
2

sin

(
a(n+ 1− θ)

t

)
dt = O

(
n2

m4

)
+O

( n
m3

)
.

We add up these relations for m =M2 + 1, . . . ,M1 to find that

M1∑

m=M2+1

(
sin

(
a(n+ θ)

m

)
+ sin

(
a(n+ 1− θ)

m

))

−
∫ M1+

1
2

M2+
1
2

(
sin

(
a(n+ θ)

t

)
+ sin

(
a(n+ 1− θ)

t

))
dt

= O

(
n2

M3
2

)
+O

(
n

M2
2

)
,
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uniformly for θ in compact subsets of (0, 1). Therefore, if we choose, for in-
stance, M2 = [n2/3 logn], then the series

∞∑

n=0

1

n+ 1
2

(
M1∑

m=M2+1

(
sin

(
a(n+ θ)

m

)
+ sin

(
a(n+ 1− θ)

m

))

−
∫ M1+

1
2

M2+
1
2

(
sin

(
a(n+ θ)

t

)
+ sin

(
a(n+ 1− θ)

t

))
dt

⎞

⎠

is uniformly and absolutely convergent.
Let us also remark that for t ∈ [M1,M1 +

1
2 ],

a(n+ θ)

t
= O

(
1

nδ1

)
, and so sin

(
a(n+ θ)

t

)
= O

(
1

nδ1

)
,

and also

∫ M1+
1
2

M1

(
sin

(
a(n+ θ)

t

)
+ sin

(
a(n+ 1− θ)

t

))
dt = O

(
1

nδ1

)
. (2.4.10)

Hence, the series

∞∑

n=0

1

n+ 1
2

∫ M1+
1
2

M1

(
sin

(
a(n+ θ)

t

)
+ sin

(
a(n+ 1− θ)

t

))
dt

is uniformly and absolutely convergent. Combining all of the above, we deduce
that the initial series S(a, θ) is convergent for a given value of θ if and only if
the series S3(a, θ) is convergent for that value of θ. Moreover, S(a, θ) converges
uniformly on compact subintervals of (0, 1) if and only if the same holds for
S3(a, θ).

Let us observe that the contribution of the integrals in (2.4.10) is small,
while on the other hand, we do not have any cancellation inside the integrals

∫ M2+
1
2

M2

(
sin

(
a(n+ θ)

t

)
+ sin

(
a(n+ 1− θ)

t

))
dt.

Indeed, one can show that the integrand here is almost constant, in fact
equal to

2 sin

(
an

M2

)
+O

(
1

n1/3 log2 n

)
= sin

(
an1/3

log2 n

)
+O

(
1

n1/3 log2 n

)
.

Moreover, one can show that the series

∞∑

n=2

1

n+ 1
2

sin

(
an1/3

log2 n

)
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is not absolutely convergent. This forces us to keep at this stage M2 + 1
2

instead of M2 as the upper limit of integration in the definition of S3(a, θ).
As a side remark, one can show that the series above, although not absolutely
convergent, is convergent, via proving that the fractional parts

{
an1/3

π log2 n

}

are “very” uniformly distributed in the interval [0, 1], where “very” means
that the discrepancy of the first N terms is � N−c for some absolute constant
c > 0.

Next, we choose a new (integral) parameter M3, whose precise value as a
function of n will be given later, and consider the sum

S4(a, θ) :=

∞∑

n=0

1

n+ 1
2

{
M3∑

m=1

(
sin

(
a(n+ θ)

m

)
+ sin

(
a(n+ 1− θ)

m

))

−
∫ M3+

1
2

0

(
sin

(
a(n+ θ)

t

)
+ sin

(
a(n+ 1− θ)

t

))
dt

+2

M2∑

m=M3+1

sin

(
a(n+ 1

2 )

m

)
− 2

∫ M2+
1
2

M3+
1
2

sin

(
a(n+ 1

2 )

t

)
dt

⎫
⎬

⎭ .

Note that the sum S4(a, θ) differs from S3(a, θ) by having θ replaced by 1
2 in

the range M3 + 1 ≤ m ≤M2. In order to relate the convergence of these two
sums, we write, for m =M3 + 1, . . . ,M2,

sin

(
a(n+ θ)

m

)
+ sin

(
a(n+ 1− θ)

m

)
− 2 sin

(
a(n+ 1

2 )

m

)

= 2 sin

(
a(n+ 1

2 )

m

)
cos

(
a(θ − 1

2 )

m

)
− 2 sin

(
a(n+ 1

2 )

m

)

= −4 sin

(
a(n+ 1

2 )

m

)
sin2

(
a(θ − 1

2 )

2m

)
.

Therefore,

M2∑

m=M3+1

∣∣∣∣sin
(
a(n+ θ)

m

)
+ sin

(
a(n+ 1− θ)

m

)
− 2 sin

(
a(n+ 1

2 )

m

)∣∣∣∣

≤ 4

M2∑

m=M3+1

sin2
(
a(θ − 1

2 )

2m

)
�a

M2∑

m=M3+1

1

m2
� 1

M3
,
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uniformly with respect to θ. Similarly,

∣∣∣∣∣∣

∫ M2+
1
2

M3+
1
2

(
sin

(
a(n+ θ)

t

)
+ sin

(
a(n+ 1− θ)

t

)
− 2 sin

(
a(n+ 1

2 )

t

))
dt

∣∣∣∣∣∣

= 4

∣∣∣∣∣∣

∫ M2+
1
2

M3+
1
2

sin

(
a(n+ 1

2 )

t

)
sin2

(
a(n+ 1

2 )

2t

)
dt

∣∣∣∣∣∣
�a

∫ M2+
1
2

M3+
1
2

dt

t2
� 1

M3
.

If we now take M3 = [log2 n], the sum

∞∑

n=0

1

n+ 1
2

{
M2∑

m=M3+1

∣∣∣∣sin
(
a(n+ θ)

m

)
+ sin

(
a(n+ 1− θ)

m

)

−2 sin

(
a(n+ 1

2 )

m

)∣∣∣∣−

∣∣∣∣∣∣

∫ M2+
1
2

M3+
1
2

(
sin

(
a(n+ θ)

t

)

+ sin

(
a(n+ 1− θ)

t

)
− 2 sin

(
a(n+ 1

2 )

t

))
dt

∣∣∣∣

}

will be uniformly convergent with respect to θ. Consequently, the sum S3(a, θ)
will be convergent for a given θ if and only if the sum S4(a, θ) converges for
the same value of θ, and S3(a, θ) converges uniformly on compact subintervals
of (0, 1) if and only if S4(a, θ) does.

In what follows, we define

S5(a, θ) :=

∞∑

n=0

1

n+ 1
2

{
M3∑

m=1

(
sin

(
a(n+ θ)

m

)
+ sin

(
a(n+ 1− θ)

m

))

−
∫ M3+

1
2

0

(
sin

(
a(n+ θ)

t

)
+ sin

(
a(n+ 1− θ)

t

))
dt

⎫
⎬

⎭

and

S6(a) :=

∞∑

n=0

1

n+1
2

⎧
⎨

⎩

M2∑

m=M3+1

sin

(
a(n+ 1

2 )

m

)
−
∫ M2+

1
2

M3+
1
2

sin

(
a(n+1

2 )

t

)
dt

⎫
⎬

⎭ ,

so that
S4(a, θ) = S5(a, θ) + 2S6(a).

Here the inner sum in S5(a, θ) has a very short range, of the size of log
2 n, while

the inner sum in S6(a) has a larger range, but is independent of θ. We now turn
our attention to S5(a, θ) and see whether this sum is pointwise convergent,
respectively uniformly convergent on compact subintervals of (0, 1). Set



74 2 Double Series of Bessel Functions and the Circle and Divisor Problems

A(a, θ,N) :=

N∑

n=0

1

n+ 1
2

M3∑

m=1

(
sin

(
a(n+ θ)

m

)
+ sin

(
a(n+ 1− θ)

m

))

and

B(a, θ,N) :=

N∑

n=0

1

n+ 1
2

∫ M3+
1
2

0

(
sin

(
a(n+ θ)

t

)
+ sin

(
a(n+ 1− θ)

t

))
dt.

Then S5(a, θ) converges (respectively converges uniformly on compact subin-
tervals of (0, 1)), provided that for every ε > 0, there exists an N(ε) such that
for every N1, N2 > N(ε),

|A(a, θ,N1) +B(a, θ,N1)−A(a, θ,N2)−B(a, θ,N2)| < ε

(respectively uniformly for all θ in a given compact subinterval of (0, 1)).
Fix ε > 0. For every positive integer N , we put A(a, θ,N) in the form

A(a, θ,N) = 2
N∑

n=0

1

n+ 1
2

∑

1≤m≤log2 n

sin

(
a(n+ 1

2 )

m

)
cos

(
a(2θ − 1)

2m

)
.

Here the condition m ≤ log2 n is equivalent to e
√
m ≤ n. Thus, interchanging

the order of summation above, we find that

A(a, θ,N) = 2
∑

1≤m≤log2 N

cos

(
a(2θ − 1)

2m

) ∑

e
√

m≤n≤N

1

n+ 1
2

sin

(
a(n+ 1

2 )

m

)

= 4
∑

1≤m≤log2 N

cos

(
a(2θ − 1)

2m

) ∑

e
√

m≤n≤N

1

2n+ 1
sin

(
a(2n+ 1)

2m

)
.

For two large positive integers N1 < N2, we put A(a, θ,N2) − A(a, θ,N1) in
the form

A(a, θ,N2)−A(a, θ,N1)

= 4
∑

1≤m≤log2 N1

cos

(
a(2θ − 1)

2m

) ∑

N1+1≤n≤N2

1

2n+ 1
sin

(
a(2n+ 1)

2m

)

+ 4
∑

log2 N1<m≤log2 N2

cos

(
a(2θ − 1)

2m

) ∑

e
√

m≤n≤N2

1

2n+ 1
sin

(
a(2n+ 1)

2m

)
.

For every positive real numbers U < V , consider the function

hU,V (y) :=
∑

U≤n≤V

sin{(2n+ 1)y}
2n+ 1

.
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With this notation, we may write

A(a, θ,N2)−A(a, θ,N1) = 4
∑

1≤m≤log2 N1

cos

(
a(2θ − 1)

2m

)
hN1+1,N2

( a
2m

)

+ 4
∑

log2 N1<m≤log2 N2

cos

(
a(2θ − 1)

2m

)
he

√
m,N2

( a
2m

)
. (2.4.11)

We are interested in the behavior of the function hU,V (y). This function is odd
and periodic modulo 2π, and so it is sufficient to study the function on the
interval [0, π]. Also, we note that hU,V (y) = hU,V (π− y), and so furthermore,
it is sufficient to consider this function on the interval [0, 12π]. Observe that
hU,V (0) = 0. Next, since the series is alternating with decreasing terms,

∣∣hU,V (
1
2π)
∣∣ =

∣∣∣∣∣∣

∑

U≤n≤V

(−1)n

2n+ 1

∣∣∣∣∣∣
≤ 1

2U + 1
.

For 0 < y < 1
2π, we write hU,V (y) in the form

hU,V (y) = hU,V (
1
2π) + hU,V (y)− hU,V (

1
2π) = hU,V (

1
2π)−

∫ 1
2π

y

h′U,V (t)dt.

(2.4.12)
Here we write [126, p. 36, formula 1.342, no. 4]

h′U,V (t) =
∑

U≤n≤V

cos{(2n+ 1)t} =
1

2 sin t
(sin{2(�V �+ 1)t} − sin(2�U�t)) ,

(2.4.13)
where �V � is the floor of V , that is, the largest integer ≤ V , and �U� is the
ceiling of U , that is, the smallest integer ≥ U . From (2.4.12) and (2.4.13) and
an integration by parts,

hU,V (y) = hU,V (
1
2π)−

∫ 1
2π

y

1

2 sin t
(sin{2(�V �+ 1)t} − sin(2�U�t)) dt

= hU,V (
1
2π) +

1

2 sin t

(
cos{2(�V �+ 1)t}

2(�V �+ 1)
− cos(2�U�t)

2�U�

)∣∣∣∣

1
2π

y

+

∫ 1
2π

y

cos t

2 sin2 t

(
cos{2(�V �+ 1)t}

2(�V �+ 1)
− cos(2�U�t)

2�U�

)
dt

= O

(
1

U

)
+O

(
1

Uy

)
+O

(
1

Uy2

)

= O

(
1

U

(
1 +

1

y2

))
,
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uniformly for 0 < y ≤ 1
2π. If we need a bound that holds for all y > 0, we

may write

|hU,V (y)| = O
(

1

U
· 1

‖y/π‖2

)
,

where ‖y/π‖ denotes the distance from y/π to the nearest integer, which
is proportional (via a factor of π) to the distance from y to the set πZ =
{. . . ,−π, 0, π, 2π, . . . }. Recall that at these points πZ, the function hU,V (y)
vanishes.

We are now ready to apply these considerations to our expression for
A(a, θ,N2) − A(a, θ,N1) from (2.4.11). For log2N1 < m ≤ log2N2 and a
fixed, a/(2m) is a small positive number, which belongs to (0, 12π). Hence,

∣∣∣he√m,N2

( a
2m

)∣∣∣ = O
(

1

e
√
m

(
1 +

4m2

a2

))
= O

(
m2

e
√
m

)
.

It follows that

4

∣∣∣∣∣∣

∑

log2 N1<m≤log2 N2

cos

(
a(2θ − 1)

2m

)
he

√
m,N2

( a
2m

)
∣∣∣∣∣∣

≤ 4
∑

log2 N1<m≤log2 N2

∣∣∣he√m,N2

( a
2m

)∣∣∣

= O

⎛

⎝
∑

log2 N1<m≤log2 N2

m2

e
√
m

⎞

⎠

= O

(∫ ∞

log2 N1

x2

e
√
x
dx

)
= O

(∫ ∞

logN1

2t5

et
dt

)
= O

(
log5N1

N1

)
.

Next, we similarly examine the sum

4
∑

1≤m≤log2 N1

cos

(
a(2θ − 1)

2m

)
hN1+1,N2

( a
2m

)
,

at least as far as the terms with large m, so that a/(2m) ∈ (0, 12π], are
concerned. These are terms for which m ≥ a/π. To that end,

4

∣∣∣∣∣∣

∑

a/π≤m≤log2 N1

cos

(
a(2θ − 1)

2m

)
hN1+1,N2

( a
2m

)
∣∣∣∣∣∣

≤ 4
∑

a/π≤m≤log2 N1

∣∣∣hN1+1,N2

( a
2m

)∣∣∣

= O

⎛

⎝
∑

a/π≤m≤log2 N1

1

N1

(
1 +

4m2

a2

)⎞

⎠
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= O

⎛

⎝ 1

N1

∑

a/π≤m≤log2 N1

m2

⎞

⎠ = O

(
log6N1

N1

)
.

Lastly, the sum

4
∑

1≤m<a/π

cos

(
a(2θ − 1)

2m

)
hN1+1,N2

( a
2m

)
(2.4.14)

has a bounded number of terms. For eachm, with 1 ≤ m < a/π, we distinguish
two cases. Either a/(2m) is an integral multiple of π, or it is not. In the former
case, we know that

hN1+1,N2

( a
2m

)
= 0,

and hence these terms do not have any contribution to the sum (2.4.14). For
all the other values of m, with 1 ≤ m < a/π, we examine the distances
between the numbers a/(2mπ) and the set Z. These distances, no matter how
small, are some fixed strictly positive numbers, which are independent of N1

and N2. If we let δ > 0 denote the smallest such distance, in other words,

δ = min
{∥∥∥

a

2πm

∥∥∥ : 1 ≤ m < a
π
,

a

2m
/∈ Z

}
,

then

4

∣∣∣∣∣∣

∑

1≤m<a/π

cos

(
a(2θ − 1)

2m

)
hN1+1,N2

( a
2m

)
∣∣∣∣∣∣
≤ 4

∑

1≤m<a/π

∣∣∣hN1+1,N2

( a
2m

)∣∣∣

= O

⎛

⎜⎜⎝
∑

1≤m<a/π
a/(2m)/∈Z

1

N1δ2

⎞

⎟⎟⎠

= O

(
1

N1δ2

)
.

Thus this sum too tends to 0 as N1 < N2 tend to infinity, since δ > 0 is fixed.
In conclusion, for every ε > 0, there exists N(ε) such that for all

N1, N2 > N(ε),
|A(a, θ,N1)−A(a, θ,N2)| < ε,

uniformly for all θ in any given compact subinterval of (0, 1), as desired.
Similarly, working with integrals instead of sums, we find that

|B(a, θ,N1)−B(a, θ,N2)| < ε,

for N1, N2 sufficiently large. This implies that S5(a, θ) is uniformly convergent
on compact subsets of (0, 1). The conclusion is that the initial sum S(a, θ) is
uniformly convergent on compact subintervals of (0, 1) if and only if S6(a) is.
But S6(a) does not depend on θ. So the convergence at one single value of θ
implies uniform convergence in compact subintervals of (0, 1).
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2.4.4 Reformulation and Proof of Entry 2.1.2

In view of Entry 2.1.2, Theorem 2.4.2, and the proof of convergence in
Sect. 2.4.3, we now reformulate and prove the following theorem.

Theorem 2.4.3. Fix x > 0 and set θ = u + 1
2 , where − 1

2 < u <
1
2 . Recall

that F (x) is defined in (2.1.4). If the identity below is valid for at least one
value of θ, then it is valid for all values of θ, and

∑

1≤n≤x

(−1)nF
(x
n

)
cos(2πnu)− 1

4
+ x log(2 cos(πu))

=
1

2π

∞∑

n=0

1

n+ 1
2 + u

lim
M→∞

{ ∞∑

m=1

sin

(
2π(n+ 1

2 + u)x

m

)

−
∫ M

0

sin

(
2π(n+ 1

2 + u)x

t

)
dt

}

+
1

2π

∞∑

n=0

1

n+ 1
2 − u

lim
M→∞

{ ∞∑

m=1

sin

(
2π(n+ 1

2 − u)x
m

)

−
∫ M

0

sin

(
2π(n+ 1

2 − u)x
t

)
dt

}
. (2.4.15)

Moreover, the series on the right-hand side of (2.4.15) converges uniformly
on compact subintervals of (− 1

2 ,
1
2 ).

Proof. For each nonnegative integer n, set

fn(u) :=
1

n+ 1
2 + u

lim
M→∞

{
M∑

m=1

sin

(
2π(n+ 1

2 + u)x

m

)

−
∫ M

0

sin

(
2π(n+ 1

2 + u)x

t

)
dt

}

+
1

n+ 1
2 − u

lim
M→∞

{
M∑

m=1

sin

(
2π(n+ 1

2 − u)x
m

)

−
∫ M

0

sin

(
2π(n+ 1

2 − u)x
t

)
dt

}
. (2.4.16)

From our work in Sect. 2.4.3, we know that the series
∑∞

n=0 fn(u) either di-
verges for each value of u or converges for each value of u with the convergence
being uniform in every compact subinterval of (− 1

2 ,
1
2 ). Assuming that the lat-

ter holds, we define

f(u) :=

∞∑

n=0

fn(u),
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and we endeavor to prove that the two sides of (2.4.15) have the same Fourier
coefficients. If f̃(u) denotes the left-hand side of (2.4.15), then we want to
show that

1

2π

∞∑

n=0

∫ 1
2

− 1
2

fn(u)e
2πikudu =

∫ 1
2

−1
2

f̃(u)e2πikudu, (2.4.17)

for each integer k. Since f̃(u) as well as each of the functions fn(u), n ≥ 0, is
an even function of u, it is sufficient to show that for every integer k ≥ 0,

∞∑

n=0

∫ 1
2

− 1
2

fn(u) cos(2πku)du = 2π

∫ 1
2

− 1
2

f̃(u) cos(2πku)du. (2.4.18)

In what follows, k is fixed, and we proceed under the aforementioned assump-
tion of uniform convergence of the series

∑∞
n=0 fn(u), so that the convergence

at the left side of (2.4.18) is assured. Let us denote, for each positive integerN ,

IN :=

N−1∑

n=0

∫ 1
2

− 1
2

fn(u) cos(2πku)du,

so that (2.4.18) is equivalent to

lim
N→∞

IN = 2π

∫ 1
2

− 1
2

f̃(u) cos(2πku)du. (2.4.19)

Next, for N large, write IN in the form

IN =
N−1∑

n=0

∫ 1
2

− 1
2

cos(2πku)

n+ 1
2 + u

(
lim

M→∞

{
M∑

m=1

sin

(
2π(n+ 1

2 + u)x

m

)

−
∫ M

0

sin

(
2π(n+ 1

2 + u)x

t

)
dt

}

+
cos(2πku)

n+ 1
2 − u

lim
M→∞

{
M∑

m=1

sin

(
2π(n+ 1

2 − u)x
m

)

−
∫ M

0

sin

(
2π(n+ 1

2 − u)x
t

)
dt

})
du. (2.4.20)

From Sect. 2.4.3, we know that for each fixed n, we have uniform convergence
with respect to u on compact subintervals of (− 1

2 ,
1
2 ) as M → ∞. Thus, in

(2.4.20), we may interchange the order of summation, integration, and taking
the limit as M → ∞ to deduce that
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IN = lim
M→∞

M∑

m=1

N−1∑

n=0

⎧
⎨

⎩

∫ 1
2

− 1
2

cos(2πku)

n+ 1
2 + u

sin

(
2π(n+ 1

2 + u)x

m

)
du

+

∫ 1
2

− 1
2

cos(2πku)

n+ 1
2 − u

sin

(
2π(n+ 1

2 − u)x
m

)
du

−
∫ M

0

∫ 1
2

−1
2

cos(2πku)

n+ 1
2 + u

sin

(
2π(n+ 1

2 + u)x

t

)
du dt

−
∫ M

0

∫ 1
2

− 1
2

cos(2πku)

n+ 1
2 − u

sin

(
2π(n+ 1

2 − u)x
t

)
du dt

⎫
⎬

⎭ .

(2.4.21)

For each n, 0 ≤ n ≤ N − 1, we rewrite the integrals with respect to u on the
right side of (2.4.21) in the forms

∫ 1
2

− 1
2

cos(2πku)

n+ 1
2 + u

sin

(
2π(n+ 1

2 + u)x

m

)
du

=

∫ n+1

n

cos(2πk(w − n− 1
2 ))

w
sin

(
2πwx

m

)
dw

= (−1)k
∫ n+1

n

cos(2πkw)

w
sin

(
2πwx

m

)
dw

and

∫ 1
2

− 1
2

cos(2πku)

n+ 1
2 − u

sin

(
2π(n+ 1

2 − u)x
m

)
du

=

∫ n+1

n

cos(2πk(n+ 1
2 − w))

w
sin

(
2πwx

m

)
dw

= (−1)k
∫ −n

−n−1

cos(2πkw)

w
sin

(
2πwx

m

)
dw.

Similar calculations hold for the remaining two integrals in (2.4.21) with m
replaced by t. Hence, (2.4.21) can be rewritten in the form

IN = (−1)k lim
M→∞

{
M∑

m=1

∫ N

−N

cos(2πkw)

w
sin

(
2πwx

m

)
dw

−
∫ M

0

∫ N

−N

cos(2πkw)

w
sin

(
2πwx

t

)
dw dt

}
. (2.4.22)



2.4 Proof of Ramanujan’s Second Bessel Function Identity 81

The first integral on the right side of (2.4.22) can be rewritten as

∫ N

−N

cos(2πkw)

w
sin

(
2πwx

m

)
dw

=
1

2

∫ N

−N

sin ((2πk + 2πx/m)w)

w
dw − 1

2

∫ N

−N

sin ((2πk − 2πx/m)w)

w
dw

=
1

2

∫ (2πk+2πx/m)N

−(2πk+2πx/m)N

sin y

y
dy − 1

2

∫ (2πk−2πx/m)N

−(2πk−2πx/m)N

sin y

y
dy.

A similar representation holds for the last integral on the right-hand side of
(2.4.22) with m replaced by t. Therefore, (2.4.22) can be recast in the form

IN =
(−1)k

2
lim

M→∞

{
M∑

m=1

∫ (2πk+2πx/m)N

−(2πk+2πx/m)N

sin y

y
dy −

∫ (2πk−2πx/m)N

−(2πk−2πx/m)N

sin y

y
dy

−
∫ M

0

∫ (2πk+2πx/t)N

−(2πk+2πx/t)N

sin y

y
dy dt+

∫ M

0

∫ (2πk−2πx/t)N

−(2πk−2πx/t)N

sin y

y
dy dt

}
.

(2.4.23)

In the following we now need to assume that k > 0. For large m,

JN (m) : =

∫ (2πk+2πx/m)N

−(2πk+2πx/m)N

sin y

y
dy−

∫ m

m−1

∫ (2πk+2πx/t)N

−(2πk+2πx/t)N

sin y

y
dy dt

=

∫ m

m−1

(∫ (2πk+2πx/m)N

−(2πk+2πx/m)N

sin y

y
dy−

∫ (2πk+2πx/t)N

−(2πk+2πx/t)N

sin y

y
dy

)
dt

= −
∫ m

m−1

∫ (2πk+2πx/t)N

(2πk+2πx/m)N

sin y

y
dy dt−

∫ m

m−1

∫ −(2πk+2πx/m)N

−(2πk+2πx/t)N

sin y

y
dy dt.

(2.4.24)

Note that
(2πk + 2πx/t)N ≥ (2πk + 2πx/m)N ≥ 2πkN,

and so the integrand in each of the double integrals on the far right side of
(2.4.24) is O(1/N). Also, the two double integrals are over domains of area
bounded by

2πxN

t
− 2πxN

m
= O

(
N

mt

)
= O

(
N

m2

)
.

Hence, we see that the first double integral on the extreme right side of
(2.4.24) is

O

(
1

m2

)
.
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We now consider the second double integral on the far right side of (2.4.24).
Note that

(2πk − 2πx/m)N ≥ (2πk − 2πx/t)N � N.

Thus, it is easy to see that we will obtain the same estimates for the second
double integral on the right-hand side of (2.4.24). We now sum both sides of
(2.4.24), [logN ] + 1 ≤ m ≤M , to find that

M∑

m=[logN ]+1

JN (m) = O

(
1

logN

)
.

We now use the bound above in (2.4.23), so that (2.4.23) now reduces to

IN =
(−1)k

2

[logN ]∑

m=1

(∫ (2πk+2πx/m)N

−(2πk+2πx/m)N

sin y

y
dy −

∫ (2πk−2πx/m)N

−(2πk−2πx/m)N

sin y

y
dy

)

− (−1)k

2

∫ [logN ]

0

(∫ (2πk+2πx/t)N

−(2πk+2πx/t)N

sin y

y
dy −

∫ (2πk−2πx/t)N

−(2πk−2πx/t)N

sin y

y
dy

)
dt

+O

(
1

logN

)
. (2.4.25)

Next, we divide the sum on m into two parts, m ≤ �2x� and �2x� < m ≤
[logN ], and we similarly divide the interval of integration with respect to t.
Note that for each m ≥ �2x�+ 1 and every t ∈ [m− 1,m],

2πk − 2πx

m
≥ 2πk − 2πx

t
≥ 2πk − 2πx

�2x� ≥ 2πk − π ≥ π,

for all k ≥ 1. Therefore, for such m, all the integrals in (2.4.25) are of the
type, for B ≥ πN , ∫ B

−B

sin y

y
dy = π +O

(
1

N

)
.

This estimate is uniform in m, for m ≥ �2x� + 1, and uniform in t, for t ∈
[m− 1,m]. It follows that

∫ (2πk±2πx/m)N

−(2πk±2πx/m)N

sin y

y
dy −

∫ m

m−1

∫ (2πk±2πx/t)N

−(2πk±2πx/t)N

sin y

y
dy dt

=

(
π +O

(
1

N

))
−
(
π +O

(
1

N

))
= O

(
1

N

)
,

uniformly for m ≥ �2x� + 1, where the ± signs above are the same in all
four places, i.e., either all of the signs are plus, or all of the signs are minus.
It follows that the ranges of summation and integration in (2.4.25) can be
further reduced to a bounded range. Thus,
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IN =
(−1)k

2


2x�∑

m=1

(∫ (2πk+2πx/m)N

−(2πk+2πx/m)N

sin y

y
dy −

∫ (2πk−2πx/m)N

−(2πk−2πx/m)N

sin y

y
dy

)

− (−1)k

2

∫ 
2x�

0

(∫ (2πk+2πx/t)N

−(2πk+2πx/t)N

sin y

y
dy −

∫ (2πk−2πx/t)N

−(2πk−2πx/t)N

sin y

y
dy

)
dt

+O

(
1

logN

)
. (2.4.26)

Inside the sum on m, each integral has a limit as N → ∞, and these limits are

lim
N→∞

∫ (2πk+2πx/m)N

−(2πk+2πx/m)N

sin y

y
dy = π, 1 ≤ m ≤ �2x�,

lim
N→∞

∫ (2πk−2πx/m)N

−(2πk−2πx/m)N

sin y

y
dy =

⎧
⎪⎨

⎪⎩

π, if 2πk > 2πx/m,

0, if 2πk = 2πx/m,

−π, if 2πk < 2πx/m.

In summary,

lim
N→∞

(−1)k

2


2x�∑

m=1

(∫ (2πk+2πx/m)N

−(2πk+2πx/m)N

sin y

y
dy −

∫ (2πk−2πx/m)N

−(2πk−2πx/m)N

sin y

y
dy

)

=
(−1)k

2
(�2x�π −# {1 ≤ m ≤ �2x� : m > x/k}π

+# {1 ≤ m ≤ �2x� : m < x/k}π)

=
(−1)kπ

2
(�2x� − �2x� −# {1 ≤ m ≤ �2x� : m = x/k}

+2# {1 ≤ m ≤ �2x� : m ≤ x/k})

= (−1)kπ
[x
k

]
− (−1)kπ

2
δ, (2.4.27)

where

δ =

{
1, if x/k is an integer,

0, otherwise.

Hence, by (2.4.26) and (2.4.27),

lim
N→∞

IN = (−1)kπ
[x
k

]
− (−1)kπ

2
δ

− lim
N→∞

(−1)k

2

∫ 
2x�

0

(∫ (2πk+2πx/t)N

−(2πk+2πx/t)N

sin y

y
dy −

∫ (2πk−2πx/t)N

−(2πk−2πx/t)N

sin y

y
dy

)
dt,

(2.4.28)

provided that the limit on the right-hand side of (2.4.28) indeed does exist.
As we have seen above, the first integral on the right-hand side of (2.4.28)
equals π +O(1/N), uniformly in t, t ∈ (0, �2x�). Therefore,
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lim
N→∞

(−1)k

2

∫ 
2x�

0

∫ (2πk+2πx/t)N

−(2πk+2πx/t)N

sin y

y
dy = lim

N→∞
(−1)k

2

(
�2x�π +O

(
1

N

))

=
(−1)k

2
�2x�π. (2.4.29)

For the remaining double integral in (2.4.28), we subdivide the outer range
of integration [0, �2x�] into the three ranges
[
0,
x

k
− 1

logN

]
,

[
x

k
− 1

logN
,
x

k
+

1

logN

]
,

[
x

k
+

1

logN
, �2x�

]
.

Using the fact that

sup
B∈R

∣∣∣∣∣

∫ B

−B

sin y

y
dy

∣∣∣∣∣ <∞,

we find that
∫ x

k+
1

logN

x
k− 1

logN

∫ (2πk−2πx/t)N

−(2πk−2πx/t)N

sin y

y
dydt = O

(
1

logN

)
. (2.4.30)

Next, uniformly for t ∈
[
x
k + 1

logN , �2x�
]
, we see that

∫ (2πk−2πx/t)N

−(2πk−2πx/t)N

sin y

y
dy = π +O

⎛

⎜⎜⎝

⎛

⎜⎜⎝

∣∣∣∣∣∣∣∣
2πk − 2πx

x

k
+

1

logN

∣∣∣∣∣∣∣∣
N

⎞

⎟⎟⎠

−1⎞

⎟⎟⎠

= π +O

(
logN

N

)
,

and hence
∫ 
2x�

x
k+

1
logN

∫ (2πk−2πx/t)N

−(2πk−2πx/t)N

sin y

y
dydt

=

(
�2x� −

(
x

k
+

1

logN

))(
π +O

(
logN

N

))

= �2x�π − πx
k

+O

(
1

logN

)
. (2.4.31)

Lastly, uniformly for t ∈
(
0, xk − 1

logN

)
,

∫ (2πk−2πx/t)N

−(2πk−2πx/t)N

sin y

y
dy = −π +O

⎛

⎜⎜⎝

⎛

⎜⎜⎝

∣∣∣∣∣∣∣∣
2πk − 2πx

x

k
− 1

logN

∣∣∣∣∣∣∣∣
N

⎞

⎟⎟⎠

−1⎞

⎟⎟⎠

= −π +O
(
logN

N

)
,
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and hence

∫ x
k− 1

logN

0

∫ (2πk−2πx/t)N

−(2πk−2πx/t)N

sin y

y
dydt =

(
x

k
− 1

logN

)(
−π +O

(
logN

N

))

= −πx
k

+O

(
1

logN

)
. (2.4.32)

Combining (2.4.29)–(2.4.32), we conclude that

lim
N→∞

(−1)k

2

∫ 
2x�

0

(∫ (2πk+2πx/t)N

−(2πk+2πx/t)N

sin y

y
dy −

∫ (2πk−2πx/t)N

−(2πk−2πx/t)N

sin y

y
dy

)
dt

=
(−1)k

2

(
�2x�π − �2x�π + πx

k
+
πx

k

)

=
(−1)kπx

k
. (2.4.33)

Combining (2.4.33) and (2.4.28), we finally deduce that

lim
N→∞

IN = (−1)kπ
[x
k

]
− (−1)kπ

2
δ +

(−1)kπx

k
. (2.4.34)

So, assuming that the right-hand side of (2.4.15) converges for at least
one value of θ, we see that either (2.4.15) or (2.4.19) is equivalent to the
proposition that

(−1)k
[x
k

]
− (−1)k

2
δ − (−1)kx

k
= 2

∫ 1
2

− 1
2

f̃(u) cos(2πku)du, (2.4.35)

for each k ≥ 1, where

δ =

{
1, if x/k is an integer,

0, otherwise.

There remains the calculation of the integral on the right-hand side of
(2.4.35). First, for each k ≥ 1,

2

∫ 1
2

− 1
2

∑

1≤n≤x

(−1)nF
(x
n

)
cos(2πnu) cos(2πku)du = (−1)kF

(x
k

)

= (−1)k
([x
k

]
− 1

2
δ

)
.

(2.4.36)
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Trivially, for each k ≥ 1,

2

∫ 1
2

− 1
2

−1

4
cos(2πku)du = 0. (2.4.37)

Next, recall the Fourier series [126, p. 46, formula 1.441, no. 2]

log(2 cos(πu)) =

∞∑

n=1

(−1)n−1 cos(2πnu)

n
, −1

2
< u <

1

2
.

Because the series on the right-hand side above is boundedly convergent on
[− 1

2 ,
1
2 ], we may invert the order of summation and integration to deduce that

2x

∫ 1
2

− 1
2

log(2 cos(πu)) cos(2πku)du

= 2x

∞∑

n=1

(−1)n−1

n

∫ 1
2

−1
2

cos(2πnu) cos(2πku)du

= x
(−1)k−1

k
. (2.4.38)

Bringing together (2.4.36)–(2.4.38), we find that

2

∫ 1
2

− 1
2

f̃(u) cos(2πku)du = (−1)k
([x
k

]
− 1

2
δ

)
+ x

(−1)k−1

k
. (2.4.39)

Comparing (2.4.39) with (2.4.35), we see that indeed (2.4.35) has been proven
for k ≥ 1.

Let us summarize what we have accomplished. We have assumed that
(2.4.15) holds for one particular value of θ. We have shown that the right
side of (2.4.15) converges uniformly on compact subsets of (− 1

2 ,
1
2 ). Thus, the

right side is a well-defined, continuous function of θ on (− 1
2 ,

1
2 ), and we need

to check that it is equal to the function on the left side of (2.4.15). Consider
the difference of these two functions, which is a continuous function of θ on
(− 1

2 ,
1
2 ). We have proved that all its Fourier coefficients for k �= 0 vanish.

Then, as a function of θ, this function will be constant. Moreover, since the
two sides of (2.4.15) are equal for one particular value of θ, the aforementioned
constant must be zero. And so (2.4.15) holds for all θ. This then completes
the proof of Theorem 2.4.3. ��

2.5 Proof of Ramanujan’s Second Bessel Function
Identity (Symmetric Form)

In this section, we prove Ramanujan’s second assertion on page 335 of [269],
i.e., Entry 2.1.2, under the assumption that the product of the indices of the
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double series tends to infinity. As in our proof of the first identity in symmetric
form, it will be sufficient to prove Entry 2.1.2 for rational θ = a/q, where q is
prime and 0 < a < q.

We define

G(a, q, x)

: =

√
x

2

∞∑

m=1

∞∑

n=0

{
I1
(
4π
√
m(n+ a/q)x

)
√
m(n+ a/q)

+
I1
(
4π
√
m(n+ 1− a/q)x

)
√
m(n+ 1− a/q)

}

=

√
qx

2

∞∑

m=1

∞∑

r=0
r≡±a mod q

I1
(
4π
√
mrx/q

)
√
mr

. (2.5.1)

Thus, Entry 2.1.2 is equivalent to the following theorem.

Theorem 2.5.1. If q is prime and 0 < a < q, then

G(a, q, x) =

∞∑

n=1

F
(x
n

)
cos
(2πna
q

)
− 1

4
+ x log(2 sin (πa/q)) =: K(a, q, x).

(2.5.2)

Our first task in reaching our goal of proving Entry 2.1.2 or Theorem 2.5.1
is to establish the following theorem.

Theorem 2.5.2. If χ is a nonprincipal even primitive character modulo q,
then

∑′

n≤x

dχ(n) =

√
q

τ(χ)

∞∑

n=1

dχ(n)

√
x

n
I1
(
4π
√
nx/q

)

− x

τ(χ)

q−1∑

h=1

χ(h) log
(
2 sin(πh/q)

)
. (2.5.3)

Proof. Recall the functional equation of ζ(2s) [101, p. 59],

π−sΓ (s)ζ(2s) = π−(
1
2−s)Γ (12 − s)ζ(1 − 2s).

Recall also that if χ is an even nonprincipal primitive character of modulus
q, then the Dirichlet L-function L(x, χ) satisfies the functional equation [101,
p. 69]

(π/q)−sΓ (s)L(2s, χ) =
τ(χ)
√
q
(π/q)−(

1
2−s)Γ (12 − s)L(1− 2s, χ).

Then, if

F (s, χ) := ζ(2s)L(2s, χ) =

∞∑

n=1

dχ(n)n
−2s
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and
ξ(s, χ) := (π/

√
q)−2sΓ 2(s)F (s, χ),

the functional equations of ζ(s) and L(s, χ) yield the functional equation

ξ(s, χ) =
τ(χ)
√
q
ξ
(
1
2 − s, χ

)
.

We next state a special case of [26, p. 351, Theorem 2; p. 356, Theorem
4]. In the notation of those theorems from [26], q = 0, r = 1

2 , m = 2, λn =
μn = π2n2/q, a(n) = dχ(n), and b(n) = τ(χ)dχ(n)/

√
q. Also, as above, Jν(x)

denotes the ordinary Bessel function of order ν. Let x > 0. Then

∑′

λn≤x

dχ(n) =
τ(χ)
√
q

∞∑

n=1

dχ(n)

(
x

μn

)1/4

K1/2(4
√
μnx;− 1

2 ; 2)+Q0(x), (2.5.4)

where [26, p. 348, Definition 4]

Kν(x;μ; 2) =

∫ ∞

0

uν−μ−1Jμ(u)Jν(x/u)du

and

Q0(x) =
1

2πi

∫

C

(π/
√
q)−2sF (s, χ)xs

s
ds,

where C is a positively oriented closed curve encircling the poles of the in-
tegrand. Moreover, the series on the right-hand side of (2.5.4) is uniformly
convergent on compact intervals not containing values of λn.

We calculate Q0(x). Since L(s, χ) is an entire function, and since L(0, χ) =
0, when the character χ is even, the only pole of the integrand is at s = 1

2 ,
arising from the simple pole of ζ(2s). Thus,

Q0(x) =

√
qx

π
L(1, χ) = −τ(χ)

π

√
x

q

q−1∑

n=1

χ(n) log |1− ζnq |, (2.5.5)

where ζq = e2πi/q, and where we have used an evaluation for L(1, χ) found
in [104].

Next, recall that [314, p. 54]

J−1/2(z) =

√
2

πz
cos z and J1/2(z) =

√
2

πz
sin z.

Thus, anticipating a later change of variable and using a result that can readily
be derived from [314, p. 184, formula (3)], we find that
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K1/2(4π
2nx/q;− 1

2 ; 2) =
1

π2

√
q

nx

∫ ∞

0

cosu sin

(
4π2nx

qu

)
du

= − 1

π2

√
q

nx
2π

√
nx

q

(π
2
Y1(4π

√
nx/q) +K1(4π

√
nx/q)

)

= I1(4π
√
nx/q). (2.5.6)

We now replace x by π2x2/q and substitute the values λn = μn = π2n2/q
in (2.5.4). Using (2.5.5) and (2.5.6) in (2.5.4), we conclude that

∑

n≤x

′
dχ(n) =

τ(χ)
√
q

∞∑

n=1

dχ(n)

√
x

n
I1(4π

√
nx/q)− τ(χ)x

q

q−1∑

n=1

χ(n) log |1− ζnq |.

(2.5.7)

Using the fact that τ(χ)τ(χ) = q and the simple identity

log |1− ζnq | = log |ζ−n/2
q − ζn/2q | = log(2 sin(πn/q)),

we obtain

∑

n≤x

′
dχ(n) =

√
q

τ(χ)

∞∑

n=1

dχ(n)

√
x

n
I1
(
4π
√
nx/q

)

− x

τ(χ)

q−1∑

n=1

χ(n) log
(
2 sin(πn/q)

)
,

which completes the proof. ��

We need one further result before commencing our proof of Theorem 2.5.1.

Lemma 2.5.1. If 0 < a < q and (a, q) = 1, then

∞∑

n=1

F
(x
n

)
cos
(2πna
q

)

=
∑′

1≤n≤x/q

d(n) +
∑

d|q
d>1

1

φ(d)

∑

χ mod d
χ even

χ(a)τ(χ)
∑′

1≤n≤dx/q

dχ(n).

The proof of Lemma 2.5.1 is very similar to that of Lemma 2.3.1, and so
we omit the proof.

Proof of Theorem 2.5.1. First, using (2.3.10) and the fact that χ is even, we
see that

G(a, q, x) =
q

2

∞∑

m=1

∞∑

r=1
r≡±a mod q

√
x

qmr
I1
(
4π
√
mrx/q

)
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=
q

2φ(q)

∞∑

m=1

∞∑

r=1

√
x

qmr
I1
(
4π
√
mrx/q

) ∑

χ mod q

χ(r)
(
χ(a) + χ(−a)

)

=
q

φ(q)

∞∑

m=1

∞∑

r=1

√
x

qmr
I1
(
4π
√
mrx/q

) ∑

χ mod q
χ even

χ(a)χ(r)

=
q

φ(q)

∑

χ mod q
χ even

χ(a)

∞∑

m=1

∞∑

r=1

χ(r)

√
x

qmr
I1
(
4π
√
mrx/q

)

=
q

φ(q)

∑

χ mod q
χ even

χ(a)

∞∑

n=1

dχ(n)

√
x

qn
I1
(
4π
√
nx/q

)
.

So, if q is prime and χ0 denotes the principal character modulo q, then

G(a, q, x) =
q

φ(q)

∞∑

m=1

∞∑

r=1
q�r

√
x

qmr
I1
(
4π
√
mrx/q

)

+
q

φ(q)

∑

χ�=χ0
χ even

χ(a)
∞∑

n=1

dχ(n)

√
x

qn
I1
(
4π
√
nx/q

)

=
q

φ(q)
Δ(x/q)− 1

φ(q)
Δ(x)

+
q

φ(q)

∑

χ�=χ0
χ even

χ(a)

∞∑

n=1

dχ(n)

√
x

qn
I1
(
4π
√
nx/q

)

= − 1

φ(q)

∑′

n≤x

d(n) +
q

φ(q)

∑′

n≤x/q

d(n)− 1

4
+

x

φ(q)
log q

+
q

φ(q)

∑

χ�=χ0
χ even

χ(a)

∞∑

n=1

dχ(n)

√
x

qn
I1
(
4π
√
nx/q

)
. (2.5.8)

On the other hand, by Lemma 2.5.1 with q prime,

K(a, q, x) = − 1

φ(q)

∑′

n≤x

d(n) +
1 + φ(q)

φ(q)

∑′

n≤x/q

d(n)− 1

4

+
1

φ(q)

∑

χ�=χ0
χ even

χ(a)τ(χ)
∑′

1≤n≤x

dχ(n) + x log(2 sinπa/q). (2.5.9)
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Thus, in view of (2.5.8), (2.5.9), and (2.5.2), it suffices to show that

∑

χ�=χ0
χ even

χ(a)τ(χ)
∑′

1≤n≤x

dχ(n) + (q − 1)x log(2 sinπa/q)

= q
∑

χ�=χ0
χ even

χ(a)

∞∑

n=1

dχ(n)

√
x

qn
I1
(
4π
√
nx/q

)
+ x log q.

By Theorem 2.5.2, we now only have to show that

∑

χ�=χ0
χ even

χ(a)

q−1∑

h=1

χ(h) log
(
2 sin(πh/q)

)
= (q−1) log(2 sinπa/q)−log q. (2.5.10)

Now

∑

χ�=χ0
χ even

χ(a)

q−1∑

h=1

χ(h) log
(
2 sin(πh/q)

)
=

q−1∑

h=1

log
(
2 sin(πh/q)

) ∑

χ�=χ0
χ even

χ(a)χ(h)

=

q−1∑

h=1

log
(
2 sin(πh/q)

) ∑

χ even

χ(a)χ(h)−
q−1∑

h=1

log
(
2 sin(πh/q)

)

= (q − 1) log(2 sinπa/q)− log

(
2q−1

q−1∏

h=1

sin(πh/q)

)

= (q − 1) log(2 sinπa/q)− log q,

where we have used the familiar formula [126, p. 41, formula 1.392, no. 1]

q−1∏

h=1

sin(πh/q) =
q

2q−1 .

Thus, (2.5.10) has been established, and we have completed the proof. ��



3

Koshliakov’s Formula and Guinand’s Formula

3.1 Introduction

In his lecture at a conference to commemorate the centenary of Ramanujan’s
birth, held on June 1–5, 1987, at the University of Illinois at Urbana-
Champaign, R. William Gosper remarked, “How can we pretend to love this
man when he is forever reaching out from the grave to snatch away our neat-
est results?” In less colorful language, Gosper was asserting that it frequently
happens that one proves an important theorem, only to discover later that it
is ensconced somewhere in Ramanujan’s writings. In other instances, we have
learned that Ramanujan anticipated important later developments in his own
inimitable way.

In this chapter, we examine two pages in Ramanujan’s lost notebook
[269, pp. 253–254], on one of which Gosper’s observation is demonstrated
once again. On page 253, Ramanujan states a version of a famous formula
of A.P. Guinand, from which N.S. Koshliakov’s equally famous formula fol-
lows as a corollary. On page 254, Ramanujan gives applications of Guinand’s
formula; these results are mostly new.

First, we discuss Koshliakov’s formula. Koshliakov is chiefly remembered
for one theorem, namely, Koshliakov’s formula [188], which we now see was
proved by Ramanujan about 10 years earlier. To state his formula, let Kν(z)
denote the modified Bessel function of order ν, defined in (2.1.3), and let d(n)
denote the number of positive divisors of the positive integer n. Then, if γ
denotes Euler’s constant and a > 0,

γ − log

(
4π

a

)
+ 4

∞∑

n=1

d(n)K0(2πan)

=
1

a

(
γ − log(4πa) + 4

∞∑

n=1

d(n)K0

(
2πn

a

))
. (3.1.1)

G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook:
Part IV, DOI 10.1007/978-1-4614-4081-9 3,
© Springer Science+Business Media New York 2013
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Koshliakov’s proof, as well as most subsequent proofs, depends upon Voronöı’s
summation formula [310]

∑′

a≤n≤b

d(n)f(n) =

∫ b

a

(log x+ 2γ)f(x)dx

+
∞∑

n=1

d(n)

∫ b

a

f(x)
(
4K0(4π

√
nx)− 2πY0(4π

√
nx)
)
dx, (3.1.2)

where Yν(z) denotes the Weber–Bessel function of order ν, defined in (2.1.2).
The prime ′ on the summation sign on the left-hand side indicates that if a
or b is an integer, then only 1

2f(a) or
1
2f(b), respectively, is counted. For con-

ditions on f(x) that ensure the validity of (3.1.2), see, for example, Berndt’s
paper [28].

A.L. Dixon and W.L. Ferrar [112] also proved (3.1.1) using the Voronöı
summation formula. F. Oberhettinger and K.L. Soni [235] established a gen-
eralization of (3.1.1) using Voronöı’s formula (3.1.2), and she derived further
identities from Koshliakov’s formula [295]. In contrast to the work of these
authors, Ramanujan evidently did not appeal to Voronöı’s formula.

Koshliakov’s formula can be considered an analogue of the transformation
formula for the classical theta function, namely,

∞∑

n=−∞
e−πn2/τ =

√
τ

∞∑

n=−∞
e−πn2τ , Re τ > 0, (3.1.3)

which, as is well known, is equivalent to the functional equation of the
Riemann zeta function ζ(s) given by [306, p. 22]

π−s/2Γ
(
1
2s
)
ζ(s) = π−(1−s)/2Γ

(
1
2 (1− s)

)
ζ(1 − s). (3.1.4)

Ferrar [118] was evidently the first mathematician to prove indeed that (3.1.1)
can be derived from the functional equation of ζ2(s). Oberhettinger and
Soni [235] showed that this functional equation and Koshliakov’s formula are
equivalent.

On page 253 in his lost notebook [269], Ramanujan states (3.1.1) as a
corollary of a more general and especially beautiful formula at the top of the
same page. This more general formula is stated in an equivalent formulation
in Entry 3.1.1 below.

Entry 3.1.1 (p. 253). Let σk(n) =
∑

d|n d
k, and let ζ(s) denote the Riemann

zeta function. If α and β are positive numbers such that αβ = π2, and if s is
any complex number, then
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√
α

∞∑

n=1

σ−s(n)n
s/2Ks/2(2nα)−

√
β

∞∑

n=1

σ−s(n)n
s/2Ks/2(2nβ)

=
1

4
Γ
(s
2

)
ζ(s){β(1−s)/2−α(1−s)/2}+1

4
Γ
(
−s
2

)
ζ(−s){β(1+s)/2−α(1+s)/2}.

(3.1.5)

The identity (3.1.5) is equivalent to a formula established by Guinand [136]
in 1955. The series in Entry 3.1.1 are reminiscent of the Fourier expansion of
nonanalytic Eisenstein series on SL(2,Z), or Maass wave forms [219], [226,
pp. 230–232], [204, pp. 15–16], [304, pp. 208–209]. This Fourier series was
published by H. Maass [219] in the language of Eisenstein series in the same
year, 1949, that A. Selberg and S. Chowla [283], [282, pp. 367–378] published
it in the similar vein of the Epstein zeta function, but with their proof not
published until several years later [284], [282, pp. 521–545]. In the meanwhile,
P.T. Bateman and E. Grosswald [24] published a proof. These Eisenstein se-
ries were shown by Maass [219] to satisfy a functional equation for automor-
phic forms. C.J. Moreno kindly informed the authors that he was easily able
to derive Entry 3.1.1 from the aforementioned Fourier series expansion and
functional equation. One may then regard (3.1.5) as an equivalent formulation
of the functional equation for these nonholomorphic Eisenstein series or these
particular Maass wave forms. The proof of Entry 3.1.1 that we give below is
essentially the same as that of Guinand [136] and is completely independent of
any considerations of nonanalytic Eisenstein series or their closely associated
Epstein zeta functions. As is well known, Ramanujan made a large number of
original contributions to Eisenstein series, many of which can be found in his
lost notebook [13, Chaps. 11–16], [70].

On page 254, Ramanujan recorded formulas similar to Koshliakov’s for-
mula (3.1.1) or to Guinand’s formula (3.1.5). We show that each of the three
main results on this page can be deduced from Ramanujan’s (and Guinand’s)
beautiful generalization (3.1.5) of Koshliakov’s formula.

We close this introduction by mentioning two recent papers by S. Kane-
mitsu, Y. Tanigawa, H. Tsukada, and M. Yoshimoto [168] and S. Kanemitsu,
Y. Tanigawa, and M. Yoshimoto [171], in which the formulas of Koshliakov
and Guinand are used or generalized.

The content of this chapter is taken from the second author’s paper with
Y. Lee and J. Sohn [62].

3.2 Preliminary Results

Throughout pages 253 and 254 of [269], Ramanujan expresses his theorems in
terms of variants of the integral [126, p. 384, formula 3.471, no. 9]

∫ ∞

0

xν−1e−β/x−γxdx = 2

(
β

γ

)ν/2

Kν(2
√
βγ), (3.2.1)
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where ν is any complex number and Reβ > 0, Re γ > 0. Since the modified
Bessel function Kν(z) is such a well-known function and its notation is stan-
dard, it seems advisable to avoid Ramanujan’s notation for variants of (3.2.1),
which he calls φ, ψ, and χ. In summary, we have converted all of Ramanujan’s
theorems to identities involving the modified Bessel function Kν .

We use the well-known fact [126, p. 978, formula 8.469, no. 3]

K1/2(z) =

√
π

2z
e−z. (3.2.2)

Necessary for us is the asymptotic behavior [314, p. 202]

Kν(z) ∼
√
π

2z
e−z, z → ∞,

which we invoke to ensure the convergence of series and integrals and also
to justify the interchange of integration and summation several times in the
sequel. We need several integrals of Bessel functions beginning with [126,
p. 705, formula 6.544, no. 8]

∫ ∞

0

Kν

(a
x

)
Kν(bx)

dx

x2
=
π

a
K2ν(2

√
ab), Re a > 0,Re b > 0. (3.2.3)

We need the related pair [295, p. 544, Eq. (8)]

∫ ∞

0

xK0(ax)K0(bx)dx =
log(a/b)

a2 − b2 , a, b > 0, (3.2.4)

and [126, p. 697, formula 6.521, no. 3]

∫ ∞

0

xKν(ax)Kν(bx)dx =
π(ab)−ν(a2ν − b2ν)
2 sin(πν)(a2 − b2) , |Re ν| < 1, Re(a+b) > 0.

(3.2.5)
Lastly, we need the evaluation [126, p. 708, formula 6.561, no. 16], for Re a > 0
and Re(μ+ 1± ν) > 0,

∫ ∞

0

xμKν(ax)dx = 2μ−1a−μ−1Γ

(
1 + μ+ ν

2

)
Γ

(
1 + μ− ν

2

)
. (3.2.6)

3.3 Guinand’s Formula

We begin by restating Entry 3.1.1.

Entry 3.3.1 (p. 253). As usual, let σk(n) =
∑

d|n d
k, and let ζ(s) denote the

Riemann zeta function. If α and β are positive numbers such that αβ = π2,
and if s is any complex number, then
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√
α

∞∑

n=1

σ−s(n)n
s/2Ks/2(2nα)−

√
β

∞∑

n=1

σ−s(n)n
s/2Ks/2(2nβ)

=
1

4
Γ
(s
2

)
ζ(s){β(1−s)/2−α(1−s)/2}+1

4
Γ
(
−s
2

)
ζ(−s){β(1+s)/2−α(1+s)/2}.

(3.3.1)

To prove Entry 3.3.1, we need the following lemma.

Lemma 3.3.1. Let Kν(z) denote the modified Bessel function of order ν.
If x > 0 and Re ν > 0, then

1

4
(πx)−νΓ (ν) +

∞∑

n=1

nνKν(2πnx)

=
1

4

√
π(πx)−ν−1Γ

(
ν +

1

2

)
+

√
π

2x

(x
π

)ν+1

Γ

(
ν +

1

2

) ∞∑

n=1

(n2+x2)−ν−1/2.

(3.3.2)

Lemma 3.3.1 is due to G.N. Watson [313], who proved it by using the
Poisson summation formula. H. Kober [184] generalized Lemma 3.3.1 in two
different directions. In one of them, the index n on the left-hand side of (3.3.2)
was replaced by n+α, 0 < α < 1, and in the other, cos(2πnβ) was introduced
into the summands on the left-hand side of (3.3.2). Berndt [32] generalized
(3.3.2) by putting either an even or odd periodic sequence of coefficients in
the infinite series of (3.3.2). The proof that we give below is essentially an
elaboration of Guinand’s proof [136].

Proof of Entry 3.3.1. Setting n = kd, we find that

√
α

∞∑

n=1

σ−s(n)n
s/2Ks/2(2nα) =

√
α

∞∑

n=1

∑

d|n
d−sns/2Ks/2(2nα)

=
√
α

∞∑

d=1

∞∑

k=1

(
k

d

)s/2

Ks/2(2dkα). (3.3.3)

We now invoke Lemma 3.3.1 on the right-hand side above to deduce that for
Re s > 0,

√
α

∞∑

n=1

σ−s(n)n
s/2Ks/2(2nα)

=
√
α

∞∑

d=1

1

ds/2

(
−1

4
(dα)−s/2Γ

(s
2

)
+

1

4

√
π(dα)−s/2−1Γ

(
s+ 1

2

)

+
π3/2

2dα

(
dα

π2

)s/2+1

Γ

(
s+ 1

2

) ∞∑

n=1

1

(n2 + (dα/π)2)(s+1)/2

)
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= −1

4
α(−s+1)/2Γ

(s
2

)
ζ(s) +

1

4
α(−s−1)/2

√
πΓ

(
s+ 1

2

)
ζ(s+ 1)

+
1

2
α(s+1)/2

√
πΓ

(
s+ 1

2

) ∞∑

d=1

∞∑

n=1

1

(n2π2 + d2α2)(s+1)/2
(3.3.4)

= −1

4
α(−s+1)/2Γ

(s
2

)
ζ(s) +

1

4
α(−s−1)/2

√
πΓ

(
s+ 1

2

)
ζ(s+ 1)

+
1

2
α(−s−1)/2

√
πΓ

(
s+ 1

2

) ∞∑

d=1

∞∑

n=1

1

(n2β2/π2 + d2)(s+1)/2

= −1

4
α(−s+1)/2Γ

(s
2

)
ζ(s) +

1

4
α(−s−1)/2

√
πΓ

(
s+ 1

2

)
ζ(s+ 1)

+
1

2
β(s+1)/2

√
πΓ

(
s+ 1

2

) ∞∑

d=1

∞∑

n=1

1

(n2β2 + d2π2)(s+1)/2
, (3.3.5)

where we used the hypothesis αβ = π2. By symmetry, from (3.3.4), for
Re s > 0,

√
β

∞∑

n=1

σ−s(n)n
s/2Ks/2(2nβ)

= −1

4
β(−s+1)/2Γ

(s
2

)
ζ(s) +

1

4
β(−s−1)/2

√
πΓ

(
s+ 1

2

)
ζ(s+ 1)

+
1

2
β(s+1)/2

√
πΓ

(
s+ 1

2

) ∞∑

d=1

∞∑

n=1

1

(n2π2 + d2β2)(s+1)/2
. (3.3.6)

Reversing the roles of the summation variables d and n in (3.3.6), sub-
tracting (3.3.6) from (3.3.5), and rearranging slightly, we deduce that

√
α

∞∑

n=1

σ−s(n)n
s/2Ks/2(2nα)−

√
β

∞∑

n=1

σ−s(n)n
s/2Ks/2(2nβ)

= −1

4
α(−s+1)/2Γ

(s
2

)
ζ(s) +

1

4
α(−s−1)/2√πΓ

(
s+ 1

2

)
ζ(s+ 1)

+
1

4
β(−s+1)/2Γ

(s
2

)
ζ(s)− 1

4
β(−s−1)/2

√
πΓ

(
s+ 1

2

)
ζ(s+ 1). (3.3.7)

On the other hand, using the functional equation (3.1.4) of ζ(s) and the fact
that αβ = π2, we find that

1

4
α(−s−1)/2√πΓ

(
s+ 1

2

)
ζ(s+ 1) =

1

4
α(−s−1)/2√ππs+1/2Γ

(
−s
2

)
ζ(−s)

=
1

4
α(−s−1)/2(αβ)(s+1)/2Γ

(
−s
2

)
ζ(−s)

=
1

4
β(s+1)/2Γ

(
−s
2

)
ζ(−s). (3.3.8)
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Substituting (3.3.8) and its analogue with the roles of α and β reversed into
(3.3.7), we find that

√
α

∞∑

n=1

σ−s(n)n
s/2Ks/2(2nα)−

√
β

∞∑

n=1

σ−s(n)n
s/2Ks/2(2nβ)

= −1

4
α(−s+1)/2Γ

(s
2

)
ζ(s) +

1

4
β(s+1)/2Γ

(
−s
2

)
ζ(−s)

+
1

4
β(−s+1)/2Γ

(s
2

)
ζ(s) − 1

4
α(s+1)/2Γ

(
−s
2

)
ζ(−s). (3.3.9)

The identity (3.3.9) is simply a rearrangement of (3.3.1), and so the proof of
(3.3.1) is complete for Re s > 0. By analytic continuation, (3.3.1) is valid for
all complex numbers s. ��

Since Ks(z) = K−s(z) [314, p. 79, Eq. (8)], we see that (3.1.5) is invariant
under the replacement of s by −s.

Ramanujan completes page 253 with two corollaries, which we now state
and prove.

Entry 3.3.2 (p. 253). Let α and β be positive numbers such that αβ = π2.
Then

∞∑

n=1

σ−1(n)e
−2nα −

∞∑

n=1

σ−1(n)e
−2nβ =

β − α
12

+
1

4
log
α

β
. (3.3.10)

Proof. Let s = 1 in Entry 3.1.1. From (3.2.2),

√
αnK1/2(2nα) =

1

2

√
πe−2nα. (3.3.11)

Using (3.3.11), the values Γ (− 1
2 ) = −2Γ (12 ) = −2

√
π and ζ(−1) = − 1

12 [306,
p. 19], and the Laurent expansion of ζ(s) about s = 1 [306, p. 16, Eq. (2.1.16)]
in (3.1.5), we find that

∞∑

n=1

σ−1(n)e
−2nα −

∞∑

n=1

σ−1(n)e
−2nβ − β − α

12

=
1

2
√
π
lim
s→1

Γ
(s
2

)
ζ(s){β(1−s)/2 − α(1−s)/2}

=
1

2
lim
s→1

(
1

s− 1
+ γ + · · ·

)

×
({

1− s− 1

2
log β + · · ·

}
−
{
1− s− 1

2
logα+ · · ·

})

=
1

4
log
α

β
. (3.3.12)

We easily see that (3.3.12) is equivalent to (3.3.10), and so the proof is
complete. ��
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Entry 3.3.2 is equivalent to the identity

∞∑

m=1

1

m(e2mα − 1)
−

∞∑

m=1

1

m(e2mβ − 1)
=
β − α
12

+
1

4
log
α

β
. (3.3.13)

To see this, expand the summands in (3.3.13) in geometric series and collect
all terms with the same exponents in the resulting double series. The for-
mula (3.3.13) (or (3.3.10)) is equivalent to the transformation formula for the
logarithm of the Dedekind eta function. Ramanujan stated (3.3.13) twice in
his second notebook [268], namely as Corollary (ii) in Sect. 8 of Chap. 14 [38,
p. 256] and as Entry 27(iii) in Chap. 16 [39, p. 43]. He also recorded (3.3.13)
in an unpublished manuscript on infinite series reproduced with Ramanujan’s
lost notebook [269]; in particular, see formula (29) on page 320 of [269]. See
also Chap. 12 in this volume or [42, p. 65, Entry 3.5].

We next demonstrate that Koshliakov’s formula (3.1.1) is a corollary of
Entry 3.3.1. Our proof is a detailed explication of that of Guinand [136].

Entry 3.3.3 (p. 253). Let α and β denote positive numbers such that
αβ = π2. Then, if γ denotes Euler’s constant,

√
α

(
1

4
γ − 1

4
log(4β) +

∞∑

n=1

d(n)K0(2nα)

)

=
√
β

(
1

4
γ − 1

4
log(4α) +

∞∑

n=1

d(n)K0(2nβ)

)
. (3.3.14)

Proof. In order to let s→ 0 in Entry 3.1.1, we need the well-known Laurent
expansions [126, p. 944, formula 8.321, no. 1]

Γ (s) =
1

s
− γ + · · · (3.3.15)

and [306, pp. 19–20, Eqs. (2.4.3) and (2.4.5)]

ζ(s) = −1

2
− 1

2
log(2π)s+ · · · . (3.3.16)

Hence, letting s→ 0 in (3.1.5) and using (3.3.15) and (3.3.16), we find that

√
α

∞∑

n=1

d(n)K0(2nα)−
√
β

∞∑

n=1

d(n)K0(2nβ) (3.3.17)

=
1

4
lim
s→0

({(
1

s/2
− γ + · · ·

)(
−1

2
− 1

2
log(2π)s+ · · ·

)

×
(√

β

{
1− 1

2
s log β + · · ·

}
−
√
α

{
1− 1

2
s logα+ · · ·

})}
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+

{(
1

−s/2 − γ + · · ·
)(

−1

2
+

1

2
log(2π)s+ · · ·

)

×
(√

β

{
1 +

1

2
s log β + · · ·

}
−
√
α

{
1 +

1

2
s logα+ · · ·

})})

=
1

4
γ(
√
β −

√
α)− 1

2
log(2π)(

√
β −

√
α) +

1

4
(
√
β log β −

√
α logα)

=
1

4
γ(
√
β −

√
α)− 1

4
log(4αβ)(

√
β −

√
α) +

1

4
(
√
β log β −

√
α logα),

where in the last step we used the equality αβ = π2. A simplification and
rearrangement of (3.3.17) yield (3.3.14) to complete the proof. ��

3.4 Kindred Formulas on Page 254 of the Lost
Notebook

Entry 3.4.1 (p. 254). If a > 0,

∫ ∞

0

dx

x(e2πx − 1)(e2πa/x − 1)
= 2

∞∑

n=1

d(n)K0(4π
√
an)

=
a

π2

∞∑

n=1

d(n) log(a/n)

a2 − n2 − 1

2
γ −

(
1

4
+

1

4π2a

)
log a− log(2π)

2π2a
. (3.4.1)

Proof. Expanding the integrand in geometric series, we find that

∫ ∞

0

dx

x(e2πx − 1)(e2πa/x − 1)
=

∞∑

m=1

∞∑

k=1

∫ ∞

0

1

x
e−2π(mx+ak/x)dx

=

∞∑

m=1

∞∑

k=1

∫ ∞

0

1

u
e−2π(u+akm/u)du

=
∞∑

n=1

d(n)

∫ ∞

0

1

u
e−2π(u+an/u)du

= 2

∞∑

n=1

d(n)K0(4π
√
an),

by (3.2.1), which proves the first part of (3.4.1).
The second identity in (3.4.1) was actually first proved in print in 1966 by

Soni [295]. Her proof is short, depends on Koshliakov’s formula (3.1.1), and
uses the integral evaluations (3.2.3) with ν = 0 and (3.2.4). We use her idea
to prove the second major claim of Ramanujan on page 254. ��

In contrast to the claims on the top and bottom thirds of page 254, the
one claim in the middle of page 254 seems to be missing one element, and so
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we shall proceed as we think Ramanujan might have done. Proceeding as we
did above and employing (3.2.1), we find that

∫ ∞

0

dx√
x(e2πx − 1)(e2πa/x − 1)

=

∞∑

m=1

∞∑

k=1

1√
m

∫ ∞

0

1√
u
e−2π(u+akm/u)du

=
∞∑

n=1

σ−1/2(n)

∫ ∞

0

1√
u
e−2π(u+an/u)du

= 2

∞∑

n=1

σ−1/2(n)(an)
1/4K1/2(4π

√
an)

=
1√
2

∞∑

n=1

σ−1/2(n)e
−4π

√
an, (3.4.2)

where we have used (3.2.2). Ramanujan’s next claim gives an identity for the
last series above, with a replaced by a/4.

Entry 3.4.2 (p. 254). For a > 0,

∞∑

n=1

σ−1/2(n)e
−2π

√
an = Ka

∞∑

n=1

σ−1/2(n)

(n+ a)(
√
n+

√
a)

+ two trivial terms.

(3.4.3)

Evidently, K on the right-hand side of (3.4.3) represents an unspecified
constant. Ramanujan does not divulge the identities of the “two trivial terms.”
Our calculation in (3.4.2), showing a discrepancy with the series on the left-
hand side of (3.4.3), actually provides a clue that this series in (3.4.3) should
be replaced by the series on the right-hand side of (3.4.2). We next state a
corrected version of Entry 3.4.2 providing the identities of the constant and
the “trivial terms.”

Entry 3.4.3 (p. 254). If a > 0, then

∞∑

n=1

σ−1/2(n)e
−4π

√
an − a

π

∞∑

n=1

σ−1/2(n)

(n+ a)(
√
n+

√
a)

=
1

2
ζ

(
1

2

)(
1

π
√
a
− 1

)
+

1

2
ζ

(
−1

2

)(
4π

√
a− 1

πa

)
. (3.4.4)

Proof. In (3.1.5), set s = 1
2 and α = x, so that β = π2/x. Then,

√
x

∞∑

n=1

σ−1/2(n)n
1/4K1/4(2nx)−

π√
x

∞∑

n=1

σ−1/2(n)n
1/4K1/4(2nπ

2/x)

=
1

4
Γ

(
1

4

)
ζ

(
1

2

)( √
π

x1/4
− x1/4

)
+

1

4
Γ

(
−1

4

)
ζ

(
−1

2

)(
π3/2

x3/4
− x3/4

)
.

(3.4.5)
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Multiply both sides of (3.4.5) by

1

x5/2
K1/4(2aπ

2/x)

and integrate over (0,∞). Inverting the order of summation and integration
by absolute convergence, we find that

∞∑

n=1

σ−1/2(n)n
1/4

∫ ∞

0

1

x2
K1/4(2nx)K1/4(2aπ

2/x)dx (3.4.6)

− π
∞∑

n=1

σ−1/2(n)n
1/4

∫ ∞

0

1

x3
K1/4(2nπ

2/x)K1/4(2aπ
2/x)dx

=
1

4
Γ

(
1

4

)
ζ

(
1

2

)(√
πI3 − I1

)
+

1

4
Γ

(
−1

4

)
ζ

(
−1

2

)(
π3/2I5 − I−1

)
,

where

Ij =

∫ ∞

0

uj/4K1/4(2aπ
2u)du, (3.4.7)

and where to obtain the four integrals on the right-hand side of (3.4.6), we
made the change of variable x = 1/u in each one.

We examine each of the six integrals in (3.4.6) in turn. First, using (3.2.3)
and (3.2.2), we find that

∫ ∞

0

1

x2
K1/4(2nx)K1/4(2aπ

2/x)dx =
1

2aπ
K1/2(4π

√
an)

=
1

4
√
2a5/4n1/4π

e−4π
√
an. (3.4.8)

Second, making the change of variable u = π2/x and using (3.2.5), we deduce
that
∫ ∞

0

1

x3
K1/4(2nπ

2/x)K1/4(2aπ
2/x)dx =

1

π4

∫ ∞

0

uK1/4(2nu)K1/4(2au)du

=
1

π4
π(4na)−1/4(

√
2n−

√
2a)

2 sin(π/4)(4n2 − 4a2)

=

√
2(an)−1/4

8π3(n+ a)(
√
n+

√
a)
. (3.4.9)

In our calculations of Ij , j = 3, 1, 5,−1, we employ (3.2.6). Thus,

I3 = 2−1/4(2aπ2)−7/4Γ (1)Γ

(
3

4

)
=

1

4a7/4π7/2
Γ

(
3

4

)
, (3.4.10)

I1 = 2−3/4(2aπ2)−5/4Γ

(
3

4

)
Γ

(
1

2

)
=

1

4a5/4π2
Γ

(
3

4

)
, (3.4.11)
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I5 = 21/4(2aπ2)−9/4Γ

(
5

4

)
Γ (1) =

1

4a9/4π9/2
Γ

(
5

4

)
, (3.4.12)

I−1 = 2−5/4(2aπ2)−3/4Γ

(
1

2

)
Γ

(
1

4

)
=

1

4a3/4π
Γ

(
1

4

)
. (3.4.13)

Using (3.4.8)–(3.4.13) in (3.4.6) and making frequent use of the reflection
formula

Γ (z)Γ (1− z) = π

sin(πz)
,

we deduce that

1

4
√
2a5/4π

∞∑

n=1

σ−1/2(n)e
−4π

√
an − 1

4
√
2a1/4π2

∞∑

n=1

σ−1/2(n)

(n+ a)(
√
n+

√
a)

=

√
2

16
ζ

(
1

2

)(
1

a7/4π2
− 1

a5/4π

)
+

√
2

16
ζ

(
−1

2

)(
− 1

a9/4π2
+

4

a3/4

)
.

(3.4.14)

If we multiply both sides of (3.4.14) by 4
√
2a5/4π and rearrange slightly, we

obtain (3.4.4) to complete the proof. ��

We record the last two results on page 254 as Ramanujan wrote them,
except that we express the results in terms of Bessel functions. The constant
K and the “two trivial terms” are not the same as they are in Entry 3.4.2.

Entry 3.4.4 (p. 254). If a > 0, then

∫ ∞

0

dx

(e2πx − 1)(e2πa/x − 1)
= 2

√
a

∞∑

n=1

σ−1(n)
√
nK1(4π

√
an) (3.4.15)

= Ka2
∞∑

n=1

σ−1(n)

n(n+ a)
+ two trivial terms.

(3.4.16)

Proof. We prove (3.4.15). Expanding the integrand in geometric series,
setting mx = u, and invoking (3.2.1), we find that

∫ ∞

0

dx

(e2πx − 1)(e2πa/x − 1)
=

∞∑

m=1

∞∑

k=1

1

m

∫ ∞

0

e−2π(u+akm/u)du

=

∞∑

n=1

σ−1(n)

∫ ∞

0

e−2π(u+an/u)du

= 2
√
a

∞∑

n=1

σ−1(n)
√
nK1(4π

√
an).

��
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Lastly, we provide and prove a more precise version of (3.4.16) giving the
identities of the missing terms.

Entry 3.4.5 (p. 254). If a > 0 and γ denotes Euler’s constant, then

2
√
a

∞∑

n=1

σ−1(n)
√
nK1(4π

√
an)

= − a
2

2π

∞∑

n=1

σ−1(n)

n(n+ a)
+
a

2π
((log a+ γ)ζ(2) + ζ′(2))+

1

4π
(log 2aπ+γ)+

1

48aπ
.

(3.4.17)

Proof. In (3.3.10), set α = x, so that β = π2/x. Recalling (3.2.2), we find
that

2√
π

∞∑

n=1

σ−1(n)
√
nxK1/2(2nx)

=

( ∞∑

n=1

σ−1(n)e
−2nπ2/x − x

12

)
+

1

2
log
x

π
+
π2

12x

=: I1 + I2 + I3. (3.4.18)

Next, multiply both sides of (3.4.18) by

1

x5/2
K1/2(2aπ

2/x)

and integrate over (0,∞).
Consider first the series arising on the left-hand side of (3.4.18). Inverting

the order of summation and integration on the left-hand side by absolute
convergence, we arrive at

2√
π

∞∑

n=1

σ−1(n)
√
n

∫ ∞

0

1

x2
K1/2(2nx)K1/2(2aπ

2/x)dx

=
1

aπ3/2

∞∑

n=1

σ−1(n)
√
nK1(4π

√
an), (3.4.19)

where we have employed (3.2.3).
Second, the contribution from I3 in (3.4.18) is given by

π2

12

∫ ∞

0

x−7/2K1/2(2aπ
2/x)dx =

π2

12

∫ ∞

0

u3/2K1/2(2aπ
2u)du =

1

96a5/2π5/2
,

(3.4.20)
where we used (3.2.6) in the last step with μ = 3

2 , ν = 1
2 , and a replaced by

2aπ2.
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Third, using (3.2.2), we find that the contribution from I2 in (3.4.18) is
equal to

1

2

∫ ∞

0

x−5/2 log(x/π)K1/2(2aπ
2/x)dx

=
1

4
√
aπ

∫ ∞

0

x−2 log(x/π)e−2aπ2/xdx

=
1

8a3/2π5/2

∫ ∞

0

log(2aπ/u)e−udu

=
1

8a3/2π5/2

{∫ ∞

0

e−u log(2aπ)du−
∫ ∞

0

e−u log u du

}

=
1

8a3/2π5/2

{
log(2aπ)−

∫ ∞

0

e−u log u du

}

=
1

8a3/2π5/2
{log(2aπ) + γ} , (3.4.21)

since [126, p. 602, formula 4.331, no. 1]

γ = −
∫ ∞

0

e−u log u du.

Finally, the contribution from I1 in (3.4.18) is given by

J :=

∫ ∞

0

( ∞∑

n=1

σ−1(n)e
−2nπ2/x − 1

12
x

)
x−5/2K1/2(2aπ

2/x)dx. (3.4.22)

Recall that ζ(2) = π2/6. Thus, we can write

∞∑

n=1

σ−1(n)e
−2nπ2/x − 1

12
x =

∞∑

n=1

∑

d|n

1

d
e−2nπ2/x − 1

12
x

=

∞∑

d=1

∞∑

m=1

1

d
e−2mdπ2/x − 1

12
x

=
∞∑

d=1

1

d

1

e2dπ2/x − 1
−
( ∞∑

n=1

1

n2

)
x

2π2
. (3.4.23)

Using (3.4.23) and (3.2.2) in (3.4.22), we see that

J =

∫ ∞

0

( ∞∑

n=1

1

n

1

e2nπ2/x − 1
−
( ∞∑

n=1

1

n2

)
x

2π2

)
1

2
√
aπ
e−2aπ2/x dx

x2

=
1

2
√
aπ

∫ ∞

0

∞∑

n=1

1

n

(
1

e2nπ2/x − 1
− 1

2nπ2/x

)
e−2aπ2/x dx

x2
. (3.4.24)
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Since for z > 0,
1

ez − 1
− 1

z
< 0,

we can change the order of summation and integration by the monotone
convergence theorem. Hence,

J =
1

2
√
aπ

∞∑

n=1

1

n

∫ ∞

0

(
1

e2nπ2/x − 1
− 1

2nπ2/x

)
e−2aπ2/x dx

x2

=
1

4
√
aπ5/2

∞∑

n=1

1

n2

∫ ∞

0

(
1

eu − 1
− 1

u

)
e−au/ndu. (3.4.25)

Consider now two different expressions for the logarithmic derivative of
the gamma function, namely [126, p. 952, formula 8.362, no. 1; formula 8.361,
no. 8],

Γ ′(z)
Γ (z)

= −γ − 1

z
+

∞∑

n=1

z

n(n+ z)

= log z − 1

z
−
∫ ∞

0

(
1

et − 1
− 1

t

)
e−tzdt,

where Re z > 0. Hence,
∫ ∞

0

(
1

eu − 1
− 1

u

)
e−au/ndu = log(a/n) + γ −

∞∑

m=1

a

m(mn+ a)
. (3.4.26)

Putting (3.4.26) in (3.4.25), we find that

J =
1

4a1/2π5/2

∞∑

n=1

1

n2

(
log(a/n) + γ −

∞∑

m=1

a

m(mn+ a)

)

=
1

4a1/2π5/2

(
(log a+ γ)ζ(2)−

∞∑

n=1

logn

n2
−

∞∑

n=1

∞∑

m=1

a

n2m(mn+ a)

)

=
1

4a1/2π5/2

(
(log a+ γ)ζ(2) + ζ′(2)− a

∞∑

n=1

σ−1(n)

n(n+ a)

)

= − a1/2

4π5/2

∞∑

n=1

σ−1(n)

n(n+ a)
+

1

4a1/2π5/2
((log a+ γ)ζ(2) + ζ′(2)). (3.4.27)

We now combine all our calculations that arose from (3.4.18), namely,
(3.4.19)–(3.4.22), and (3.4.27), to deduce that

1

aπ3/2

∞∑

n=1

σ−1(n)
√
nK1(4π

√
an) =

1

96a5/2π5/2
+

1

8a3/2π5/2
{log(2aπ) + γ}

− a1/2

4π5/2

∞∑

n=1

σ−1(n)

n(n+ a)
+

1

4a1/2π5/2
((log a+ γ)ζ(2) + ζ′(2)). (3.4.28)
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Finally multiply both sides of (3.4.28) by 2π3/2a3/2 to deduce (3.4.17) and
complete the proof. ��

Analogues of Guinand’s formula in Entry 3.3.1 and Watson’s lemma
(Lemma 3.3.1) have been derived by Berndt [27]. These analogues are also dis-
cussed in the paper [62] on which this chapter is based. Analogues of Guinand’s
and Koshliakov’s formulas with characters in the summands have been derived
by Berndt, A. Dixit, and Sohn [52]. A different character analogue of Koshli-
akov’s formula along with a connection to integrals of Dirichlet L-functions
that are analogues of Ramanujan’s famous integrals involving Riemann’s Ξ-
function [257] has been derived by Dixit [110]. H. Cohen [98] has continued
the line of investigation represented by Entry 3.4.5 and has derived several
interesting formulas of the same sort.

Dixit [107] has derived a beautiful extension of Koshliakov’s formula.
Recall that Riemann’s ξ-function is defined by

ξ(s) := (s− 1)π−s/2Γ (1 + 1
2s)ζ(s), (3.4.29)

and that his Ξ-function is defined by

Ξ(t) := ξ(12 + it). (3.4.30)

We now state Dixit’s extension [107].

Theorem 3.4.1 (Extended version of Koshliakov’s formula). Let Ξ(t)
be defined by (3.4.30). If α and β are positive numbers such that αβ = 1, then

√
α

(
γ − log(4πα)

α
− 4

∞∑

n=1

d(n)K0(2πnα)

)

=
√
β

(
γ − log(4πβ)

β
− 4

∞∑

n=1

d(n)K0(2πnβ)

)

= −32

π

∫ ∞

0

(
Ξ
(
1
2 t
))2

cos
(
1
2 t logα

)
dt

(1 + t2)2
. (3.4.31)

Dixit first showed that the far left side of (3.4.31) is equal to the integral on
the far right-hand side. Next observe that if we put α = 1/β in this equality,
then the first equality in (3.4.31) easily follows. Koshliakov [191] derived a
formula similar to (3.4.31). Essentially, his formula arises from taking the
Fourier cosine transform of both sides of (3.4.31).

Dixit [109] has also extended Guinand’s formula.

Theorem 3.4.2 (Extended version of Guinand’s formula). If α and β
are positive numbers such that αβ = 1, then for −1 < Re z < 1,
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√
α
(
αz/2−1π−z/2Γ

(z
2

)
ζ(z) + α−z/2−1πz/2Γ

(
−z
2

)
ζ(−z) (3.4.32)

−4
∞∑

n=1

σ−z(n)n
z/2Kz/2 (2nπα)

)

=
√
β
(
βz/2−1π−z/2Γ

(z
2

)
ζ(z) + β−z/2−1πz/2Γ

(
−z
2

)
ζ(−z)

−4

∞∑

n=1

σ−z(n)n
z/2Kz/2 (2nπβ)

)

= −32

π

∫ ∞

0

Ξ

(
t+ iz

2

)
Ξ

(
t− iz
2

)
cos
(
1
2 t logα

)

(t2 + (z + 1)2)(t2 + (z − 1)2)
dt.

As with Dixit’s extension of Koshliakov’s formula, suppose that we can
show that the far left side of (3.4.32) is equal to the far right side above. Then
if we set α = 1/β in this equality, the first equality of (3.4.32) follows. Dixit
[109] has obtained a companion theorem to Theorem 3.4.2 for |Re z| > 1.



4

Theorems Featuring the Gamma Function

4.1 Introduction

In this chapter we collect scattered results from the lost notebook that involve
the classical gamma function Γ (z). In the next three sections, we consider
the evaluations of three integrals involving the gamma function recorded on
page 199 in [269]. Following these sections, we consider a very precise, fasci-
nating approximation to the gamma function,

√
π
(x
e

)x(
8x3 + 4x2 + x+

1

100

)1/6

< Γ (x+ 1) (4.1.1)

<
√
π
(x
e

)x (
8x3 + 4x2 + x+

1

30

)1/6

,

which is found on page 339 [269]. A slightly less precise forerunner appeared as
a problem submitted by Ramanujan to the Journal of the Indian Mathematical
Society [260], but a complete solution was never published in that journal. The
inequalities (4.1.1) were proved by E.A. Karatsuba [177] in 2001 for x ≥ 1 and
by H. Alzer [4] in 2003 for 0 ≤ x ≤ 1. In Sects. 4.5–4.8, we provide Karatsuba’s
elegant solution. Finally, in Sect. 4.9 we discuss a few miscellaneous claims.

4.2 Three Integrals on Page 199

In Chap. 13 of his second notebook [268], [38, pp. 226–227], Ramanujan briefly
examined the problem of finding functions f such that

∫ ∞

−∞
f(x)dx =

∞∑

n=−∞
f(n). (4.2.1)

In particular, he incorrectly asserted that

G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook:
Part IV, DOI 10.1007/978-1-4614-4081-9 4,
© Springer Science+Business Media New York 2013
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∫ ∞

−∞

ax

Γ (x+ 1)
dx = ea. (4.2.2)

If (4.2.2) were correct, then (4.2.2) would provide an example of (4.2.1), since
1/Γ (n + 1) = 0 when n is a negative integer. Authors examining instances
of (4.2.1) include R.P. Boas and H. Pollard [72], P.J. Forrester [120], and
K.S. Krishnan [202].

Page 199 in Ramanujan’s lost notebook is devoted to three integral for-
mulas, which can be considered attempts to give corrected versions of (4.2.2).
Two of them are correct, but the remaining one is not, although it is true in
certain cases.

Entry 4.2.1 (p. 199). If a > 0 and k ≥ 0, then

∫ ∞

−k

ax

Γ (x+ 1)
dx+

∫ ∞

0

e−axxk−1

π2 + log2 x

(
cos πk − 1

π
sin πk log x

)
dx = ea.

(4.2.3)

Entry 4.2.2 (p. 199). If a > 0 and k ≥ 0, then

∫ ∞

−k

ax

Γ (x+ 1)
dx+

1

2π

∫ ∞

0

{
eiπ(k+ix)

ak+ix
Γ (k + ix)

+
e−iπ(k−ix)

ak−ix
Γ (k − ix)

}
dx = ea. (4.2.4)

Entry 4.2.3 (p. 199). If a > 0, 0 ≤ λ < ε, and 1/ε is a positive integer,
then

ε

∞∑

n=0

aλ+nε

Γ (1 + λ+ nε)
= ea − ε

π

∫ ∞

0

e−axx−λ−1 sin π(λ − ε)− xε sin πλ
2 cos πε − (xε + x−ε)

dx.

(4.2.5)

In the next section, we prove Entries 4.2.1 and 4.2.2, while in the sub-
sequent section we discuss Entry 4.2.3. We demonstrate its incorrectness by
showing that as a → ∞, the two sides of (4.2.5) have different asymptotic
expansions. On the other hand, if we regard the left side of (4.2.5) as a Rie-
mann sum, then the limits of both sides as ε→ 0 are equal.

The content of this portion of the chapter first appeared in a paper written
by the second author [43].

4.3 Proofs of Entries 4.2.1 and 4.2.2

Proof of Entry 4.2.1. Let f(a, k) denote the left side of (4.2.3). Then, by
straightforward differentiation, the reflection formula for Γ (k), and the stan-
dard integral representation for Γ (k),
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∂

∂k
f(a, k) =

a−k

Γ (1− k) +
∫ ∞

0

e−axxk−1 log x

π2 + log2 x

(
cos πk − 1

π
sin πk log x

)
dx

+

∫ ∞

0

e−axxk−1

π2 + log2 x
(−π sin πk − cos πk log x) dx

=
a−k

Γ (1− k) −
sin πk

π

∫ ∞

0

e−axxk−1dx

=
a−k

π
Γ (k) sin πk − sin πk

π
a−kΓ (k) = 0. (4.3.1)

Hence, f(a, k) is constant with respect to k.
Next, differentiating with respect to a and using the functional equation

for the Γ -function, we find that

∂

∂a
f(a, k)

=

∫ ∞

−k

xax−1

Γ (x+ 1)
dx−

∫ ∞

0

e−axxk

π2 + log2 x

(
cos πk − 1

π
sin πk log x

)
dx

=

∫ ∞

−k−1

ax

Γ (x+ 1)
dx+

∫ ∞

0

e−axxk

π2 + log2 x

(
cos π(k + 1)

− 1

π
sin π(k + 1) log x

)
dx

= f(a, k + 1). (4.3.2)

Thus, by (4.3.1) and (4.3.2),

∂

∂a
f(a, k) = f(a, k).

It follows that for some constant c,

f(a, k) = cea. (4.3.3)

It remains to evaluate c, and more precisely, in order to prove (4.2.3), we must
show that c = 1.

To prove that c = 1, we evaluate f(a, k) when a = k = 0. From the
definition of f and the substitution u = log x, we see that

f(0, 0) =

∫ ∞

0

dx

x(π2 + log2 x)
=

∫ ∞

−∞

du

π2 + u2
= 1. (4.3.4)

Using (4.3.4) in (4.3.3), we conclude that c = 1, as desired. ��

Proof of Entry 4.2.2. Let f(a, k) denote the left side of (4.2.4). Then
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∂

∂k
f(a, k)

=
a−k

Γ (1− k) +
iπ

2π

∫ ∞

0

{
eiπ(k+ix)

ak+ix
Γ (k + ix)− e

−iπ(k−ix)

ak−ix
Γ (k − ix)

}
dx

− log a

2π

∫ ∞

0

{
eiπ(k+ix)

ak+ix
Γ (k + ix) +

e−iπ(k−ix)

ak−ix
Γ (k − ix)

}
dx

+
1

2π

∫ ∞

0

{
eiπ(k+ix)

ak+ix

∂

∂k
Γ (k + ix) +

e−iπ(k−ix)

ak−ix

∂

∂k
Γ (k − ix)

}
dx. (4.3.5)

Now by the chain rule,

∂

∂k
Γ (k ± ix) = ∓i ∂

∂x
Γ (k ± ix). (4.3.6)

Hence, using (4.3.6) in (4.3.5) and integrating by parts, we find that

∂

∂k
f(a, k)

=
a−k

Γ (1− k) +
i

2

∫ ∞

0

{
eiπ(k+ix)

ak+ix
Γ (k + ix)− e

−iπ(k−ix)

ak−ix
Γ (k − ix)

}
dx

− log a

2π

∫ ∞

0

{
eiπ(k+ix)

ak+ix
Γ (k + ix) +

e−iπ(k−ix)

ak−ix
Γ (k − ix)

}
dx

+
1

2πi

{
eiπ(k+ix)

ak+ix
Γ (k + ix)

∣∣∣∣
∞

0

− e
−iπ(k−ix)

ak−ix
Γ (k − ix)

∣∣∣∣
∞

0

}

− 1

2πi

∫ ∞

0

{
−πeiπ(k+ix)

ak+ix
Γ (k + ix) +

πe−iπ(k−ix)

ak−ix
Γ (k − ix)

}
dx

+
i log a

2πi

∫ ∞

0

{
eiπ(k+ix)

ak+ix
Γ (k + ix) +

e−iπ(k−ix)

ak−ix
Γ (k − ix)

}
dx. (4.3.7)

Observe that by Stirling’s formula for the Γ -function on a vertical line [126,
p. 945], the expressions for the integrated terms vanish at ∞. After consider-
able cancellation, (4.3.7) reduces simply to

∂

∂k
f(a, k) =

a−k

Γ (1− k) −
1

2πi

(
eiπk

ak
− e

−iπk

ak

)
Γ (k)

=
a−k

π
sin(πk)Γ (k)− a

−k

π
sin(πk)Γ (k) = 0, (4.3.8)

upon again using the reflection formula for the Γ -function. Thus, f(a, k) is
constant with respect to k.

Next, differentiating and using the functional equation of the Γ -function,
we find that
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∂

∂a
f(a, k) =

∫ ∞

−k−1

ax

Γ (x+ 1)
dx+

1

2π

∫ ∞

0

{
eiπ(k+1+ix)

ak+1+ix
Γ (k + 1 + ix)

+
e−iπ(k+1−ix)

ak+1−ix
Γ (k + 1− ix)

}
dx

= f(a, k + 1). (4.3.9)

Hence, by (4.3.8) and (4.3.9),

∂

∂a
f(a, k) = f(a, k),

and so, for some constant c,

f(a, k) = cea. (4.3.10)

By (4.2.4), it remains to show that c = 1.
To determine c, we evaluate f(a, k) when a = 1 and k = 0. Recalling that

f(a, k) denotes the left side of (4.2.4), we see that

f(1, 0) =

∫ ∞

0

dx

Γ (x+ 1)
+

1

2π

∫ ∞

0

{
e−πx (Γ (ix) + Γ (−ix))

}
dx. (4.3.11)

To evaluate the latter integral, examine, for ε > 0,

Iε :=
1

2π

∫ ∞

0

{
e−πx (Γ (ε+ ix) + Γ (ε− ix))

}
dx. (4.3.12)

Inserting the integral representations for Γ (ε ± ix) in (4.3.12) and inverting
the order of integration by absolute convergence, we find that

Iε =
1

2π

(∫ ∞

0

e−t

t1−ε
dt

∫ ∞

0

e−x(π−i log t)dx+

∫ ∞

0

e−t

t1−ε
dt

∫ ∞

0

e−x(π+i log t)dx

)

=
1

2π

∫ ∞

0

e−t

t1−ε

(
1

π − i log t +
1

π + i log t

)
dt

=

∫ ∞

0

e−t

t1−ε(π2 + log2 t)
dt. (4.3.13)

Since
∫ ∞

0

e−t

t(π2 + log2 t)
dt <∞,

by the Lebesgue dominated convergence theorem, we may take the limit as
ε→ 0 under the integral sign on the right side of (4.3.13). Thus, from (4.3.13)
and (4.3.11),

f(1, 0) =

∫ ∞

0

dt

Γ (t+ 1)
+

∫ ∞

0

e−t

t(π2 + log2 t)
dt = e, (4.3.14)

by (4.2.3). Hence, by (4.3.10), c = 1, as desired. ��
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4.4 Discussion of Entry 4.2.3

We first observe that the sum on the left side of (4.2.5) is a Riemann sum in
which each subinterval is of length ε, and the function ax/Γ (1+x) is evaluated
at the point λ+ nε in the nth subinterval, where n ≥ 0 and 0 ≤ λ < ε. Thus,
as ε → 0, the left side of (4.2.5) tends to the first integral on the left side
of (4.2.3) when k = 0. For the integral on the right side of (4.2.5), we can
let ε → 0 inside the integral sign by the dominated convergence theorem.
Recalling that 0 ≤ λ < ε, we will assume that λ is a twice differentiable
function of ε in applying L’Hospital’s rule. After a straightforward, but not
so short, calculation, we find that

lim
ε→0

ε(sin π(λ− ε)− xε sin πλ)
2 cos πε− (xε + x−ε)

=
π

π2 + log2 x
.

Thus, letting ε→ 0 on both sides of (4.2.5), we find that the proposed equality
becomes

∫ ∞

0

ax

Γ (x+ 1)
dx = ea −

∫ ∞

0

e−ax

x(π2 + log2 x)
dx,

which is true, by (4.2.3) with k = 0, and so Entry 4.2.3 is valid in the limit
as ε→ 0.

When λ = 0 and ε = 1, then both sides of (4.2.5) are equal to ea. Numerical
calculations also show that for λ = 1

2 , ε = 1, and small a, e.g., a = 1, 2, the
two sides of (4.2.5) agree to at least 30 decimal places.

We now show that (4.2.5) is not valid in general. For simplicity, we choose
λ = 1

2 and ε = 1 and show asymptotically that as a → ∞, the left and right
sides of (4.2.5) have different asymptotic expansions. Similar arguments are
valid for other fixed values of λ and ε. Now

1√
x(1 + x)

=

∞∑

n=0

(−1)nxn−1/2, 0 < x < 1,

and so by a routine application of Watson’s Lemma [238, p. 113], the right
side of (4.2.5) has the asymptotic expansion, as a→ ∞,

ea − 1

π

∞∑

n=0

(−1)nΓ (n+ 1
2 )

an+1/2
. (4.4.1)

On the left side of (4.2.5), we use a result of Ramanujan from Chap. 3 in
his second notebook [268], [37, pp. 57, 58, Entry 10] along with the familiar
asymptotic expansion [1, p. 257, formula 6.147]

xb−aΓ (x+ a)

Γ (x+ b)
= 1 +

(a− b)(a+ b− 1)

2x
+O

(
1

x2

)
, (4.4.2)
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as x → ∞. A complete statement of Entry 10 in Chap. 3 is too long to
give here, but it suffices to say that we are applying Entry 10 to φ(x) =
Γ (x+1)/Γ (x+ 3

2 ), which easily satisfies the theorem’s hypotheses. Accordingly,
we find from (4.4.2) that as a→ ∞,

∞∑

n=0

an+1/2

Γ (n+ 3
2 )

=
√
a

∞∑

n=0

an

n!

Γ (n+ 1)

Γ (n+ 3
2 )

= ea
√
a

{
Γ (a+ 1)

Γ (a+ 3
2 )

+O

(
1

a5/2

)}

= ea
√
a

{
a−1/2

(
1− 3

8a
+O

(
1

a2

))
+O

(
1

a5/2

)}

= ea
{
1− 3

8a
+O

(
1

a2

)}
. (4.4.3)

A comparison of (4.4.3) with (4.4.1) shows that the left and right sides
of (4.2.5) have different asymptotic expansions as a → ∞, and so (4.2.5)
cannot be true in general. In conclusion, however, we remark that in his note-
books, Ramanujan often wrote equality signs for asymptotic expansions and
approximations; for example, he never used the symbols ∼ or ≈. Thus, it is
most likely that Ramanujan himself did not regard (4.2.5) as an equality.

4.5 An Asymptotic Expansion of the Gamma Function

On page 339 in his lost notebook [269], Ramanujan states a remarkably in-
teresting formula for the classical gamma function.

Entry 4.5.1 (p. 339). If x ≥ 0, then

Γ (1 + x) =
√
π
(x
e

)x(
8x3 + 4x2 + x+

θx
30

)1/6

, (4.5.1)

where θx has the particular values

θ0 =
30

π3
= 0.9675,

θ1/12 = 0.8071, θ7/12 = 0.3058,

θ2/12 = 0.6160, θ8/12 = 0.3014,

θ3/12 = 0.4867, θ9/12 = 0.3041,

θ4/12 = 0.4029, θ10/12 = 0.3118,

θ5/12 = 0.3509, θ11/12 = 0.3227,

θ6/12 = 0.3207, θ1 = 0.3359,

θ∞ = 1.
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Moreover,

√
π
(x
e

)x(
8x3 + 4x2 + x+

1

100

)1/6

< Γ (x+ 1) (4.5.2)

<
√
π
(x
e

)x (
8x3 + 4x2 + x+

1

30

)1/6

.

This entry is a more precise version of a problem that Ramanujan had sub-
mitted to the Journal of the Indian Mathematical Society [260], [267, p. 333],
[65, p. 249], [49].

Question 754. Show that

exx−xπ−1/2Γ (1 + x) = (8x3 + 4x2 + x+ E)1/6,

where E lies between 1
100 and 1

30 for all positive values of x.
K.B. Madhava’s partial solution in Volume 12 of the Journal of the Indian

Mathematical Society does not yield the bounds for E proposed by Ramanu-
jan. In Volume 13, E.H. Neville and C. Krishnamachary pointed out numerical
errors in Madhava’s solution, and consequently, Madhava’s bounds for E are
actually better than what he had originally claimed, but still not as sharp
as those posed by Ramanujan. Neville and Krishnamachary conclude their
remarks by writing, “Mr Ramanujam’s assertion is seen to be credible, but
more powerful means must be used if it is to be proved.”

Before proving (4.5.2), we comment on the numerical values in the first
portion of Entry 4.5.1. We checked each of the values of θx with Mathematica
and found them to be correct, except for θ1/2 and θ11/12, for which the last
recorded digit is incorrect (when rounded off). More precisely, θ1/2 = 0.320763
and θ11/12 = 0.322766.

In considering Ramanujan’s claim, S. Ponnusamy and M. Vuorinen [240]
defined the function

h(x) = (g(x))6 − (8x3 + 4x2 + x), (4.5.3)

where

g(x) =
( e
x

)x Γ (1 + x)√
π

, (4.5.4)

and showed that in order to prove (4.5.2) for x ≥ 1, it suffices to show that
h(x) is increasing from (1,∞) onto ( 1

100 ;
1
30 ). (See also the book [9, p. 476]

by G. Anderson, M. Vamanamurthy, and M. Vuorinen.) (Observe that θx
given in (4.5.1) is the same as the definition of h(x) from (4.5.3).) Karatsuba
[177] proved the conjecture about h(x), and so the primary purpose in the
following sections is to provide Karatsuba’s proof and so in the process to
prove Entry 4.5.1 for x ≥ 1 as well. More precisely, we prove the following
theorem of Karatsuba [177].

Theorem 4.5.1. The function h(x) is monotonically increasing from (1,∞)
onto (h(1), h(∞)) with
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h(1) =
e6

π3
− 13 = 0.0111976 . . .

and

h(∞) =
1

30
= 0.0333 . . . .

Before proving Theorem 4.5.1, we offer some remarks on further work by
H. Alzer [4] and C. Mortici [227, 228]. As remarked earlier, Alzer proved
that (4.5.2) also holds for x ∈ (0, 1). However, in contrast to [1,∞), where
Karatsuba proved that h(x) is strictly increasing, h(x) is not monotonic on
(0, 1). Computer calculations indicate that h(x) has a local maximum and a
local minimum on (0, 1). More precisely, it appears that h(x) is increasing on
[0, a], decreasing on [a, b], and increasing on [b, 1], where

a ≈ 0.007714449 and b ≈ 0.671503766.

Moreover,
h(a) ≈ 0.033250349.

This is very interesting. Since h(∞) = 1
30 = 0.0333 . . . , we find that the value

at the local maximum obtained at x = a is almost equal to the absolute maxi-
mum of h(x) obtained at∞. From Ramanujan’s calculations of θx = 30h(x) in
Entry 4.5.1, it is not clear whether Ramanujan realized that h(x) is increasing
near x = 0 and then shortly thereafter achieves a local maximum at x = a.
If he had noticed this, he likely would have highlighted this behavior with a
few values of θx for x between 0 and 1

12 . However, Ramanujan’s calculations
do indicate that h(x) achieves a local minimum between 2

3 and 3
4 , and it is

quite likely that he saw that 2
3 is very close to the point at which this local

minimum is achieved. Alzer also showed that Ramanujan’s lower bound of 1
100

for h(x) can be replaced by

min
0.6≤x≤0.7

h(x) = 0.010045071 . . . ,

and that this is the best possible result. Karatsuba had previously shown that
the upper bound of 1

30 is indeed best possible. We will not prove Alzer’s theo-
rem here. Mortici [227–229] further improved the work of Alzer and Karatsuba
by proving the following sharper inequality. For x ≥ 8,

√
π
(x
e

)x(
8x3 + 4x2 + x+

1

30
− 11

240x

)1/6

< Γ (x+ 1) <
√
π
(x
e

)x (
8x3 + 4x2 + x+

1

30
− 10

240x

)1/6

. (4.5.5)

The leftmost inequality in (4.5.5) actually holds for x ≥ 2. An improvement
on Mortici’s theorem for positive integral values of the argument was achieved
by Hirschhorn [161? ], who proved that
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√
π
(n
e

)n(
8n3 + 4n2 + n+

1

30
− 11

240n
+

5

240n2

)1/6

< Γ (n+ 1) <
√
π
(n
e

)n(
8n3 + 4n2 + n+

1

30
− 11

240n
+

9

240n2

)1/6

.

Yet another asymptotic formula for the gamma function has been derived
by G. Nemes [231], who compares his formula with that of Ramanujan.

To prove Theorem 4.5.1, three lemmas are necessary.

Lemma 4.5.1. For x ≥ x0 = 2.4, the function h(x) satisfies the inequalities

1

100
< h(x) <

1

30
.

Moreover, h(x) → 1
30 , as x→ ∞.

Lemma 4.5.2. For x ≥ x1 = 4.21, the function h(x) is monotonically
increasing.

Lemma 4.5.3. For 1 < x ≤ max(x0, x1) = 4.21, the function h(x) is mono-
tonically increasing.

Our proofs naturally rely on the asymptotic formulas of Stirling for the
functions logΓ (x) and ψ(x) = Γ ′(x)/Γ (x), as well as computer calculations
for 1 < x ≤ 4.21. For the latter, we shall not give details but refer to the work
of Karatsuba [177].

4.6 An Integral Arising in Stirling’s Formula

We first write h(x) in terms of an integral arising from Stirling’s formula for
logΓ (x). To that end, take logarithms of both sides of (4.5.4) to deduce that

log g(x) = x− x log x+ log x− log
√
π + logΓ (x). (4.6.1)

Now recall Stirling’s formula for log Γ (x) in the form [176, pp. 342–343]

logΓ (x) =

(
x− 1

2

)
log x− x+ log

√
2π + J(x), (4.6.2)

where

J(x) :=

∫ ∞

0

σ(u)du

(x + u)2
, (4.6.3)

σ(u) :=

∫ u

0

ρ(t)dt, (4.6.4)
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and

ρ(t) =
1

2
− {t}, (4.6.5)

and where {t} denotes the fractional part of t. Substitute (4.6.2) into (4.6.1)
to deduce that

log g(x) = log
√
2x+ J(x),

or

g(x) =
√
2xeJ(x).

From this and from (4.5.3), we deduce the useful representation

h(x) = 8x3e6J(x) − (8x3 + 4x2 + x). (4.6.6)

We next determine an asymptotic expansion for J(x). From (4.6.4) and
(4.6.5), we easily see that

σ(u + 1) = σ(u)

and

σ(u) = σ({u}) =
∫ {u}

0

(
1

2
− t
)
dt =

1

2
{u}(1− {u}).

Hence, for 0 ≤ u ≤ 1,

σ(u) =
1

2
u(1− u), σ(0) = σ(1) = 0, σ′(u) =

1

2
− u.

Now expand σ(u) in a Fourier series

σ(u) =
∞∑

n=−∞
c(n)e2πinu, (4.6.7)

where the coefficients c(n) are given by

c(0) =

∫ 1

0

σ(u)du =

∫ 1

0

1

2
u(1− u)du =

1

12
, (4.6.8)

c(n) =

∫ 1

0

σ(u)e−2πinudu =
1

4π2n2
, n �= 0, (4.6.9)

upon two integrations by parts. Hence, from (4.6.9), (4.6.7), and (4.6.8),

σ(u) =
1

12
−

∞∑

n=−∞
n�=0

1

4π2n2
e2πinu =

1

12
−

∞∑

n=1

1

2π2n2
cos(2πnu). (4.6.10)

Substituting the last expression in (4.6.10) into (4.6.3), we deduce that
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J(x) =
1

12

∫ ∞

0

du

(u + x)2
− 1

2π2

∞∑

n=1

1

n2

∫ ∞

0

cos(2πnu)du

(u+ x)2

=
1

12x
− 1

2π2

∞∑

n=1

J0(x;n)

n2
,

where

J0(x;n) :=

∫ ∞

0

cos(2πnu)du

(u + x)2
.

Recall that the Bernoulli numbers Bn, n ≥ 0, can be defined by the generating
function

x

ex − 1
=

∞∑

n=0

Bn
xn

n!
, |x| < 2π.

Recall also that B2n+1 = 0, n ≥ 1, and that sgnB2n = (−1)n−1, n ≥ 1. Using
this last fact about Bernoulli numbers and integrating J0(x;n) by parts, we
arrive at the well-known classical asymptotic formula

J(x) =

n−1∑

k=1

B2k

2k(2k − 1)x2k−1
+Rn(x), (4.6.11)

where, since Rn(x) > 0 if n is odd and Rn(x) < 0 if n is even,

|Rn(x)| ≤
|B2n|

2n(2n− 1)x2n−1 . (4.6.12)

In particular, setting n = 3 in (4.6.11) and (4.6.12), we deduce that

J(x) =
1

12x
− 1

360x3
+ R3(x), (4.6.13)

where

0 < R3(x) <
1

1260x5
. (4.6.14)

4.7 An Asymptotic Formula for h(x)

From the last two expressions, (4.6.13) and (4.6.14), we can represent e6J(x)

in the form
e6J(x) = e1/(2x)e−α, (4.7.1)

where

α = α(x) =
1

60x3
−R, (4.7.2)

and where

R = R(x), 0 < R <
1

210x5
. (4.7.3)
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By (4.7.2) and (4.7.3), we easily see that for x ≥ 1,

0 < α ≤ 1

60x3
.

From the Maclaurin expansion of e−α, α > 0, we obtain the simple inequalities

1− α ≤ e−α ≤ 1− α+
α2

2
,

and so, for x > 0 sufficiently large,

1− 1

60x3
+R ≤ e−α ≤ 1− 1

60x3
+R+

1

2

(
1

60x3
−R

)2

,

from which we can deduce that

1− 1

60x3
≤ e−α ≤ 1− 1

60x3
+

1

210x5
+

9

39200x6
.

From the last inequality and (4.7.1), we arrive at

e1/(2x)
(
1− 1

60x3

)
≤ e6J(x) ≤ e1/(2x)

(
1− 1

60x3
+

1

210x5
+

9

39200x6

)
.

From the inequalities above and from the Taylor series for e1/(2x) about
x = ∞, we can deduce the bounds

e6J(x) ≥
(
1− 1

60x3

)(
1 +

1

2x
+

1

2!(2x)2
+

1

3!(2x)3
+

1

4!(2x)4
+

1

5!(2x)5

)
,

(4.7.4)

e6J(x) ≤
(
1− 1

60x3
+

1

210x5
+

9

39200x6

)(
1 +

1

2x
+

1

2!(2x)2
+ · · ·

)
.

(4.7.5)

We first derive a lower bound for h(x). From (4.7.4),

h(x) = 8x3e6J(x) − (8x3 + 4x2 + x)

≥
(
8x3 + 4x2 + x+

1

6
+

1

48x
+

1

480x2

)(
1− 1

60x3

)
− (8x3 + 4x2 + x)

≥ 1

30
− 11

240x
− 7

480x2
− 1

360x3
− 1

2880x4
− 1

28800x5
. (4.7.6)

We can now conclude from (4.7.6) that for x ≥ 2.4,

h(x) > 0.0114 > h(1). (4.7.7)

Second, we obtain an upper bound for h(x) from (4.7.5). Set
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S(x) := 1− 1

60x3
+

1

210x5
, (4.7.8)

T (x) := 1 +
1

2x
+

1

8x2
+

1

48x3
+

1

384x4
+

1

3840x5
, (4.7.9)

δ(x) :=
9

39200x6
T (x) +

(
S(x) +

9

39200x6

)(
1

6!(2x)6
+

1

7!(2x)7
+ · · ·

)
,

(4.7.10)

so we can rewrite (4.7.5) in the form

e6J(x) ≤ S(x)T (x) + δ(x). (4.7.11)

Observe that for x ≥ 1,

1

6!(2x)6
+

1

7!(2x)7
+ · · · ≤ 1

6!(2x)6

(
1 +

1

7

(
1

(2x)
+

1

(2x)2
+ · · ·

))

≤ 1

6!(2x)6
3

2
=

1

30720x6
, (4.7.12)

and also that for x ≥ 1,

S(x) ≤ 1, T (x) ≤ 33

20
.

Thus, from (4.7.10) and (4.7.9),

0 ≤ δ(x) ≤ 297

784000x6
+

(
1 +

9

39200x6

)
1

30720x6
≤ 21

50000x6
. (4.7.13)

From (4.6.6), (4.7.11), and (4.7.13), we then conclude that

h(x) ≤ 8x3S(x)T (x) − (8x3 + 4x2 + x) + δ1, (4.7.14)

where

0 ≤ δ1 = 8x3δ(x) ≤ 21

6250x3
. (4.7.15)

Next, from (4.7.8)–(4.7.10), (4.7.14), and (4.7.15),

8x3S(x)T (x)− (8x3 + 4x2 + x)

=

(
8x3 + 4x2 + x+

1

6
+

1

48x
+

1

480x2

)(
1− 1

60x3
+

1

210x5

)

− (8x3 + 4x2 + x)

=
1

6
+

1

48x
+

1

480x2
− 8

60
− 4

60x
− 1

60x2
− 1

360x3
− 1

2880x4
− 1

28800x5

+
4

105x2
+

2

105x3
+

1

210x4
+

1

1260x5
+

1

10080x6
+

1

100800x7

=
1

30
− 11

240x
+

79

3360x2
+ δ2(x), (4.7.16)
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where

0 ≤ δ2(x) ≤
41

2520x3
+

89

20160x4
+

17

22400x5
+

1

10080x6
+

1

100800x7

≤ 1

46x3
. (4.7.17)

Hence, from (4.7.14), (4.7.16), and (4.7.17), we obtain the upper bound

h(x) ≤ 1

30
− 11

240x
+

79

3360x2
+

21

6250x3
+

1

46x3
≤ 1

30
− 11

240x
+

79

3360x2
+

251

10000x3
.

Rewriting the last inequality in the form

h(x) ≤ 1

30
−
(

11

240x
− 79

3360x2
− 251

10000x3

)
, (4.7.18)

we can easily test that for x ≥ 1.04, the value of the expression within paren-
theses on the right side of (4.7.18) is a positive number. Consequently,

h(x) ≤ 1

30
, for x ≥ 1.04. (4.7.19)

Moreover, from (4.7.6) and (4.7.18), we see that

h(x) → 1

30
, as x→ ∞. (4.7.20)

From (4.7.7), (4.7.19), and (4.7.20), we obtain the assertion of Lemma 4.5.1.

4.8 The Monotonicity of h(x)

Differentiating (4.5.3) and (4.5.4), we find that, respectively,

h′(x) = 6g′(x)g5(x)− (24x2 + 8x+ 1) (4.8.1)

and

g′(x) = g(x)
(
1

x
+ ψ(x)− log x

)
. (4.8.2)

Differentiating Stirling’s formula (4.6.2) and (4.6.3), we arrive at

ψ(x) = log x− 1

2x
+ J ′(x),

where

J ′(x) = −2

∫ ∞

0

σ(u)du

(x+ u)3
. (4.8.3)

Hence, we can rewrite (4.8.1) and (4.8.2) in their respective forms
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g′(x) = g(x)
(

1

2x
+ J ′(x)

)
,

h′(x) = 48x3e6J(x)
(

1

2x
+ J ′(x)

)
− (24x2 + 8x+ 1). (4.8.4)

To prove Lemma 4.5.2, it will be necessary for us to prove that h′(x) > 0, for
x ≥ x1, or that from (4.8.4),

1

2x
+ J ′(x) >

(
1

2x
+

1

6x2
+

1

48x3

)
e−6J(x). (4.8.5)

From (4.6.13) and (4.6.14),

− 6J(x) = − 1

2x
+

1

60x3
− η1

210x5
, (4.8.6)

where 0 ≤ η1 ≤ 1. Inserting (4.8.6) into (4.8.5), we find that

1

2x
+ J ′(x) >

(
1

2x
+

1

6x2
+

1

48x3

)
e−1/(2x)e1/(60x

3)e−η1/(210x
5), (4.8.7)

where 0 ≤ η1 ≤ 1. To prove the inequality (4.8.7), it suffices to prove it for
η1 = 0. Hence, we prove that

e−1/(60x3)

(
1

2x
+ J ′(x)

)
>

(
1

2x
+

1

6x2
+

1

48x3

)
e−1/(2x). (4.8.8)

Substitute the Taylor expansions around the origin for the exponential func-
tions in (4.8.8) and diminish the left-hand side and augment the right-hand
side of (4.8.8), using the relations

1− β ≤ e−β ≤ 1− β +
β2

2!
− β

3

3!
+
β4

4!
.

Hence, in order to prove (4.8.8), it suffices to prove that

(
1− 1

60x3

)(
1

2x
+ J ′(x)

)

>

(
1

2x
+

1

6x2
+

1

48x3

)(
1− 1

2x
+

1

8x2
− 1

48x3
+

1

384x4

)
. (4.8.9)

Using an argument similar to that used in deriving the asymptotic expan-
sion (4.6.11) of J(x), we can deduce that

J ′(x) = − 1

12x2
+

1

120x4
− 1

252x6
+

η2
120x8

, (4.8.10)
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where 0 ≤ η2 ≤ 1. It now follows that

J ′(x) > − 1

12x2
+

1

120x4
− 1

252x6
.

Hence, in order to establish (4.8.9), it suffices to prove the inequality

(
1− 1

60x3

)(
1

2x
− 1

12x2
+

1

120x4
− 1

252x6

)

>

(
1

2x
+

1

6x2
+

1

48x3

)(
1− 1

2x
+

1

8x2
− 1

48x3
+

1

384x4

)
. (4.8.11)

Multiplying the expressions in parentheses in (4.8.11), we see that (4.8.11)
reduces to the inequality

− 1

252x6
+

1

720x5
− 1

7200x7
+

1

15120x9
>

1

2304x5
+

1

18432x7
,

or
11

11520
>

1

252x
+

89

460800x2
− 1

15120x4
.

This last inequality holds when x ≥ 4.21. Therefore, with x ≥ x1 = 4.21, we
also deduce that the inequality (4.8.5) holds. From this and from (4.8.4), we
draw the conclusion that for x ≥ x1 = 4.21, the function h(x) is monotonically
increasing. This completes the proof of Lemma 4.5.2.

Since by (4.8.1) and (4.8.2),

h′(1) = 6
e6

π3
(1− γ)− 33 = 0.00558319 . . . > 0, (4.8.12)

it follows from (4.8.12) that to prove Lemma 4.5.3, it will suffice to prove that

h′(x) > 0 (4.8.13)

for each x, 1 < x ≤ max(x0, x1) = x1 = 4.21. To accomplish this, we use the
mean value theorem in the form

h′(x + d)− h′(x) = dh′′(x+ ϑd) (4.8.14)

for some ϑ such that 0 ≤ ϑ ≤ 1. Karatsuba [177] applies (4.8.14) in intervals
of length d = 0.0001. In order to show that (4.8.13) holds, bounds for the
derivatives h′′(x) and J ′′(x) similar to those obtained for h′(x) and J ′(x)
must be obtained. Since the analysis is similar to the previous analysis, we ask
readers to consult Karatsuba’s clear and detailed exposition for the remaining
details of the proof of Lemma 4.5.3.

Theorem 4.5.1 easily follows from Lemmas 4.5.1–4.5.3. Except for the
values of θx claimed by Ramanujan, Entry 4.5.1 is a direct consequence of
Theorem 4.5.1.
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Before closing this section, we comment on a related theorem of Alzer [5].
R. Windschitl had noted that for x > 8, the approximation

Γ (x+ 1) �
√
2πx

(x
e

)x (
x sinh

1

x
+

1

810x6

)x/2

gives at least eight decimal places of the gamma function. This inspired Alzer
to prove the following theorem [5].

Theorem 4.8.1. For all x > 0,

√
2πx

(x
e

)x(
x sinh

1

x

)x/2 (
1 +

α

x5

)

< Γ (x+ 1) <
√
2πx

(x
e

)x (
x sinh

1

x

)x/2(
1 +

β

x5

)
,

where the best possible constants are α = 0 and β = 1/1620.

In a personal communication [6] to the second author, Alzer offered com-
ments comparing the bounds in his Theorem 4.8.1 with those in Ramanujan’s
Entry 4.5.1. To that end, define

R(x) :=

(
8x3 + 4x2 + x+

1

100

)1/6

, A(x) :=
√
2x

(
x sinh

1

x

)x/2

,

S(x) :=

(
8x3 + 4x2 + x+

1

30

)1/6

, B(x) :=
√
2x

(
x sinh

1

x

)x/2(
1 +

β

x5

)
.

With the use of MAPLE V, he showed that

A(x) −R(x) < 0, for x ∈ (0, 1),

S(x)−B(x) < 0, for x ∈ (0, 0.99),

and

lim
x→∞x

5/2 (A(x) −R(x)) = 7
√
2

14400
,

lim
x→∞x

7/2 (S(x)−B(x)) = 11
√
2

11520
.

Hence, for x ∈ [0, 0.99], Ramanujan’s upper and lower bounds for Γ (x + 1)
are superior to the bounds given in Theorem 4.8.1, whereas for large x, the
opposite is true. The fact that Ramanujan provided detailed calculations of
θx for x ∈ (0, 1) indicates that he also thought that the primary interest for
his inequalities was in this interval.
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4.9 Pages 214, 215

Pages 214 and 215 contain scratch work that is very difficult to decipher.
Except for one result, all decipherable claims can be found in Ramanujan’s
published papers.

Entry 4.9.1 (p. 214). For 0 < a < b− 1
2 ,

∫ ∞

0

(
1 + x2/b2

1 + x2/a2

)(
1 + x2/(b+ 1)2

1 + x2/(a+ 1)2

)(
1 + x2/(b+ 2)2

1 + x2/(a+ 2)2

)
· · · dx

=

√
π

2

Γ (a+ 1
2 )Γ (b)Γ (b− a−

1
2 )

Γ (a)Γ (b− 1
2 )Γ (b − a)

. (4.9.1)

We have quoted one of Ramanujan’s formulas from [255], [267, p. 54,
Eq. (3)]. To obtain the formula on page 214, replace b by a + 1 and a by
b+ 1 in (4.9.1).

Entry 4.9.2 (p. 214). For a, b > 0,

∫ ∞

0

dx

{1 + x2/a2}{1 + x2/(a+ 1)2} · · · {1 + x2/b2}{1 + x2/(b+ 1)2} · · ·

=

√
π

2

Γ (a+ 1
2 )Γ (b +

1
2 )Γ (a+ b)

Γ (a)Γ (b)Γ (a+ b + 1
2 )

. (4.9.2)

The identity (4.9.2) is Ramanujan’s formula (17) from [255], [267, p. 57].
To obtain the result on page 214, replace a by a+1 and b by b+1 in (4.9.2).

Entry 4.9.3 (p. 214). If either Re(a+ b) > 3
2 or 2(a− b) is an odd integer

and Re(a+ b) > 1, then

∫ ∞

0

dx

Γ (a+ x)Γ (a− x)Γ (b + x)Γ (b − x)

=
Γ (2a+ 2b− 3)

2Γ (2a− 1)Γ (2b− 1){Γ (a+ b − 1)}2 . (4.9.3)

We have exactly recorded Ramanujan’s evaluation on page 214, which is
the same as in his paper [266], [267, p. 226, Eq. (7.12)], except that in his
paper [266], a is replaced by α and b is replaced by β.

The next result is recorded on both pages 214 and 215, except that on
page 215, the integrand is expressed in terms of product representations of
gamma functions. The result can be found as Eq. (1.22) in Ramanujan’s paper
[266], [267, p. 216].
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Entry 4.9.4 (pp. 214, 215). If Re a > 1
2 , then

∫ ∞

0

dx

Γ (a+ x)Γ (a− x) =
22a−3

Γ (2a− 1)
.

The other result on page 215 that we are able to read is not connected
with the gamma function, but there is no other logical place to put it.

Entry 4.9.5 (p. 215). For n > 0,

∫ ∞

0

cos(nx)

1− x2 dx =
π

2
sinn. (4.9.4)

Of course, the integral in (4.9.4) must be interpreted as a principal value.
It is interesting that for a more general result [126, p. 446, formula 3.723,
no. 9], namely,

∫ ∞

0

cos(ax)

b2 − x2 dx =
π

2b
sin(ab), a, b > 0, (4.9.5)

the editors of [126] also fail to indicate that the integral in question diverges
and should be replaced by a principal value. Let a = n and b = 1 in (4.9.5)
to obtain (4.9.4).
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Hypergeometric Series

5.1 Introduction

The purpose of this chapter is to discuss two entries on page 200 and two on
page 327 in Ramanujan’s lost notebook. All four entries fall under the purview
of hypergeometric series. We begin with the two entries on page 200.

On page 200 of his lost notebook, Ramanujan offers two results on cer-
tain bilateral hypergeometric series. As we shall see, the second follows from
a theorem of J. Dougall [113]. The first gives a formula for the derivative
of a quotient of two particular bilateral hypergeometric series. Ramanujan’s
formula needs to be slightly corrected, but what is remarkable is that such a
formula exists! This is one of those instances in which we can undauntedly
claim that if Ramanujan had not discovered the formula, no one else, at least
in the foreseeable future, would have done so. Our proofs of these two formulas
first appeared in a paper by the second author and W. Chu [50].

We first state the second formula, which requires modest deciphering,
because of Ramanujan’s use of ellipses to denote missing terms. It will be
used in the proof of Ramanujan’s first formula on page 200.

Entry 5.1.1 (p. 200). Let α, β, γ, δ, and ξ be complex numbers such that
Re(α+ β + γ + δ) > 3. Then

∞∑

n=−∞

ξ + 2n

Γ (α+ ξ + n)Γ (β − ξ − n)Γ (γ + ξ + n)Γ (δ − ξ − n)Γ (α− n)

× 1

Γ (β + n)Γ (γ − n)Γ (δ + n)

=
sin(πξ) Γ (α+ β + γ + δ − 3)

πΓ (α+ γ + ξ − 1)Γ (β + δ − ξ − 1)Γ (α+ β − 1)Γ (β + γ − 1)

× 1

Γ (γ + δ − 1)Γ (δ + α− 1)
. (5.1.1)

G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook:
Part IV, DOI 10.1007/978-1-4614-4081-9 5,
© Springer Science+Business Media New York 2013
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We secondly state a corrected version of Ramanujan’s more interesting
formula, i.e., the first formula. At the end of Sect. 5.4, we indicate the mistakes
in Ramanujan’s original formula.

Entry 5.1.2 (Corrected, p. 200). Define, for real numbers s and θ, 0 < θ <
2π, and for any complex numbers α, β, γ, and δ such that Re(α+β+γ+δ) > 4,

ϕs(θ) :=
∞∑

n=−∞

e(n+s)iθ

Γ (α+ s+ n)Γ (β − s− n)Γ (γ + s+ n)Γ (δ − s− n) . (5.1.2)

Then

d

dθ

ϕs(θ)

ϕt(θ)
=
i sin{π(s− t)}

(
2 sin θ

2

)α+β+γ+δ−4
ei(π−θ)(α−β+γ−δ+2s+2t)/2

πϕ2
t (θ)Γ (α + β − 1)Γ (β + γ − 1)Γ (γ + δ − 1)Γ (δ + α− 1)

(5.1.3)

On page 327 in his lost notebook [269], Ramanujan offers two beautiful
continued fractions connected with hypergeometric polynomials, which we
now offer.

Entry 5.1.3 (p. 327). Let

ϕ(a, x) :=
1{

1 +

(
x

a+ 1

)2
}{

1 +

(
x

a+ 3

)2
}{

1 +

(
x

a+ 5

)2
}
· · ·
.

(5.1.4)
Then, for a+ 1 > 0, b+ 1 > 0, and s not purely imaginary,

∫ ∞

0

ϕ(a, x)ϕ(b, x)
dx

1 + s2x2
= 2

√
π

Γ
(
1 +

a

2

)
Γ

(
1 +

b

2

)
Γ

(
1 +

a+ b

2

)

Γ

(
1 + a

2

)
Γ

(
1 + b

2

)
Γ

(
1 + a+ b

2

)

× 1

a+ b+ 1 +

1(a+ 1)(b+ 1)(a+ b+ 1)s2

a+ b+ 3

+

2(a+ 2)(b+ 2)(a+ b+ 2)s2

a+ b+ 5 + · · · .

Entry 5.1.4 (p. 327). If s = 1, the continued fraction in Entry 5.1.3 can be
written in the form

1

a+ b+ 1 +

1(a+ 1)(b + 1)(a+ b+ 1)

a+ b+ 3 +

2(a+ 2)(b+ 2)(a+ b+ 2)

a+ b+ 5 + · · ·

=
1

a+ b+ 1
(1−A1 +A1A2 −A1A2A3 + · · · ), (5.1.5)
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where

At =
(a+ t)(b + t)− ab cos2 πt

2

(a+ 1 + t)(b + 1 + t)− ab cos2 πt
2

. (5.1.6)

If we set α = (a + 1)/2 and β = (b + 1)/2 and replace x with 2x, then
Entry 5.1.3 can be recast in the following form.

Entry 5.1.5 (p. 327). Let

φ(α, x) :=
1

{
1 +

(x
α

)2}
{
1 +

(
x

α+ 1

)2
}{

1 +

(
x

α+ 2

)2
}
· · ·
. (5.1.7)

Then, for α > 0, β > 0, and s not purely imaginary,
∫ ∞

0

φ(α, x)φ(β, x)
dx

1 + 4s2x2
=

√
π
Γ
(
α+ 1

2

)
Γ
(
β + 1

2

)
Γ (α+ β)

Γ (α)Γ (β)Γ
(
α+ β + 1

2

) χ1(s),

where

χ1(s) :=
1

2 +

2 · 1(2α)(2β)s2
2α+ 2β + 1 +

2(2α+ 1)(2β + 1)(2α+ 2β)s2

2α+ 2β + 3

+

3(2α+ 2)(2β + 2)(2α+ 2β + 1)s2

2α+ 2β + 5 + · · · . (5.1.8)

These continued fractions are connected with the continuous Hahn poly-
nomials. In his Ph.D. thesis [318], J. Wilson found a remarkably general class
of orthogonal hypergeometric polynomials, in which all of the classical and
several additional polynomials can be expressed as special or limiting cases.
In particular, certain 3F2 polynomials with two free parameters, called the
continuous symmetric Hahn polynomials, were found by R. Askey and Wil-
son [16]. They are defined for all nonnegative integers n by

Pn(x) := Pn(x;α, β) := i
n
3F2

(
−n, n+ 2α+ 2β − 1, β − ix

α+ β, 2β
; 1

)
(5.1.9)

and are orthogonal with respect to the positive absolutely continuous weight
function

W (x) := |Γ (α+ ix)Γ (β + ix)|2, (5.1.10)

where −∞ < x <∞ and α, β > 0 or α = β̄ and Reα > 0.
In Sects. 5.7 and 5.8, we provide two entirely different proofs of Entry 5.1.3,

and in Sect. 5.9, we prove Entry 5.1.4. These proofs are due to S.-Y. Kang,
S.-G. Lim, and J. Sohn [175]. The first proof of Entry 5.1.3 is instructive,
because it relates Ramanujan’s result to Hahn polynomials and the moment
problem. The second proof is undoubtedly closer to Ramanujan’s approach
than the first, because it relies in the beginning stages on a theorem in
Ramanujan’s paper [255].
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5.2 Background on Bilateral Series

For every integer n, define

(a)n :=
Γ (a+ n)

Γ (a)
. (5.2.1)

The bilateral hypergeometric series pHp is defined for complex parameters
a1, a2, . . . , ap and b1, b2, . . . , bp by

pHp

[
a1, a2, . . . , ap;
b1, b2, . . . , bp;

z

]
:=

∞∑

n=−∞

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bp)n

zn.

With the use of D’Alembert’s ratio test, it can be checked that pHp converges
only for |z| = 1, provided that [290, p. 181, Eq. (6.1.1.6)]

Re(b1 + b2 + · · ·+ bp − a1 − a2 − · · · − ap) > 1. (5.2.2)

The series pHp is said to be well-poised if

a1 + b1 = a2 + b2 = · · · = ap + bp.

In 1907, Dougall [113] proved that a well-poised series 5H5 can be evaluated
at z = 1. In order to state this evaluation, define

Γ

[
a1, a2, . . . , am
b1, b2, . . . , bn

]
:=
Γ (a1)Γ (a2) · · ·Γ (am)

Γ (b1)Γ (b2) · · ·Γ (bn)
.

Then Dougall’s formula [290, p. 182, Eq. (6.1.2.5)] is given by

5H5

[
1 + 1

2a, b, c, d, e;
1
2a, 1 + a− b, 1 + a− c, 1 + a− d, 1 + a− e; 1

]

= Γ

[
1− b, 1− c, 1− d, 1− e, 1 + a− b, 1 + a− c, 1 + a− d,
1 + a, 1− a, 1 + a− b− c, 1 + a− b − d, 1 + a− b− e,

1 + a− e, 1 + 2a− b− c− d− e
1 + a− c− d, 1 + a− c− e, 1 + a− d− e

]
, (5.2.3)

where for convergence, by (5.2.2),

1 + Re(2a− b− c− d− e) > 0. (5.2.4)

We need one further result, namely, the bilateral binomial theorem. If a
and c are complex numbers with Re(c− a) > 1 and if z is a complex number
with z = eiθ, 0 < θ < 2π, then

1H1

[
a;
c;
z

]
=

(1− z)c−a−1

(−z)c−1

Γ (1− a)Γ (c)
Γ (c− a) . (5.2.5)
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It would seem that Ramanujan had discovered (5.2.5), but we are unaware
of any mention of it by him in his papers or notebooks. We remark that
the bilateral binomial theorem can also be recovered from another bilateral
hypergeometric series identity [11, p. 110, Theorem 2.8.2] due to Dougall [113],
namely,

2H2

[
a, b;
c, d;

1

]
=
Γ (1− a)Γ (1− b)Γ (c)Γ (d)Γ (c+ d− a− b− 1)

Γ (c− a)Γ (c− b)Γ (d− a)Γ (d− b) , (5.2.6)

where Re(c + d − a − b) > 1 for convergence. In fact, in the identity above,
first replacing b by dz and second, letting d→ +∞, we derive (5.2.5) in view
of Stirling’s asymptotic formula for the Γ -function.

The first appearance of (5.2.5) of which we are aware is in T.H. Koorn-
winder’s paper [187, p. 91 (middle of the page)] in 1994. When the second
author and W. Chu gave their proof of Entry 5.1.2 in [50], they used a formu-
lation of (5.2.5) given by M.E. Horn [164] in 2003. His original formulation is
incorrect, but it is corrected in the proof by J.M. Borwein, which follows the
statement of the problem, and indeed the correct version (5.2.5) was used by
Berndt and Chu in [50]. In addition to the proof accompanying the original
problem, another proof published on the aforementioned website [164] is by
G.C. Greubel.

In the sequel, we very often use the classical reflection formula

Γ (z)Γ (1− z) = π

sin(πz)
. (5.2.7)

5.3 Proof of Entry 5.1.1

We show that (5.2.3) leads to a proof of Entry 5.1.1.

Proof. Let S denote the series on the left-hand side of (5.1.1). Define

Ω :=
sin{π(β − ξ)} sin{π(δ − ξ)} sin{πα} sin{πγ}

π4
. (5.3.1)

Using (5.2.7) and (5.3.1), we see that we can write S in the form

S = Ωξ

∞∑

n=−∞

(ξ + 2n)Γ (1 + ξ + n− β)Γ (1 + ξ + n− δ)Γ (1 + n− α)
ξΓ (α+ ξ + n)Γ (γ + ξ + n)Γ (β + n)Γ (δ + n)

× Γ (1 + n− γ)

= Ωξ
Γ (1 + ξ − β)Γ (1 + ξ − δ)Γ (1− α)Γ (1− γ)

Γ (α+ ξ)Γ (γ + ξ)Γ (β)Γ (δ)

×
∞∑

n=−∞

(1 + 1
2 ξ)n(1− α)n(1 + ξ − β)n(1− γ)n(1 + ξ − δ)n

(12ξ)n(α+ ξ)n(β)n(γ + ξ)n(δ)n
. (5.3.2)
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Note that the series (5.3.2) is well-poised, and so we can invoke (5.2.3) with
a = ξ, b = 1 − α, c = 1 + ξ − β, d = 1 − γ, and e = 1 + ξ − δ. Thus, for
Re(α+ β + γ + δ) > 3 for convergence, we deduce that

S = Ωξ
Γ (1− α)Γ (1 + ξ − β)Γ (1 − γ)Γ (1 + ξ − δ)

Γ (α+ ξ)Γ (β)Γ (γ + ξ)Γ (δ)

× Γ (α)Γ (β)Γ (γ)Γ (δ)

Γ (α+ γ + ξ − 1)Γ (β + δ − ξ − 1)

× Γ (α+ ξ)Γ (β − ξ)Γ (γ + ξ)Γ (δ − ξ)Γ (α+ β + γ + δ − 3)

Γ (1 + ξ)Γ (1− ξ)Γ (α+ β − 1)Γ (β + γ − 1)Γ (γ + δ − 1)Γ (δ + α− 1)

=
sin(πξ)Γ (α + β + γ + δ − 3)

πΓ (α+ γ + ξ − 1)Γ (β + δ − ξ − 1)Γ (α+ β − 1)Γ (β + γ − 1)

× 1

Γ (γ + δ − 1)Γ (δ + α− 1)
,

where we applied (5.2.7) five times, used the value of Ω from (5.3.1), and
simplified. ��

5.4 Proof of Entry 5.1.2

We first replace the functions in Entry 5.1.2 by another pair with which it
is easier to work. With four applications of (5.2.7), we see that we can write
ϕs(θ) in the form

ϕs(θ) =
esiθHs(θ)

Γ (α+ s)Γ (β − s)Γ (γ + s)Γ (δ − s) , (5.4.1)

where

Hs(θ) := 2H2

[
1− β + s, 1− δ + s;
α+ s, γ + s;

eiθ
]
. (5.4.2)

Thus, we prove an analogue with ϕs and ϕt replaced by Hs and Ht, respec-
tively. At the end of our proof, we convert our result to (5.1.2).

For brevity, we introduce the notation

〈s〉n :=
(1 − β + s)n(1− δ + s)n

(α+ s)n(γ + s)n
.

In particular, we can then write

Hs(θ) = 2H2

[
1− β + s, 1− δ + s;
α+ s, γ + s;

eiθ
]
=

∞∑

n=−∞
〈s〉neinθ.
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Proof. By the quotient rule for derivatives,

d

dθ

{Hs(θ)

Ht(θ)
e(s−t)iθ

}
=

Δ

e2tiθH2
t (θ)

, (5.4.3)

where

Δ = etiθHt(θ)
d

dθ

{
esiθHs(θ)

}
− esiθHs(θ)

d

dθ

{
etiθHt(θ)

}
. (5.4.4)

Using the notation above and in the previous paragraph and setting
k = m+ n in the second equality below, we find that

Δ = i
∞∑

m,n=−∞
(s− t+ n−m) 〈s〉n 〈t〉m e(s+t+n+m)iθ

= i

∞∑

k,n=−∞
(s− t− k + 2n) 〈s〉n 〈t〉k−n e

(s+t+k)iθ

= i

∞∑

k=−∞
(s− t− k) 〈t〉k e(s+t+k)iθ

∞∑

n=−∞

s− t− k + 2n

s− t− k 〈s〉n〈k + t〉−n.

(5.4.5)

Observe that the inner sum above is a well-poised 5H5, requiring that Re(α+
β+γ+δ) > 3 for convergence. Thus, we can use (5.2.3) to obtain the evaluation

5H5

[
1+1

2 (s−t− k), 1−α−t−k, 1−β+s, 1−γ−t−k, 1−δ+s;
1
2 (s−t−k), α+s, β−t−k, γ+s, δ−t−k; 1

]

= Γ

[
α+t+k, γ+t+k, β−t−k, δ−t−k

1+s−t−k, 1−s+t+k, α+γ+s+t+k−1, β + δ − s− t− k − 1

]

× Γ

[
α+ s, β − s, γ + s, δ − s, α+ β + γ + δ − 3
α+ β − 1, β + γ − 1, γ + δ − 1, δ + α− 1

]
. (5.4.6)

Using the evaluation (5.4.6) in (5.4.5) and simplifying the expressions involv-
ing gamma functions and rising factorials, we find that

Δ = iΓ

[
α+ t, β − t, γ + t, δ − t
s− t, 1− s+ t, α+ γ + s+ t− 1, β + δ − s− t− 1

]

× Γ
[
α+ s, β − s, γ + s, δ − s, α+ β + γ + δ − 3
α+ β − 1, β + γ − 1, γ + δ − 1, δ + α− 1

]

× ei(s+t)θ
∞∑

k=−∞

(s+ t− β − δ + 2)k
(s+ t+ α+ γ − 1)k

eikθ. (5.4.7)

We next apply Koornwinder’s bilateral binomial theorem (5.2.5) with
a = s+ t− β − δ + 2 and b = s + t + α + γ − 1, subject to the condition
Re(α+ β + γ + δ) > 4. Thus,
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∞∑

k=−∞

(s+ t− β − δ + 2)k
(s+ t+ α+ γ − 1)k

eikθ = 1H1

[
s+ t− β − δ + 2;
s+ t+ α+ γ − 1;

eiθ
]

=
(
−eiθ

)2−α−γ−s−t
(1− eiθ)α+β+γ+δ−4

× Γ (α+ γ + s+ t− 1)Γ (β + δ − s− t− 1)

Γ (α+ β + γ + δ − 3)
. (5.4.8)

Now substitute (5.4.8) into (5.4.7), use (5.2.7), and cancel common gamma
function factors to arrive at

Δ = e(s+t)iθ
(
−eiθ

)2−α−γ−s−t
(1− eiθ)α+β+γ+δ−4

× iΓ

[
α+ s, β − s, γ + s, δ − s, α+ t, β − t, γ + t, δ − t

s− t, 1− s+ t, α+ β − 1, β + γ − 1, γ + δ − 1, δ + α− 1

]

=
i

π
sin{π(s− t)}

(
2 sin θ

2

)α+β+γ+δ−4
ei(π−θ)(α−β+γ−δ+2s+2t)/2

× Γ
[
α+ s, β − s, γ + s, δ − s, α+ t, β − t, γ + t, δ − t

α+ β − 1, β + γ − 1, γ + δ − 1, δ + α− 1

]
. (5.4.9)

Lastly, substituting (5.4.9) into (5.4.3) and then reformulating the result
according to the relation (5.4.1) between ϕt(θ) and Ht(θ), we derive the
identity

d

dθ

{ϕs(θ)

ϕt(θ)

}
=
i sin{π(s− t)}

(
2 sin θ

2

)α+β+γ+δ−4
ei(π−θ)(α−β+γ−δ+2s+2t)/2

πϕ2
t (θ)Γ (α + β − 1)Γ (β + γ − 1)Γ (γ + δ − 1)Γ (δ + α− 1)

,

which is (5.1.3). The proof is thus complete. ��

Let φt(θ) = e−tiθϕt(θ). We end this section with Ramanujan’s rendition
of Entry 5.1.2 given by

d

dθ

{φs(θ)
φt(θ)

}
(5.4.10)

=
i sin{π(s− t)}

∣∣2 sin θ
2

∣∣α+β+γ+δ−4
ei(α−β+γ−δ+2s−2t){(π−θ)/2+π[θ/(2π)]}

πφ2t (θ)Γ (α + β − 1)Γ (β + γ − 1)Γ (γ + δ − 1)Γ (δ + α− 1)
.

Note that Ramanujan’s function φs(θ) does not have the factor esiθ in ϕs(θ),
defined in (5.1.2). The second major difference between the two formulas is
in the exponent of e on the right-hand sides. One would guess that [x] in
Ramanujan’s exponent denotes the greatest integer less than or equal to x.
The powers of 2 sin(12θ) in both (5.1.3) and (5.4.10) are the same, except that
Ramanujan has absolute values around 2 sin(12θ). In conclusion, except for
multiplicative expressions of absolute value equal to 1, the other parts of the
formulas (5.4.10) and (5.1.3) are identical.
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5.5 Background on Continued Fractions
and Orthogonal Polynomials

Any set of polynomials {pn(x)} that is orthogonal with respect to a positive
measure satisfies a three-term recurrence relation

xpn(x) = αnpn+1(x) + βnpn(x) + γnpn−1(x), (5.5.1)

where αn, βn, and γn are real and αn−1γn > 0, n = 1, 2, . . . . Conversely,
Farvard’s theorem informs us that if a set of polynomials {pn(x)} satisfies
(5.5.1) with αn, βn, and γn real and with αn−1γn > 0, n = 1, 2, . . . , then
there is a positive measure dψ(x) such that [10, 17]

∫ ∞

−∞
pn(x)pm(x) dψ(x) =

⎧
⎨

⎩

0, m �= n,
γ1 · · · γn
α0 · · ·αn−1

∫ ∞

−∞
dψ(x), m = n.

(5.5.2)

We next review some basic properties of continued fractions. For the con-
tinued fraction

b0 +
a1
b1 +

a2
b2 + · · · +

an
bn + · · · ,

the nth approximant fn is given by

fn = b0 +
a1
b1 +

a2
b2 + · · · +

an
bn

=:
Un

Vn
.

We call Un and Vn the nth numerator and denominator, respectively, of the
continued fraction. If we define U−1 = 1, V−1 = 0, U0 = b0, and V0 = 1, then,
for n = 1, 2, 3, . . . , the recurrence relations

bnUn−1 + anUn−2 = Un, bnVn−1 + anVn−2 = Vn, (5.5.3)

are valid [312, p. 15], [218, p. 8]. Using the recurrence relations in (5.5.3)
and mathematical induction, one can easily deduce the following equivalence
transformation [312, p. 19].

Proposition 5.5.1. Let c0 = 1 and ci �= 0 for i > 0. Then the two continued
fractions

b0 +
a1
b1 +

a2
b2 +

a3
b3 + · · ·

and
c0b0 +

c0c1a1
c1b1 +

c1c2a2
c2b2 +

c2c3a3
c3b3 + · · ·

have the same sequence of approximants.
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The continuous symmetric Hahn polynomials Pn(x), defined in (5.1.9),
satisfy a three-term recurrence relation [16]

xPn(x) = αnPn+1(x) + γnPn−1(x), (5.5.4)

where

αn =
(n+ 2β)(n+ 2α+ 2β − 1)

2(2n+ 2α+ 2β − 1)
and γn =

n(n+ 2α− 1)

2(2n+ 2α+ 2β − 1)
. (5.5.5)

Hence, by (5.5.3) and Proposition 5.5.1, the continued fraction corresponding
to the orthogonal polynomials Pn(x) with γ0 = −1 is given by

χ(x) : =
1

x −
α0γ1
x −

α1γ2
x −

α2γ3
x − · · ·

=
1

x −
1 · (2α)(2β)

4x(2α+ 2β + 1) −
2 · (2α+ 1)(2β + 1)(2α+ 2β)

x(2α+ 2β + 3)

−
3 · (2α+ 2)(2β + 2)(2α+ 2β + 1)

4x(2α+ 2β + 5) − · · · . (5.5.6)

In other words, Pn(x) is the nth denominator of χ(x).
On the other hand, (5.5.2) along with (5.5.4) and (5.5.5) provides the

L2-norm of the continuous symmetric Hahn polynomials [16, p. 653], namely,

∫ ∞

−∞
[Pn(x;α, β)]

2W (x) dx =
(1)n(2α)n(α+ β − 1

2 )n

(2β)n(2α+ 2β − 1)n(α+ β + 1
2 )n
WI ,

where

WI =

∫ ∞

−∞
W (x) dx =

√
π
Γ (α)Γ (α+ 1

2 )Γ (β)Γ (β + 1
2 )Γ (α+ β)

Γ (α+ β + 1
2 )

, (5.5.7)

where W (x) is defined by (5.1.10). The integral in (5.5.7) is a special case of
Barnes’s beta integral [22]. This particular evaluation was also established by
Ramanujan [255], [267, pp. 53–58], and R. Roy [273] using Fourier transforms
and Mellin transforms, respectively.

It follows from (5.5.7) that the normalized weight function of the contin-
uous symmetric Hahn polynomials Pn(x) is given by

WN(x) :=
Γ (α+ β + 1

2 )|Γ (α+ ix)Γ (β + ix)| 2√
π Γ (α)Γ (α+ 1

2 )Γ (β)Γ (β + 1
2 )Γ (α+ β)

. (5.5.8)

Since [255], [267, p. 54]

φ(α, x) =
|Γ (α+ ix)|2

Γ 2(α)
, (5.5.9)

Entry 5.1.5 is equivalent to the following entry.
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Entry 5.5.1 (p. 327). For α > 0 and β > 0,

∫ ∞

0

WN(x) dx

1 + 4s2x2
=

1

2 +

2(2α)(2β)s2

2α+ 2β + 1 +

2(2α+ 1)(2β + 1)(2α+ 2β)s2

2α+ 2β + 3 + · · · .

Entry 5.5.1 gives a representation for the Stieltjes transform of the weight
function of the continuous symmetric Hahn polynomials in terms of a contin-
ued fraction. A more general continued fraction with five free parameters was
found by M.E.H. Ismail, J. Letessier, G. Valent, and J. Wimp [165]. Using
contiguous relations for generalized hypergeometric functions of the type 7F6,
they derived explicit representations for the associated Wilson polynomials
and computed the corresponding continued fraction.

5.6 Background on the Hamburger Moment Problem

Let {μn}, 0 ≤ n <∞, be a sequence of real numbers. The Hamburger moment
problem seeks to find a bounded, nondecreasing function ψ(x) on the interval
(−∞,∞) satisfying the equations

μn =

∫ ∞

−∞
xn dψ(x), n = 0, 1, 2, . . . . (5.6.1)

Throughout this section, it is assumed that a solution ψ(x) of the Hamburger
moment problem (5.6.1) is increasing on an infinite number of points. If this
solution is unique, the moment problem is said to be determinate; otherwise,
it is indeterminate.

For any solution ψ(x) of the moment problem (5.6.1), let

I(z, ψ) :=

∫ ∞

−∞

dψ(x)

z − x , (5.6.2)

where z ∈ H := {z : Im z > 0}. The following two lemmas show that there is a
one-to-one correspondence between the elements of a certain class of functions
to which I(z, ψ) belongs and those in the class of solutions ψ(x) of the moment
problem (5.6.1).

Lemma 5.6.1. [286, Theorem 2.1] The function I(z, ψ) is analytic, Im I(z, ψ)
≤ 0 on H, and

I(z, ψ) ∼
∞∑

n=0

μn
zn+1

, 0 < ε ≤ arg z ≤ π − ε, 0 < ε < π/2, (5.6.3)

where μn, n ≥ 0, is defined by (5.6.1).
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Lemma 5.6.2. [286, Theorem 2.1] If F (z) is analytic, ImF (z) ≤ 0 on H,
and

F (z) ∼
∞∑

n=0

μn
zn+1

, 0 < ε ≤ arg z ≤ π − ε, 0 < ε < π/2, (5.6.4)

where μn, n ≥ 0, is defined by (5.6.1), then there exists a unique solution ψ(x)
of the moment problem (5.6.1) such that F (z) = I(z, ψ).

The integral I(z, ψ) is also closely related to a continued fraction.

Lemma 5.6.3. [286, Theorem 2.4] There exists a function F (z) such that
F (z) is analytic, ImF (z) ≤ 0, and F (z) has a representation (5.6.4) if and
only if there exists an associated continued fraction

b0 +
a0
b1 + z −

a1
b2 + z −

a2
b3 + z − · · · (5.6.5)

such that an > 0, n ≥ 0, bn ∈ R for n ≥ 0, and

F (z) = b0 +
a0
b1 + z −

a1
b2 + z − · · · −

an
Fn+1(z) + z

,

where Fn+1(z) is an arbitrary analytic function, ImFn+1(z) ≤ 0, and Fn+1(z)
= o(z) as z → ∞ on H.

In fact, the nth approximant, say qn(z)/pn(z), of the continued fraction
(5.6.5) can be expanded in the form [286, p. 35]

qn(z)

pn(z)
=
μ0
z

+
μ1

z2
+ · · ·+ μ2n−1

z2n
+
μ′2n
z2n+1 +

μ′2n+1

z2n+2 + · · · , (5.6.6)

where μj , 0 ≤ j ≤ 2n− 1, is defined in (5.6.1). (The definitions of μ′n can be
found in [286, p. 35]. Because their definitions are somewhat complicated and
are not important in the present context, we do not give them here.) As we
have seen in Sect. 5.5, the denominators pn(z) comprise a set of orthogonal
polynomials of degree n by (5.5.3), and by (5.5.1) and (5.5.2) in Farvard’s
theorem. Moreover, the orthogonality relation

∫ ∞

−∞
pn(x)pm(x) dψ(x) =

{
0, m �= n,
hn, m = n,

(5.6.7)

is satisfied by the solution ψ(x) of the moment problem (5.6.1), [286, p. 35].
Next, we state two lemmas that provide, respectively, a sufficient and a

necessary condition for a unique solution to the moment problem (5.6.1).

Lemma 5.6.4. [286, Theorem 2.9] The moment problem (5.6.1) is determi-
nate if

∞∑

n=0

|pn(z)|2

diverges at a nonreal number z.
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Lemma 5.6.5. [286, Theorem 2.10] If the moment problem (5.6.1) is determi-
nate, then the associated continued fraction (5.6.5) converges for all complex
numbers z.

5.7 The First Proof of Entry 5.1.5

Using the lemmas in Sect. 5.6, we prove the following theorem.

Theorem 5.7.1. Let α > 0, β > 0, and let z be nonreal. Then

∫ ∞

−∞

WN(x) dx

z−x =
1

z −
1(2α)(2β)

4z(2α+2β+1) −
2(2α+1)(2β+1)(2α+2β)

z(2α+2β+3) − · · · ,

where WN(x) is defined in (5.5.8).

Since ∫ ∞

−∞

WN(x)

z − x dx = 2z

∫ ∞

0

WN(x)

z2 − x2
dx,

Theorem 5.7.1 is equivalent to

∫ ∞

0

WN(x)

z2 − x2 dx =
1

2z2 −
2(2α)(2β)

4(2α+ 2β + 1) −
2 · (2α+ 1)(2β + 1)(2α+ 2β)

z2(2α+ 2β + 3)

−
3 · (2α+ 2)(2β + 2)(2α+ 2β + 1)

4(2α+ 2β + 5) − · · · , (5.7.1)

from which Entry 5.1.5 or Entry 5.5.1 immediately follows after replacing z
by i/2s. Therefore, Theorem 5.7.1 implies that Theorem 5.1.5 holds for every
complex number s except when s is purely imaginary.

In order to complete the proof of Theorem 5.7.1, we need a lemma of
Stieltjes that gives the power series representation of a continued fraction of
the type in (5.6.5).

Lemma 5.7.1. [312, Theorem 53.1] The coefficients in the J-fraction

1

b1 + z −
a1
b2 + z −

a2
b3 + z − · · ·

and its power series expansion

∞∑

n=0

(−1)ncn

zn+1

are connected by the relations

cp+q = k0,pk0,q + a1k1,pk1,q + a1a2k2,pk2,q + · · · ,
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where k0,0 = 1, kr,s = 0 if r > s, and kr,s, for s ≥ r, is recursively given by
the matrix equations

⎛

⎜⎜⎜⎝

k00 0 0 0 · · ·
k01 k11 0 0 · · ·
k02 k12 k22 0 · · ·
...

...
...

... · · ·

⎞

⎟⎟⎟⎠ ·

⎛

⎜⎜⎜⎝

b1 1 0 0 · · ·
a1 b2 1 0 · · ·
0 a2 b3 1 · · ·
...

...
...

... · · ·

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

k01 k11 0 0 · · ·
k02 k12 k22 0 · · ·
k03 k13 k23 k33 · · ·
...

...
...

... · · ·

⎞

⎟⎟⎟⎠ .

Proof of Theorem 5.7.1. Note that the continued fraction in Theorem 5.7.1
is χ(z) in (5.5.6), the continued fraction corresponding to the continuous sym-
metric Hahn polynomials Pn(z). In the case of χ(z), an = αn−1γn > 0 and
bn = 0 for n ≥ 1. It is therefore easy to see that kij = 0 when i+ j is odd, and
thus c2n+1 = 0 and c2n > 0. Let Qn(z) be the nth numerator of χ(z). Then
for positive real numbers c2n obtained from Lemma 5.7.1,

Qn(z)

Pn(z)
=

1

z
+
c2
z3

+ · · ·+ c2n−2

z2n−1
+

c2n
z2n+1

· · · .

Consider the moment problem

cn =

∫ ∞

−∞
xn dψ(x) (n = 0, 1, 2, . . . ) (5.7.2)

for the sequence of real numbers cn given above.
Observe that P0(βi) = 1 and that more generally, by the Chu–Vander-

monde theorem [11, p. 67, Corollary 2.2.3], P4n(βi) = 1 for n ≥ 0. Hence,

∞∑

n=0

|P4n(βi)|2

diverges, and thus the moment problem (5.7.2) has a unique solution WN(x)
by (5.6.7) and Lemma 5.6.4. It now follows from Lemmas 5.6.1–5.6.3, Lemma
5.6.5, and (5.6.6) that the continued fraction χ(z) converges to I(z, ψ), for
every nonreal number z, where dψ(x) =WN(x)dx. ��

5.8 The Second Proof of Entry 5.1.5

Recalling the definition of φ(α, x) from either (5.1.7) or (5.5.9), set, for t > 0,

Φ(α, β, t) :=

∫ ∞

0

φ(α, x)φ(β, x) cos(tx) dx. (5.8.1)

Then, with the use of the elementary evaluation, for x > 0 and s > 0,

∫ ∞

0

cos(xt)e−st dt =
s

s2 + x2
,
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the integral in Entry 5.1.5 can be rewritten in the form

I : =

∫ ∞

0

φ(α, x)φ(β, x)

(
1

2s

∫ ∞

0

e−t/(2s) cos(xt) dt

)
dx

=
1

2s

∫ ∞

0

e−t/(2s)

(∫ ∞

0

φ(α, x)φ(β, x) cos(tx) dx

)
dt

=
1

2s

∫ ∞

0

e−t/(2s)Φ(α, β, t) dt, (5.8.2)

where we inverted the order of integration by absolute convergence.
Ramanujan [255], [267, p. 53] showed that by integrating termwise the

partial fraction decomposition of the integrand,
∫ ∞

0

φ(α, x) cos(yx) dx =

√
π

2

Γ (α+ 1
2 )

Γ (α)
sech2α

(y
2

)
, y > 0.

Hence, from the theory of Fourier cosine transforms,
∫ ∞

0

sech2α
(y
2

)
cos(xy) dy =

√
π

Γ (α)

Γ (α+ 1
2 )
φ(α, x), x > 0. (5.8.3)

Consequently,

φ(α, x) =
1√
π

Γ (α+ 1
2 )

Γ (α)

∫ ∞

0

sech2α
(y
2

)
cos(xy) dy. (5.8.4)

Applying (5.8.4) to (5.8.1), we deduce that

Φ(α, β, t) =
1

π

Γ (α+ 1
2 )

Γ (α)

Γ (β + 1
2 )

Γ (β)
T , (5.8.5)

where T is the triple integral

T :=

∫ ∞

0

∫ ∞

0

∫ ∞

0

sech2α
(y
2

)
sech2β

(z
2

)
cos(xy) cos(xz) cos(tx) dz dy dx.

(5.8.6)

Using the elementary trigonometric identity 2 cos(xy) cos(xz) = cos(y + z)x
+cos(y− z)x, replacing −z by z in the integral involving cos(y− z)x, setting
u = y+z in the second equality, inverting the order of integration with respect
to x and y, and then replacing −u by u in the integral over −∞ < u ≤ 0, we
find that

T =
1

2

∫ ∞

0

∫ ∞

0

∫ ∞

−∞
sech2α

(y
2

)
sech2β

(z
2

)
cos((y + z)x) cos(tx) dz dy dx

=
1

2

∫ ∞

0

∫ ∞

0

∫ ∞

−∞
sech2α

(y
2

)
sech2β

(
y − u
2

)
cos(ux) cos(tx) du dy dx

=
1

2

∫ ∞

0

∫ ∞

0

∫ ∞

0

sech2α
(y
2

)(
sech2β

(
y + u

2

)

+ sech2β
(
y − u
2

))
cos(ux) cos(tx) du dx dy. (5.8.7)
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Utilize the Fourier integral formula [305, p. 2]

∫ ∞

0

cos(nx) dx

∫ ∞

0

f(u) cos(ux) du =
π

2
f(n)

in (5.8.7) to deduce that

T =
π

4

∫ ∞

0

sech2α
(y
2

)(
sech2β

(
y + t

2

)
+ sech2β

(
y − t
2

))
dy. (5.8.8)

In summary, so far, we have shown from (5.8.1), (5.8.5), and (5.8.8) that

Φ(α, β, t) =
1

4

Γ (α+ 1
2 )

Γ (α)

Γ (β + 1
2 )

Γ (β)
(5.8.9)

×
∫ ∞

0

sech2α
(y
2

)(
sech2β

(
y + t

2

)
+ sech2β

(
y − t
2

))
dy.

The equality (5.8.9), which is a generalization of the integral of W (x) in
(5.5.7), was established also in [38, p. 226] as a consequence of Parseval’s
theorem, (5.8.3) above, and Legendre’s duplication formula. In [38, p. 226],
it was mentioned that M.L. Glasser [124] evaluated integrals like that on the
right side in (5.8.9). Glasser used contour integration, but we use the binomial
theorem and Euler’s beta integral below.

Using the elementary identity

sech2β
(
y + t

2

)
+ sech2β

(
y − t
2

)
= sech2β

(
t

2

)
sech2β

(y
2

)

×

⎧
⎨

⎩

(
1

1 + tanh
(
1
2y
)
tanh

(
1
2y
)
)2β

+

(
1

1− tanh
(
1
2y
)
tanh

(
1
2y
)
)2β

⎫
⎬

⎭

and the binomial theorem in (5.8.8), we find that

T =
π

2
sech2β

(
t

2

)∫ ∞

0

sech2α+2β
(
y

2

) ∞∑

n=0

(2β)2n
(2n)!

tanh2n
(
t

2

)
tanh2n

(
y

2

)
dy.

(5.8.10)

Setting v = tanh2(12y) in (5.8.10), we arrive at

T =
π

2
sech2β

(
t

2

) ∞∑

n=0

(2β)2n
(2n)!

tanh2n
(
t

2

)∫ 1

0

(1− v)α+β−1 vn−1/2 dv.

(5.8.11)

Using Euler’s beta integral B(x, y) = Γ (x)Γ (y)/Γ (x+ y), we deduce that
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T =
π

2
sech2β

(
t

2

) ∞∑

n=0

(2β)2n
(2n)!

tanh2n
(
t

2

)
Γ (n+ 1

2 )Γ (α+ β)

Γ (α+ β + n+ 1
2 )

(5.8.12)

=
π

2

Γ (12 )Γ (α+ β)

Γ (α+ β + 1
2 )

sech2β
(
t

2

) ∞∑

n=0

(2β)2n(
1
2 )n

(2n)!(α+ β + 1
2 )n

tanh2n
(
t

2

)

=
π

2

Γ (12 )Γ (α+ β)

Γ (α+ β + 1
2 )

sech2β
(
t

2

)
2F1

(
β, β +

1

2
;α+ β +

1

2
; tanh2

(
t

2

))
.

Set w = tanh
(
1
4 t
)
, so that

F (t) : = sech2β
(
t

2

)
2F1

(
β, β +

1

2
;α+ β +

1

2
; tanh2

(
t

2

))

=

(
1− w2

1 + w2

)2β

2F1

(
β, β +

1

2
;α+ β +

1

2
;

4w2

(1 + w2)2

)
. (5.8.13)

Using the quadratic transformation [11, p. 128, Eq. (3.1.9)]

2F1 (a, b; a− b+ 1; z) = (1 + z)−a
2F1

(
a

2
,
a+ 1

2
; a− b+ 1;

4z

(1 + z)2

)

with z = w2, a = 2β, and b = β − α+ 1
2 , we find that

F (t) = (1 − w2)2β2F1

(
−α+ β +

1

2
, 2β;α+ β +

1

2
;w2

)
,

and using Pfaff’s transformation formula [11, p. 68, Theorem 2.2.5]

(1− z)a 2F1 (a, b; c; z) = 2F1

(
a, c− b; c; z

z − 1

)

with a = 2β, b = −α+ β + 1
2 , c = α+ β + 1

2 , and z = w
2, we find that

F (t) = 2F1

(
2α, 2β;α+ β +

1

2
;
w2

w2 − 1

)
. (5.8.14)

Therefore, by (5.8.12)–(5.8.14),

T =
π

2

Γ (12 )Γ (α+ β)

Γ (α+ β + 1
2 )

2F1

(
2α, 2β;α+ β +

1

2
;− sinh2

t

4

)
. (5.8.15)

From (5.8.5) and (5.8.15), we now see that

Φ(α, β, t) =

√
π

2

Γ (α+ 1
2 )Γ (β + 1

2 )Γ (α + β)

Γ (α)Γ (β)Γ (α + β + 1
2 )

× 2F1

(
2α, 2β;α+ β +

1

2
;− sinh2

t

4

)
. (5.8.16)
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Then, it follows from (5.8.2) and (5.8.16) that

I =

√
π

4s

Γ (α+ 1
2 )Γ (β + 1

2 )Γ (α+ β)

Γ (α)Γ (β)Γ (α + β + 1
2 )

×
∫ ∞

0
2F1

(
2α, 2β;α+ β +

1

2
;− sinh2

t

4

)
e−t/(2s) dt. (5.8.17)

Recall the continued fraction expansion of Stieltjes [297], [298, pp. 282–291],
∫ ∞

0
2F1

(
a, b;

a+ b+ 1

2
;− sinh2 t

)
e−tz dt

=
1

z +

1 · ab · 4
(a+ b+ 1)z +

2 · (a+ 1)(b+ 1)(a+ b) · 4
(a+ b+ 3)z

+

3 · (a+ 2)(b+ 2)(a+ b+ 1) · 4
(a+ b + 5)z + · · · , Re z > 0, (5.8.18)

from which, upon replacing t by 4t and setting a = 2α and b = 2β, we deduce
that, for s > 0,
∫ ∞

0
2F1

(
2α, 2β;α+ β +

1

2
;− sinh2

t

4

)
e−t/(2s) dt (5.8.19)

=
4

2/s +

1 · (2α)(2β) · 4
(2α+ 2β + 1)2/s +

2 · (2α+ 1)(2β + 1)(2α+ 2β) · 4
(2α+ 2β + 3)2/s + · · · .

By (5.8.17) and (5.8.19), we finally deduce that

I =
√
π
Γ (α+ 1

2 )

Γ (α)

Γ (β + 1
2 )

Γ (β)

Γ (α+ β)

Γ (α+ β + 1
2 )

×
(
1

2 +

2 · 1 · (2α)(2β)s2
(2α+ 2β + 1) +

2 · (2α+ 1)(2β + 1)(2α+ 2β)s2

(2α+ 2β + 3) + · · ·

)
,

which completes the proof of Entry 5.1.5 for s > 0. By (5.5.7), Entry 5.1.5
holds for s = 0. Since both sides of Theorem 5.1.5 are even functions of s,
Theorem 5.1.5 is valid for all real s.

5.9 Proof of Entry 5.1.2

We use the recurrence relation (5.5.3) and induction to prove that for all
integers n ≥ 1,

fn =
1

a+ b+ 1 +

1 · (a+ 1)(b+ 1)(a+ b+ 1)

a+ b+ 3 + · · · (5.9.1)

+

n · (a+ n)(b+ n)(a+ b+ n)
a+ b+ (2n+ 1)

=
1

a+ b+ 1
(1−A1 +A1A2 −A1A2A3 + · · ·+ (−1)nA1A2 · · ·An) := Rn,
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where An is defined in (5.1.6). Entry 5.1.2 then readily follows from (5.9.1).
First, observe from (5.1.6) that

At =

⎧
⎪⎪⎨

⎪⎪⎩

(a+ t)(b+ t)

(a+ 1 + t)(b+ 1 + t)
, if t is odd,

t(a+ b+ t)

(a+ b+ t+ 1)(t+ 1)
, if t is even.

(5.9.2)

From the recurrence relations (5.5.3), we find that

f1 =
U1

V1
=

1

a+ b+ 1
= R1,

f2 =
U2

V2
=

a+ b+ 3

(a+ b+ 1)(a+ 2)(b+ 2)
=

1

a+ b+ 1
(1−A1) = R2,

f3 =
U3

V3
=

3(a+ b+ 3)2 + 2(a+ 1)(b+ 1)(a+ b + 2)

3(a+ b+ 1)(a+ b+ 3)(a+ 2)(b+ 2)

=
1

a+ b+ 1
(1 −A1 +A1A2) = R3,

f4 =
U4

V4
=

3(a+ b+ 3)2(a+ 4)(b+ 4) + 2(a+ 1)(b + 1)(a+ b+ 2)(a+ b+ 7)

3(a+ b + 1)(a+ b+ 3)(a+ 2)(b+ 2)(a+ 4)(b+ 4)

=
1

1 + a+ b
(1 −A1 +A1A2 −A1A2A3) = R4.

Assume that (5.9.1) holds up to k. Then by (5.5.3),

fk+1 =
Uk+1

Vk+1
=

(a+ b+ (2k + 1))Uk + k(a+ k)(b+ k)(a+ b+ k)Uk−1

(a+ b + (2k + 1))Vk + k(a+ k)(b+ k)(a+ b+ k)Vk−1
.

By the induction hypothesis, the numerator above equals

a+ b+ (2k + 1)

a+ b+ 1
(1−A1 +A1A2 + · · ·+ (−1)k−1A1A2 · · ·Ak−1)Vk

+
k(a+ k)(b + k)(a+ b+ k)

a+ b+ 1

× (1−A1 +A1A2 + · · ·+ (−1)k−2A1A2 · · ·Ak−2)Vk−1.

Hence, we may write

fk+1 =
1

a+ b+ 1
(1−A1 +A1A2 + · · ·+ (−1)k−1A1A2 · · ·Ak−1)

− (−1)k−1A1A2 · · ·Ak−1

a+ b+ 1

× k(a+ k)(b + k)(a+ b+ k)Vk−1

(a+ b+ (2k + 1))Vk + k(a+ k)(b+ k)(a+ b+ k)Vk−1
.
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It therefore suffices to prove that

k(a+ k)(b+ k)(a+ b+ k)Vk−1

(a+ b+ (2k + 1))Vk + k(a+ k)(b + k)(a+ b+ k)Vk−1
= Ak. (5.9.3)

We claim that

Vk =

{
Vk−1(a+ b+ 2k − 1 + (k − 1)(a+ b+ k − 1)), if k is odd,

Vk−1(a+ b+ 2k − 1 + (a+ k − 1)(b+ k − 1)), if k is even.

(5.9.4)

We shall defer the proof of the claim above until the end of the proof (5.9.1).
Assuming the truth of (5.9.4) for the moment, let k be odd. Then the left

side of (5.9.3) is equal to

k(a+ k)(b + k)(a+ b+ k)Vk−1(
(a+ b+ 2k + 1)Vk−1{a+ b+ 2k − 1 + (k − 1)(a+ b+ k − 1)}

+k(a+ k)(b+ k)(a+ b+ k)Vk−1

)

=
k(a+ k)(b+ k)(a+ b+ k)

(a+ b + 2k + 1)(ak + bk + k2) + k(a+ k)(b+ k)(a+ b+ k)

=
(a+ k)(b+ k)

a+ b+ 2k + 1 + (a+ k)(b+ k)
=

(a+ k)(b+ k)

(a+ 1 + k)(b+ 1 + k)
= Ak,

as desired. When k is even, the left-hand side of (5.9.3) takes the shape

k(a+ k)(b + k)(a+ b+ k)Vk−1(
(a+ b+ 2k + 1)Vk−1{a+ b+ 2k − 1 + (a+ k − 1)(b+ k − 1)}

+k(a+ k)(b+ k)(a+ b+ k)Vk−1

)

=
k(a+ k)(b + k)(a+ b+ k)

(a+ b+ 2k + 1)(a+ k)(b+ k) + k(a+ k)(b + k)(a+ b+ k)

=
k(a+ b+ k)

(a+ b+ k + 1)(k + 1)
= Ak,

which again is what we wanted to prove. It remains to prove the claim.
We can recast (5.9.4) in the equivalent form

Vk
Vk−1

=

{
(a+ k)(b+ k), if k is even,

k(a+ b + k), if k is odd.
(5.9.5)

We now prove (5.9.5). The first few instances of (5.9.5) are

V2
V1

=
(a+ 2)(b+ 2)(a+ b + 1)

a+ b+ 1
= (a+ 2)(b+ 2),

V3
V2

=
3(a+ 2)(b + 2)(a+ b+ 1)(a+ b+ 3)

(a+ 2)(b+ 2)(a+ b+ 1)
= 3(a+ b+ 3),

V4
V3

= (a+ 4)(b+ 4).
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Assume that (5.9.5) is true up to 2k. Then, by (5.5.3) and the induction
hypothesis,

V2k+1

V2k
=

(a+ b + 4k + 1)V2k + 2k(a+ 2k)(b+ 2k)(a+ b+ 2k)V2k−1

V2k

= (a+ b+ 4k + 1) + 2k(a+ 2k)(b+ 2k)(a+ b+ 2k) · 1

(a+ 2k)(b+ 2k)

= (2k + 1)(a+ b+ 2k + 1),

which is in agreement with (5.9.5). Assuming that (5.9.5) is valid up to 2k+1
and using (5.5.3) again, we find, upon the use of the induction hypothesis,
that

V2k+2

V2k+1

= (a+ b+ 4k + 3)V2k+1 + (2k + 1)(a+ 2k + 1)(b+ 2k + 1)(a+ b+ 2k + 1)

× V2k
V2k+1

= (a+ b+ 4k + 3) + (2k + 1)(a+ 2k + 1)(b+ 2k + 1)(a+ b+ 2k + 1)

× 1

(2k + 1)(a+ b+ 2k + 1)

= (a+ 2k + 2)(b+ 2k + 2),

which again is in harmony with (5.9.5). This then completes the proof of
Ramanujan’s assertion in (5.9.1) and Entry 5.1.2. As mentioned in the intro-
duction, this proof is due to S.-Y. Kang.
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Two Partial Manuscripts on Euler’s Constant γ

6.1 Introduction

Like many mathematicians, Ramanujan was evidently fascinated with Euler’s
constant γ. He wrote only one paper on Euler’s constant [264], [267, pp. 163–
168], but published with his lost notebook [269, pp. 274–277] are two partial
manuscripts devoted to γ.

First, on pages 274 and 275 in [269], there is the beginning of a manuscript
that probably was to focus on integrals related to Euler’s constant γ and
ψ(s) := Γ ′(s)/Γ (s), and on integrals and series related to Frullani’s integral
theorem [37, p. 313, Eq. (2.15)], [142]. This fragment contains only two short
sections, comprising one and a half pages. Afterward, Ramanujan wrote “3.”
to indicate the beginning of a third section, but the manuscript ends abruptly
at this point.

The second partial manuscript is related to the first problem that Ra-
manujan submitted to the Journal of the Indian Mathematical Society [241],
[267, p. 322] and to the first six entries of Chap. 2 in his second notebook
[267], [37, pp. 25–35]. Moreover, the second partial manuscript gives Ramanu-
jan’s solution to another problem [243], [267, p. 325] that he submitted to the
Journal of the Indian Mathematical Society. No solution to this problem was
ever published in the Journal of the Indian Mathematical Society. The formula
for γ in this problem was also recorded in Ramanujan’s second notebook as
Entry 16 of Chap. 8 [268], [37, p. 196]. In [37], we gave a solution based on
material in Chap. 2 of Ramanujan’s second notebook [268], [37, pp. 25–35],
where he considers a more general series and derives several elegant theorems
and examples. The solution that Ramanujan gives in his lost notebook is not
fundamentally different from that given by the second author in [37], but
since it is more self-contained and independent of our considerations in [37,
pp. 25–35], for those readers not desiring to read the aforementioned material
in Chap. 2 and only interested in a direct route to Ramanujan’s formula for
Euler’s constant, we provide Ramanujan’s solution in this chapter. We mildly

G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook:
Part IV, DOI 10.1007/978-1-4614-4081-9 6,
© Springer Science+Business Media New York 2013
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correct Ramanujan’s claim and give his proof while providing a few additional
details. Lastly, we employ Ramanujan’s formula to numerically calculate γ.

The proofs in this chapter were first published in papers that Berndt wrote
with D. Bowman [46] and T. Huber [55].

6.2 Theorems on γ and ψ(s) in the First Manuscript

We first prove the primary theorem in the first section of the first-mentioned
incomplete manuscript. Applications of this result have been made by H. Alzer
and S. Koumandos [7] in deriving series representations for γ, Catalan’s con-
stant, ζ(3), π2, and other familiar constants.

Entry 6.2.1 (p. 274). Let p, q, and r be positive. Then

∫ 1

0

(
xp−1

1− x − rxq−1

1− xr

)
dx = ψ(q/r) − ψ(p) + log r. (6.2.1)

Proof. (Ramanujan) Using the continuity of the integrand on the right side
below for 0 ≤ x, s ≤ 1, a well-known integral representation for the beta
function, the change of variable t = xr in the second part of the integrand,
and L’Hospital’s rule, we find that

∫ 1

0

(
xp−1

1− x − rxq−1

1− xr

)
dx

= lim
s→0+

∫ 1

0

{
xp−1(1− x)s−1 − r1−sxq−1(1 − xr)s−1

}
dx

= lim
s→0

{
Γ (p)Γ (s)

Γ (s+ p)
− r−s Γ (q/r)Γ (s)

Γ (s+ q/r)

}

= lim
s→0

{
Γ (p)

Γ (s+ p)
− r−s Γ (q/r)

Γ (s+ q/r)

}
Γ (s+ 1)

s

= lim
s→0

{
−Γ (p)Γ

′(s+ p)
Γ 2(s+ p)

+ Γ (q/r)

(
r−s log r

Γ (s+ q/r)
+
r−sΓ ′(s+ q/r)
Γ 2(s+ q/r)

)}

=− ψ(p) + log r + ψ(q/r),

which completes the proof. ��

Entry 6.2.2 (p. 274). Suppose that a, b, and c are positive with b > 1. Then

∫ 1

0

(
xc−1

1− x − bx
bc−1

1− xb

) ∞∑

k=0

xab
k

dx = ψ
(a
b
+ c
)
− log

a

b
.
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Proof. By Entry 6.2.1 and the facts that b > 1 and ψ(x) ∼ log x, as x tends
to ∞ (see (13.2.28)),

∫ 1

0

(
xc−1

1− x − bx
bc−1

1− xb

) n∑

k=0

xab
k

dx =

n∑

k=0

∫ 1

0

(
xc+abk−1

1− x − bx
bc+abk−1

1− xb

)
dx

=

n∑

k=0

(
ψ
(
abk−1 + c

)
− ψ

(
abk + c

)
+ log b

)

= ψ
(a
b
+ c
)
− ψ (abn + c) + (n+ 1) log b

= ψ
(a
b
+ c
)
− log (abn + c) + (n+ 1) log b+ o(1)

= ψ
(a
b
+ c
)
− n log b− log a+ (n+ 1) log b+ o(1)

= ψ
(a
b
+ c
)
− log

a

b
+ o(1),

as n tends to ∞. Letting n→ ∞, we complete the proof. ��
Entry 6.2.3 (p. 275). We have

∫ 1

0

1

1 + x

∞∑

k=1

x2
k

dx = 1− γ, (6.2.2)

∫ 1

0

1 + 2x

1 + x+ x2

∞∑

k=1

x3
k

dx = 1− γ, (6.2.3)

∫ 1

0

1 + 1
2

√
x

(1 +
√
x)(1 +

√
x+ x)

∞∑

k=1

x(3/2)
k

dx = 1− γ. (6.2.4)

Proof. In Entry 6.2.2, set, respectively, c = 1, a = b = 2; c = 1, a = b = 3;
and c = 1, a = b = 3/2. Use the fact that [126, p. 954]

ψ(2) = 1− γ (6.2.5)

to complete the proof. ��
According to Bromwich [80, p. 526], (6.2.2) is due to E. Catalan. Parts

(6.2.3) and (6.2.4) may be new. H. Alzer and S. Koumandos [8] have em-
ployed (6.2.2) in deriving further representations for γ; several references to
the literature on γ can be found in [8].

Before discussing the very brief second section of Ramanujan’s fragment,
we offer some alternative proofs, references, and connections with further work
of Ramanujan, as well as others.

Lemma 6.2.1. For x > 0, x �= 1, and any integer n > 1,

1

log x
+

1

1− x =

∞∑

k=1

(n− 1) + (n− 2)x1/n
k

+ (n− 3)x2/n
k

+ · · ·+ x(n−2)/nk

nk(1 + x1/nk + x2/nk + · · ·+ x(n−1)/nk)
.

(6.2.6)
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Proof. It is easy to verify that

1

1− xn =
1

n

(
(n− 1) + (n− 2)x+ (n− 3)x2 + · · ·+ xn−2

1 + x+ x2 + · · ·+ xn−1
+

1

1− x

)
.

(6.2.7)

Replacing x by x1/n and iterating m times, we find that

1

1− x =

m∑

k=1

(n− 1) + (n− 2)x1/n
k

+ (n− 3)x2/n
k

+ · · ·+ x(n−2)/nk

nk(1 + x1/nk + x2/nk + · · ·+ x(n−1)/nk)

+
1

nm(1− x1/nm)
.

If we now let m tend to ∞ and apply L’Hospital’s rule, we complete the proof.
��

The special cases n = 2, 3 of Lemma 6.2.1 can be found in Ramanujan’s
third notebook [268, p. 364], and proofs can be found in Berndt’s book [40,
pp. 399–400]. Our proof here generalizes these proofs.

Lemma 6.2.2. For every integer n > 1,

γ =

∫ 1

0

(
n

1− xn − 1

1− x

) ∞∑

k=1

xn
k−1dx. (6.2.8)

Proof. Integrate (6.2.6) over 0 ≤ x ≤ 1 and employ the well-known integral
representation [80, p. 507], [126, p. 955]

γ =

∫ 1

0

(
1

log x
+

1

1− x

)
dx.

Accordingly, replacing x by xn
k

, we find that

γ =

∫ 1

0

∞∑

k=1

(n− 1) + (n− 2)x1/n
k

+ (n− 3)x2/n
k

+ · · ·+ x(n−2)/nk

nk(1 + x1/nk + x2/nk + · · ·+ x(n−1)/nk)
dx

=

∞∑

k=1

∫ 1

0

1

nk
(n− 1) + (n− 2)x1/n

k

+ (n− 3)x2/n
k

+ · · ·+ x(n−2)/nk

1 + x1/nk + x2/nk + · · ·+ x(n−1)/nk dx

=

∞∑

k=1

∫ 1

0

(n− 1) + (n− 2)x+ (n− 3)x2 + · · ·+ xn−2

1 + x+ x2 + · · ·+ xn−1
xn

k−1dx

=

∫ 1

0

(
n

1− xn − 1

1− x

) ∞∑

k=1

xn
k−1dx,

by (6.2.7). This completes the proof. ��
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Lemma 6.2.2 is equivalent to Entry 6.2.2 in the case c = 1, a = b = n.
To see this, first make these substitutions in Entry 6.2.2 and use (6.2.5) to
deduce that

1− γ =

∫ 1

0

(
1

1− x − nxn−1

1− xn

) ∞∑

k=1

xn
k

dx. (6.2.9)

Adding (6.2.8) and (6.2.9) and simplifying, we readily find that

1 = (n− 1)

∫ 1

0

∞∑

k=1

xn
k−1dx,

which is trivially verified by termwise integration.
The arguments in the proof of Lemma 6.2.2 lead to another formula for γ.

A proof of this formula can be found in the paper by Berndt and Bowman
[46] and in the Master’s Thesis of C.S. Haley [140].

Theorem 6.2.1. If b is an integer exceeding 1, let

εr =

{
b− 1, if b | r,
−1, if b � r.

(6.2.10)

Then

γ =

∞∑

r=1

εr
r

[
log r

log b

]
,

where [x] denotes the greatest integer ≤ x.
Corollary 6.2.1. We have

γ =

∞∑

r=1

(−1)r

r

[
log r

log 2

]
. (6.2.11)

Proof. Let b = 2 in Theorem 6.2.1. ��
The representation for γ given in (6.2.11) was discovered in 1909 by

G. Vacca [307] and is known as Dr. Vacca’s series for γ. Corollary 6.2.1
was rediscovered by H.F. Sandham, who submitted it as a problem [274].
M. Koecher [185] obtained a generalization of (6.2.11) that includes a for-
mula for γ submitted by Ramanujan as a problem [243], [267, p. 325] to the
Journal of the Indian Mathematical Society, and found in his notebooks [268],
[37, p. 196]. Further series in the spirit of those of Ramanujan and Koecher
were found by F.L. Bauer [25]. A result similar to that of Bauer was found by
A.W. Addison [2], with a simpler version later established by I. Gerst [121].
For alternative versions of Vacca’s series for γ, for generalizations, and for
approximations to γ, see papers by J. Sondow [293], Sondow and W. Zudilin
[294], and Kh. Hessami Pilehrood and T. Hessami Pilehrood [154–156].

J.W.L. Glaisher [123] generalized Theorem 6.2.1. We offer a theorem that
is equivalent to his theorem. For a proof, we refer to the paper by Berndt and
Bowman [46]. Another proof has been found by Haley [140].
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Theorem 6.2.2. Let a and b be positive integers with b > 1, and let εr be
defined by (6.2.10). Then

log a+ γ −
a−1∑

n=1

1

n
=

∞∑

r=a

εr
r

[
log(r/a)

log b

]
.

We complete this section with a remark about Entry 6.2.1. After replacing
x by e−x in (6.2.1), we obtain an integral of Frullani type. In his third quarterly
report, Ramanujan found a beautiful generalization of Frullani’s theorem.
In particular, the formula

∫ ∞

0

(1 + ax)−p − (1 + bx)−q

x
dx = ψ(q)− ψ(p) + log

b

a
, (6.2.12)

where a, b, p, q > 0, is a special instance of Ramanujan’s theorem [37, p. 314].
In view of the right sides of (6.2.1) and (6.2.12), one might surmise that (6.2.1)
can be derived from (6.2.12), or Ramanujan’s generalization of Frullani’s the-
orem, and this was accomplished by J.-P. Allouche [3].

6.3 Integral Representations of log x

Section 2 in Ramanujan’s first unpublished fragment is devoted solely to the
statements of the following theorem and (6.3.1) below.

Entry 6.3.1 (p. 275). If a, b, and c are positive with b > 1, then
∫ 1

0

xc−1 − xbc−1

log x

∞∑

k=0

xab
k

dx = − log

(
1 +

bc

a

)
.

Proof. As indicated by Ramanujan, we begin with the equality [126, p. 575]
∫ 1

0

xp−1 − xq−1

log x
dx = − log

q

p
, (6.3.1)

where p, q > 0. Thus, since b > 1,

−
∫ 1

0

xc−1 − xbc−1

log x

n∑

k=0

xab
k

dx =

n∑

k=0

∫ 1

0

xc+abk−1 − xbc+abk−1

log x
dx

=

n∑

k=0

log
bc+ abk

c+ abk

=
n∑

k=0

(
log b+ log(c+ abk−1)− log(c+ abk)

)

= (n+ 1) log b+ log(c+ a/b)− log(c+ abn)

= (n+ 1) log b+ log(c+ a/b)− n log b− log a+ o(1)

= log(1 + bc/a) + o(1),

as n tends to ∞. Letting n tend to ∞, we complete the proof. ��
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Entry 6.3.2 (p. 275). We have

∫ 1

0

1− x
log x

∞∑

k=1

x2
k

dx = − log 2.

Proof. Set c = 1 and a = b = 2 in Entry 6.3.1. ��

Observe that if x is replaced by e−x in (6.3.1), we obtain an example
of Frullani’s integral theorem. Ramanujan’s ideas can be extended to other
examples of Frullani-type integrals found by, among others, Ramanujan in his
quarterly reports [37] and Hardy [142], [151, pp. 195–226]. For example, we
note the integral [142, Eq. (29)], [267, p. 200]

∫ ∞

0

e−ax cos(αx)− e−bx cos(βx)

x
dx = −1

2
log
a2 + α2

b2 + β2
, (6.3.2)

where a, b, α, β > 0.

6.4 A Formula for γ in the Second Manuscript

At the top of page 276 in [269], Ramanujan writes

γ = log 2− 2

33 − 3
− 4

(
1

63 − 6
+

1

93 − 9
+

1

123 − 12

)

− 6

(
1

153 − 15
+

1

183 − 18
+ · · ·+ 1

393 − 39

)
− · · · ,

the last term of the nth group being
1

(
3n+3

2

)3 − 1
3n+3

2

. (6.4.1)

Ramanujan’s assertion (6.4.1) needs to be slightly corrected. The first, not

the last, term of the nth group is
1

(
3n+3

2

)3 − 1
3n+3

2

. We give a more precise

statement of Ramanujan’s claim.

Entry 6.4.1 (p. 276).

γ = log 2−
∞∑

n=1

2n

3n−1
2∑

k=
3n−1+1

2

1

(3k)3 − 3k
. (6.4.2)

Proof. It is easily checked that for each positive integer k,

1

3k − 1
+

1

3k
+

1

3k + 1
=

1

k
+

2

(3k)3 − 3k
. (6.4.3)
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Set k = 1, 2, . . . , n in (6.4.3) and add the n equalities to find that

3n+1∑

k=2

1

k
=

n∑

k=1

1

k
+

n∑

k=1

2

(3k)3 − 3k
,

i.e.,
2m+1∑

k=1

1

m+ k
= 1 +

m∑

k=1

2

(3k)3 − 3k
. (6.4.4)

The first three cases, m = 1, 2, 3, of (6.4.4) are, respectively,

1

2
+

1

3
+

1

4
= 1 +

2

33 − 3
,

1

5
+

1

6
+ · · ·+ 1

13
= 1 +

2

33 − 3
+

2

63 − 6
+

2

93 − 9
+

2

123 − 12
,

1

4
+

1

15
+ · · ·+ 1

40
= 1 +

2

33 − 3
+ · · ·+ 2

393 − 39
.

More generally, taking m = 1, 2, . . . , n in (6.4.4) and adding the n equalities,
we find that

3n−1
2∑

k=1

1

k
= n+ (n− 1)

2

33 − 3
+ (n− 2)

(
2

63 − 6
+

2

93 − 9
+

2

123 − 12

)

+ (n− 3)

(
2

153 − 15
+

2

183 − 18
+ · · ·+ 2

393 − 39

)
, (6.4.5)

where there are n expressions on the right-hand side of (6.4.5). Now, from the
standard definition of Euler’s constant, as n→ ∞,

3n−1
2∑

k=1

1

k
= log

(
3n − 1

2

)
+ γ + o(1) = n log 3− log 2 + γ + o(1). (6.4.6)

If we use (6.4.6) in (6.4.5), divide both sides of the resulting equality by n,
and then let n→ ∞, we deduce that

log 3 = 1 +
∞∑

k=1

2

(3k)3 − 3k
. (6.4.7)

(The identity (6.4.7) is also found in Sect. 2 of Chap. 2 in Ramanujan’s second
notebook [268]; see also [37, p. 27].) Lastly, using (6.4.6) in (6.4.5), letting
n→ ∞ while invoking (6.4.7), and rearranging, we readily arrive at (6.4.2) to
complete the proof. ��
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6.5 Numerical Calculations

Define

Sj :=

j∑

n=1

2n

3n−1
2∑

k=
3n−1+1

2

1

(3k)3 − 3k
. (6.5.1)

The first 14 values of −γ + log 2− Sj are given in the following table.

j −γ + log 2− Sj j −γ + log 2− Sj
1 3.25982× 10−2 8 3.14043× 10−8

2 5.66401× 10−3 9 3.87176× 10−9

3 8.37419× 10−4 10 4.72684× 10−10

4 1.15710× 10−4 11 5.72414× 10−11

5 1.53668× 10−5 12 6.88472× 10−12

6 1.98621× 10−6 13 8.23230× 10−13

7 2.51665× 10−7 14 6.05812× 10−14

These calculations were carried out using Mathematica 5.2. The partial
sums in (6.5.1) are taken with respect to the index n of the outer sum.
Thus, (6.4.2) converges quite rapidly, with only 14 terms needed to deter-
mine γ up to an error of order 10−14. If we regard (6.5.1), or (6.4.2), as a
single sum, i.e., each partial sum contains only one additional term from the
inner sum, then the computations take much longer.

Ramanujan’s series for γ converges much more rapidly than the standard
series definition for γ, namely,

γ = lim
n→∞Cn, Cn :=

⎛

⎝
n∑

j=1

1

j
− logn

⎞

⎠ . (6.5.2)

To compare the use of (6.5.2) with that of (6.5.1), which we used in computing
the previous table, we list the first 14 values of Cn − γ in the following table.
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n Cn − γ n Cn − γ

1 0.42278 8 0.061200

2 0.22964 9 0.054528

3 0.15751 10 0.049167

4 0.11982 11 0.044766

5 0.09668 12 0.041088

6 0.081025 13 0.037969

7 0.069731 14 0.035289

For several years, the most effective algorithm for computing γ has been
that of R.P. Brent and E.M. McMillan [77]. The current world record, at the
writing of this book, for calculating the digits of

γ = 0.57721566490153286060651209008240243104215933593992 . . .

is held by Alexander J. Yee and R. Chan [320], who calculated 29,844,489,545
digits.

Another representation for γ can be found in Entry 44 of Chap. 12 in
Ramanujan’s second notebook [268], [38, p. 167]. Asymptotic expansions for
γ are located in Corollaries 1 and 2 in Sect. 9 of Chap. 4 in his second note-
book [268], [37, p. 98]. An extension of these results along with an interesting
discussion of them has been given by R.P. Brent [75, 76].



7

Problems in Diophantine Approximation

7.1 Introduction

In this chapter, we examine three partial manuscripts on Diophantine
approximation found in [269]. All are untitled and in rough form.

The first partial manuscript is on pages 262–265. At the top of page 262
are two appended notes. The first, possibly in the handwriting of G.H. Hardy’s
former research student, Gertrude Stanley, reads (in part) “Paper a lit-
tle difficult to understand after the first page.” The second, definitely in
the handwriting of Hardy, surmises “Odd problem. I don’t profess to know
whether there’s much to it.”

On these four pages, Ramanujan considers the problem of finding the
maximum value of a certain polynomial when the variable x is a rational num-
ber with prescribed denominator.We do not know what motivated Ramanujan
to consider this particular problem, and it is natural to ask whether Ramanu-
jan’s analysis can be extended to other algebraic numbers. Probably, this is
the case, but it appears to be complicated to state and prove a general the-
orem. Although this problem is outside the scope of contemporary research
in Diophantine approximation, because only elementary number theory and
elementary calculus are involved, we hope that readers will find Ramanujan’s
problem and its analysis to be appealing. We have decided that it would
be unwise to dwell on every inaccuracy or vague statement in Ramanujan’s
manuscript. We emphasize that the principal ideas are due to Ramanujan, but
that it took considerable effort to interpret and make them precise. The proofs
are substantially due S. Kim and the second author [56].

The second manuscript is on pages 266 and 267 of [269]. This short
manuscript is more precisely and clearly written. Ramanujan considers the
Diophantine approximation of the exponential function e2/a, where a is
a nonzero integer. Remarkably, he obtains the best possible Diophantine
approximation to e2/a, a result that was first established in the literature
by C.S. Davis [102] in 1978, probably about 60 years after Ramanujan had
proved it. Our account of this manuscript is taken from a paper [61] that

G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook:
Part IV, DOI 10.1007/978-1-4614-4081-9 7,
© Springer Science+Business Media New York 2013
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Berndt coauthored with S. Kim and A. Zaharescu. This paper contains
further results. In particular, the authors examine how often the convergents
to the (simple) continued fraction of e coincide with partial sums of e. More-
over, they prove a conjecture of J. Sondow [292] asserting that only two partial
sums of the Maclaurin series for e coincide with partial quotients of the simple
continued fraction of e.

We have been unable to provide meaning to the third manuscript, which is
on page 343. Its claims are wrong, and so it remains a challenge to determine
whether something meaningful can be ascertained.

7.2 The First Manuscript

7.2.1 An Unusual Diophantine Problem

We begin by quoting Ramanujan at the beginning of his manuscript.

Let us consider the maximum of

εm(1− εm)(1− 2εm) (7.2.1)

when εm is a positive proper fraction and m and mεm are positive
integers. Let vm be the maximum of (7.2.1). If we do not assume that
mεm is rational, we get that

εm =
3−

√
3

6
, vm =

1

6
√
3
. (7.2.2)

Here, as a positive proper fraction, Ramanujan intends εm to be a rational
number (not necessarily in lowest terms) with denominator m. If

f(x) := x(1− x)(1 − 2x) = x− 3x2 + 2x3, (7.2.3)

then it is easily seen that x = (3 −
√
3)/6 yields a local maximum of f(x).

Ramanujan desires to find the maximum value vm of (7.2.3) when approxi-
mating (3 −

√
3)/6 by a rational number εm with denominator equal to m.

He then claims that εm is either

gm(ε) :=

m ·
(
3−

√
3

6

)
− ε

m
or gm(ε − 1) =

m ·
(
3−

√
3

6

)
+ 1− ε

m
.

(7.2.4)
Here, we can see that ε is completely determined bym.We can assume that

0 < ε < 1, so that the two values in (7.2.4) give the two best rational approxi-
mations to (3−

√
3)/6 with denominatorm. In the first instance of (7.2.4), the

approximation is from below, while in the second instance, the approximation
is from above. Ramanujan then claims the following.
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Proposition 7.2.1. If

εm =

m ·
(
3−

√
3

6

)
− ε

m
, then vm =

1

6
√
3
− ε2

m2

√
3− 2

ε3

m3
, (7.2.5)

and if

εm =

m ·
(
3−

√
3

6

)
+1−ε

m
, then vm =

1

6
√
3
− (1−ε)2

m2

√
3+2

(1−ε)3
m3

.

(7.2.6)

Proof. With the use of (7.2.3), both of these calculations are straightforward.
��

We note that by replacing ε by ε−1 in the value of vm in (7.2.5), we obtain
the value of vm in (7.2.6).

Proposition 7.2.2.

If ε <
1

2
− m−

√
m2 − 1

2
√
3

, then vm in (7.2.5) is greater; (7.2.7)

if ε >
1

2
− m−

√
m2 − 1

2
√
3

, then vm in (7.2.6) is greater; (7.2.8)

and

if ε =
1

2
− m−

√
m2 − 1

2
√
3

, then the values of vm in (7.2.5) and (7.2.6)

are identical. (7.2.9)

Proof. An elementary calculation shows that

1

6
√
3
− ε2

m2

√
3− 2

ε3

m3
>

1

6
√
3
− (1− ε)2

m2

√
3 + 2

(1− ε)3
m3

(7.2.10)

if and only if

6ε2 + (2m
√
3− 6)ε+ 2−m

√
3 < 0. (7.2.11)

It is easily checked that the roots of 6ε2 + (2m
√
3− 6)ε+ 2−m

√
3 = 0 are

r1, r2 :=
1

2
+

−m±
√
m2 − 1

2
√
3

, with r2 < r1.

Thus, (7.2.10) is true if and only if r2 < ε < r1. Since the root that we seek is
r1, we see that the statements in Proposition 7.2.2 follow. ��
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Now, if

0 < ε <
1

2
− m−

√
m2 − 1

2
√
3

,

then

m− 1

2
−
√
m2 − 1

12
< mεm < m

3−
√
3

6
<
m+ 1

2
−
√
m2 − 1

12
.

Also, if
1

2
− m−

√
m2 − 1

2
√
3

< ε < 1,

then

m− 1

2
−
√
m2 − 1

12
< m

3−
√
3

6
< mεm <

m+ 1

2
−
√
m2 − 1

12
.

Thus, if

ε �= 1

2
− m−

√
m2 − 1

2
√
3

,

we conclude that the maximum vm occurs when

εm =
1

m

[
m+ 1

2
−
√
m2 − 1

12

]
. (7.2.12)

We also note that for those values of m for which

ε =
1

2
− m−

√
m2 − 1

2
√
3

, (7.2.13)

by (7.2.9), we can choose either expression from (7.2.4) for εm. Thus,

εm =
1

m

(
m− 1

2
−
√
m2 − 1

12

)
or

1

m

(
m+ 1

2
−
√
m2 − 1

12

)
. (7.2.14)

We remark that by (7.2.4) and (7.2.13), we do not need greatest integer
functions in (7.2.14). Hence, we have established the following proposition.

Proposition 7.2.3. The formula for εm in (7.2.12) is valid for all values of
m, and in the case of (7.2.13), εm can be determined by the alternative choices
in (7.2.14).

In conclusion, we use (7.2.12) to calculate εm. We then return to (7.2.3)
to determine vm.

In Table 7.1, we list the values of εm for each m, 1 ≤ m ≤ 10, which were
obtained from (7.2.12) or (7.2.14). We also add the corresponding values of ε
in the table.

Ramanujan next discusses the minimum order and maximum order of vm.
He does not define these concepts, but in different words we relate what we
think he intended.
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m εm Value of ε vm

1 0, 1
1

2
− 1

2
√
3

0

2 0,
1

2

3−
√
3

3
0

3
1

3

3−
√
3

2

2

27

4
1

4
2− 2

√
3

3

3

32

5
1

5

3

2
− 5

√
3

6

12

125

6
1

6
2−

√
3

20

63

7
1

7
,
2

7

5

2
− 7

√
3

6

30

73

8
1

4
3− 4

√
3

3

3

32

9
2

9

7

2
− 3

√
3

2

70

36

10
1

5
3− 5

√
3

3

12

53

Table 7.1. Table of values for vm, 1 ≤ m ≤ 10

Proposition 7.2.4. For all values of m,

vm ≥ m2 − 4

6m3

√
m2 − 1

3
, (7.2.15)

with equality holding when

ε =
1

2
− m−

√
m2 − 1

2
√
3

, (7.2.16)

and the corresponding value of εm is given by

εm =
1

m

(
m− 1

2
−
√
m2 − 1

12

)
or

1

m

(
m+ 1

2
−
√
m2 − 1

12

)
. (7.2.17)

Proof. From (7.2.12), we have

1

m

(
m− 1

2
−
√
m2 − 1

12

)
≤ εm ≤ 1

m

(
m+ 1

2
−
√
m2 − 1

12

)
.



168 7 Problems in Diophantine Approximation

If the maximum vm occurs at εm ≤ (3−
√
3)/6, then

vm ≥ f
(

1

m

(
m− 1

2
−
√
m2 − 1

12

))
=
m2 − 4

6m3

√
m2 − 1

3
,

since f(x) is increasing when x ≤ (3 −
√
3)/6. On the other hand, f(x) is

decreasing when (3 −
√
3)/6 ≤ x ≤ 1. Thus, if the maximum vm occurs at

εm ≥ (3 −
√
3)/6, then

vm ≥ f
(

1

m

(
m+ 1

2
−
√
m2 − 1

12

))
=
m2 − 4

6m3

√
m2 − 1

3
,

which completes the proof. ��

The previous proposition gives a lower bound for vm. The next two
propositions give upper bounds, with Proposition 7.2.5 due to Ramanujan;
Proposition 7.2.6 was not given by Ramanujan in his partial manuscript.

Proposition 7.2.5. If εm = g(ε), then

vm ≤ m2 − 1

6m3

√
m2 + 2

3
, (7.2.18)

with equality holding above when

εm =
1

m

(
m

2
−
√
m2 + 2

12

)
. (7.2.19)

Proof. We first note that

m
3−

√
3

6
=
m

2
−

√
m2

12
and

m

2
−

√
m2 + 1

12

cannot be integers, whereas

m

2
−

√
m2 + 2

12
(7.2.20)

is an integer for m = 1, 5, 19, . . . . Also, it can easily be verified that
⎡

⎣m
2

−

√
m2

12

⎤

⎦ =

⎡

⎣m
2

−

√
m2 + 1

12

⎤

⎦ =

⎡

⎣m
2

−

√
m2 + 2

12

⎤

⎦ ≤ m

2
−

√
m2 + 2

12
.

Thus, we obtain

vm ≤ f

⎛

⎝ 1

m

⎛

⎝m
2

−

√
m2 + 2

12

⎞

⎠

⎞

⎠ =
m2 − 1

6m3

√
m2 + 2

3
.

��
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Proposition 7.2.6. If εm = g(ε− 1), then

vm ≤ m2 + 2

6m3

√
m2 − 4

3
, (7.2.21)

with equality holding when

εm =
1

m

⎛

⎝m
2

−

√
m2 − 4

12

⎞

⎠ . (7.2.22)

Proof. First, it can be easily verified that for 0 ≤ i ≤ 3,

m

2
−

√
m2 − i
12

does not take any integral values. So, we have
⎡

⎢⎢⎢
m

2
−

√
m2

12

⎤

⎥⎥⎥
=

⎡

⎢⎢⎢
m

2
−

√
m2 − 4

12

⎤

⎥⎥⎥
≥ m

2
−

√
m2 − 4

12
.

Thus, we obtain

vm ≤ f

⎛

⎝ 1

m

⎛

⎝m
2

−

√
m2 − 4

12

⎞

⎠

⎞

⎠ =
m2 + 2

6m3

√
m2 − 4

3
.

��

This concludes the first section of Ramanujan’s partial manuscript.

7.2.2 The Periodicity of vm

In the second and last section of his draft, Ramanujan considers the periodicity
of vm. To motivate the remainder of our paper, we move his table from the
end of the manuscript to the beginning of this section (see Table 7.2).

We observe that there exist sequences of values that are periodic, e.g.,

v5 = v10 = v15 = v20 = v25 = v30 = v35 = v40. (7.2.23)

Ramanujan then seeks to determine the maximum value of k such that

vm = v2m = v3m = · · · = vkm. (7.2.24)

Theorem 7.2.1. As in (7.2.19), consider only those values of m for which

εm =
1

m

(
m

2
−
√
m2 + 2

12

)
(7.2.25)
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v1 = 0 v26 = 0.0955849

v2 = 0 v27 = 0.0960219

v3 = 0.0740741 v28 = 0.0962099

v4 = 0.0937500 v29 = 0.0961909

v5 = 0.0960000 v30 = 0.0960000

v6 = 0.0925926 v31 = 0.0958679

v7 = 0.0874436 v32 = 0.0961304

v8 = 0.0937500 v33 = 0.0962239

v9 = 0.0960219 v34 = 0.0961734

v10 = 0.0960000 v35 = 0.0960000

v11 = 0.0946657 v36 = 0.0960219

v12 = 0.0937500 v37 = 0.0961838

v13 = 0.0955849 v38 = 0.0962239

v14 = 0.0962099 v39 = 0.0961581

v15 = 0.0960000 v40 = 0.0960000

v16 = 0.0952148 v41 = 0.0961100

v17 = 0.0952575 v42 = 0.0962099

v18 = 0.0960219 v43 = 0.0962179

v19 = 0.0962239 v44 = 0.0961448

v20 = 0.0960000 v45 = 0.0960219

v21 = 0.0954541 v46 = 0.0961617

v22 = 0.0957926 v47 = 0.0962215

v23 = 0.0961617 v48 = 0.0962095

v24 = 0.0962095 v49 = 0.0961334

v25 = 0.0960000 v50 = 0.0960960

Table 7.2. Table of values for vm, 1 ≤ m ≤ 50

is a rational number. Let k be the maximum value such that (7.2.24) holds.
Then

k �>
[ x
m

]
=
√
3m2 + 6− 1, (7.2.26)

where x is determined by
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1

x

(
x− 1

2
−
√
x2 − 1

12

)
=

1

m

(
m

2
−
√
m2 + 2

12

)
= εm. (7.2.27)

Proof. From (7.2.12), recall that for every m

εm =
1

m

[
m+ 1

2
−
√
m2 − 1

12

]
,

or in terms of the least integer function,

εm =
1

m

⌈
m− 1

2
−
√
m2 − 1

12

⌉
.

With these values in mind, we first examine, for x > 1, the two functions

f1(x) :=
1

x

(
x+ 1

2
−
√
x2 − 1

12

)
and f2(x) :=

1

x

(
x− 1

2
−
√
x2 − 1

12

)
.

An elementary calculation shows that

f ′1(x) = − 1

2x2
− 1

12x2

(
x2 − 1

12

)−1/2

< 0,

f ′2(x) =
1

2x2
− 1

12x2

(
x2 − 1

12

)−1/2

> 0,

provided that x > 2/
√
3. Thus, f1(x) is monotonically decreasing and f2(x)

is monotonically increasing for x > 2/
√
3. Also, we see that

f2(x) =
1

2
− 1

2x
−
√

1

12
− 1

12x2
<

3−
√
3

6
< f1(x) =

1

2
+

1

2x
−
√

1

12
− 1

12x2
.

(7.2.28)

Now we verify (7.2.26). Suppose that we have the sequence of equal val-
ues (7.2.24), which, in turn, implies that

εm = ε2m = ε3m = · · · = εkm.

Since εm = εkm, by (7.2.12) and (7.2.27),

1

x

⎛

⎝x− 1

2
−

√
x2 − 1

12

⎞

⎠ =
1

km

[
km+ 1

2
−
√
k2m2 − 1

12

]

≥ 1

km

(
km− 1

2
−
√
k2m2 − 1

12

)
.

Since f2(x) is monotonically increasing, it follows that x ≥ km, which
proves the first equality in (7.2.26).
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Now we solve (7.2.27). Let

α =
1

m

⎛

⎝m
2

−

√
m2 + 2

12

⎞

⎠ .

Then, a straightforward calculation shows that

x =
3(1− 2α)±

√
1 + 12α− 12α2

3(1− 2α)2 − 1
. (7.2.29)

Since α = 1
2 − 1

m

√
m2 + 2

12 , we easily find that

1 + 12α− 12α2 = 4− 12
(1
2
− α

)2
=

3m2 − 2

m2 ,

3(1− 2α) =

√
3m2 + 6

m
,

3(1− 2α)2 − 1 = 2− 12α+ 12α2 = 12
(
α− 1

2

)2
− 1 =

2

m2 .

Hence, by (7.2.29), we deduce that

x

m
=

√
3m2 + 6 +

√
3m2 − 2

2
.

However, by (7.2.25), we see that (m2 + 2)/3 is a perfect square, which is
equivalent to 3m2 + 6 being a perfect square. Thus,

k ≤
[ x
m

]
=
√
3m2 + 6− 1, (7.2.30)

which verifies the second equality in (7.2.26). ��

In the next result, Ramanujan removes the restriction on (7.2.25) from
Theorem 7.2.1 and claims a formula that is valid for all m.

Theorem 7.2.2. Assume that x is chosen so that either

1

x

(
x+ 1

2
−
√
x2 − 1

12

)
=

1

m

[
m+ 1

2
−
√
m2 − 1

12

]
>

3−
√
3

6
(7.2.31)

or

1

x

(
x− 1

2
−
√
x2 − 1

12

)
=

1

m

[
m+ 1

2
−
√
m2 − 1

12

]
<

3−
√
3

6
. (7.2.32)
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Then

k =
[ x
m

]
. (7.2.33)

Moreover, if 3m2 + 6 is a perfect square, then

k =
√
3m2 + 6− 1. (7.2.34)

Proof. Observe that the last statement in Theorem 7.2.2 follows from (7.2.33)
and (7.2.30).

In order to prove (7.2.33), we first need to show that k ≤ [x/m] for
arbitrary m. In the case of (7.2.32), we can use the same argument from the
proof of (7.2.26). For the case of (7.2.31), if we assume εm = ε2m = · · · = εkm,
then we have

1

x

(
x+ 1

2
−
√
x2 − 1

12

)
=

1

km

[
km+ 1

2
−
√
k2m2 − 1

12

]

≤ 1

km

(
km+ 1

2
−
√
k2m2 − 1

12

)
.

Since f1(x) is monotonically decreasing, we conclude that km ≤ x, or k ≤
[x/m] .

We now show that for every 1≤ t≤ [x/m] , εm = εtm, which proves (7.2.33).
We first consider those values of m for which (7.2.31) holds. Since all the
rational numbers with denominator tm include the rational numbers with
denominator m, we have vtm ≥ vm. Since εm > (3 −

√
3)/6 and the function

f(x) = x(1− x)(1− 2x) is decreasing on the interval [(3−
√
3)/6, 1], we have

εtm ≤ εm. On the other hand, since f1(x) is decreasing, by (7.2.31),

εm =
t

tm

[
m+ 1

2
−
√
m2 − 1

12

]
≤ 1

tm

(
tm+ 1

2
−
√
t2m2 − 1

12

)
.

Thus,

t

[
m+ 1

2
−
√
m2 − 1

12

]
≤
[
tm+ 1

2
−
√
t2m2 − 1

12

]
,

which implies that εm ≤ εtm, upon dividing both sides above by tm. Hence, the
inequalities εm ≥ εtm and εm ≤ εtm imply that εm = εtm for all 1 ≤ t ≤ [x/m] .

For those values of m that satisfy (7.2.32), we apply a similar argu-
ment. Since vtm ≥ vm and the function f(x) is increasing on the interval
[0, (3−

√
3)/6], we have εm ≤ εtm. Since f2(x) is increasing, by (7.2.32),

εm =
t

tm

[
m+ 1

2
−
√
m2 − 1

12

]
≥ 1

tm

(
tm− 1

2
−
√
t2m2 − 1

12

)
.
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Thus,

t

[
m+ 1

2
−
√
m2 − 1

12

]
≥
⌈
tm− 1

2
−
√
t2m2 − 1

12

⌉
,

which implies that εtm ≤ εm, upon dividing both sides above by tm. Thus,
since we also had observed that εm ≤ εtm, we conclude that εm = εtm, which
completes the proof of (7.2.33). ��

In summary, if 3m2 + 6 is a perfect square, then we use (7.2.34) to calcu-
late the length k of the period. If 3m2 + 6 is not a perfect square, then we
use (7.2.33), with x defined by (7.2.31) or (7.2.32), to calculate the period
length k.

If m = 1, then by (7.2.34), k = 2. In our initial calculations above, we
had observed that v1 = v2 = 0, but v3 �= 0, and so Ramanujan’s periodic
assertion is corroborated in this case. Ramanujan then gives seven peri-
odic sequences corresponding to the values m = 5, 9, 14, 19, 71, 265, 989, with
periods 8, 5, 12, 32, 122, 458, 1,712, respectively, namely,

v5 = v10 = v15 = · · · = v40,
v9 = v18 = v27 = · · · = v45,
v14 = v28 = v42 = · · · = v168,
v19 = v38 = v57 = · · · = v608,
v71 = v142 = v213 = · · · = v8,662,
v265 = v530 = v795 = · · · = v121,370,
v989 = v1,978 = v2,967 = · · · = v1,693,168.

The first, fourth, fifth, sixth, and seventh sequences arise from (7.2.34), but
for the second and third, we must use (7.2.33) and (7.2.31) to determine the
values k = 5 and k = 12, respectively.

It is interesting to examine how often 3m2 + 6 is a perfect square. If we
let 3m2 + 6 = n2 or n2 − 3m2 = 6, then n + m

√
3 is an element of Z[

√
3]

with norm 6. Since 3 +
√
3 is such an element with positive smallest values

of n and m, and 2 +
√
3 is the fundamental unit of Z[

√
3], all the values of

n and m generated by (3 +
√
3)(2 +

√
3)r with r ∈ Z are solutions. In fact,

we can also show that they are the only solutions, using the LMM algorithm
as described by K. Matthews [221], for example. We remark that the values
m = 5, 19, 71, 265, 989 are generated by (3 +

√
3)(2 +

√
3)r with 1 ≤ r ≤ 5.

We complete our discussion of this first manuscript by adding an
explanation for those readers who are reading this chapter in conjunction
with Ramanujan’s original manuscript. In fact, instead of (7.2.27) in Theorem
7.2.1, Ramanujan had written

1

x

(
x+ 1

2
−
√
x2 − 1

12

)
=

1

m

(
m

2
−
√
m2 + 2

12

)
. (7.2.35)
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Now, the right-hand side of (7.2.35) is

1

m

(
m

2
−
√
m2 + 2

12

)
=

1

2
−
√

1

12
+

1

6m2 <
3−

√
3

6
, (7.2.36)

while the left-hand side of (7.2.35), by (7.2.28), is equal to

1

2
+

1

2x
−
√

1

12
− 1

12x2
= f1(x) >

3−
√
3

6
. (7.2.37)

Clearly, (7.2.36) and (7.2.37) are incompatible. This mistake caused confu-
sion for the writer of the first note appended to Ramanujan’s manuscript.
She (or he) writes, “I don’t see where eqn (7.2.26) (the second equality) comes
from, e.g., m = 5, k = 8 does not come from the value of k given [x/m], as x
is negative.”

7.3 A Manuscript on the Diophantine
Approximation of e2/a

In this section, we discuss the partial manuscript on pages 266–267 of [269],
in which Ramanujan examines the Diophantine approximation of e2/a when
a is a nonzero integer. At the top of page 266 is a note, “See Q. 784(ii) in vol-
ume. This goes further,” which is in G.H. Hardy’s handwriting. Question 784
is a problem on the Diophantine approximation submitted by Ramanujan to
the Journal of the Indian Mathematical Society [261] [267, p. 334]; “volume”
evidently refers to Ramanujan’s Collected Papers [267]. It took more than
a decade before A.A. Krishnaswami Aiyangar [203] published a partial so-
lution and T. Vijayaraghavan and G.N. Watson [309] published a complete
solution to Question 784. In Question 784, Ramanujan improved upon the
classical approximation. But in the partial manuscript on pages 266 and 267,
Ramanujan made a further improvement and moreover derived the best pos-
sible Diophantine approximation for e2/a. As remarked in the introduction,
such a theorem was first proved in print by C.S. Davis [102] in 1978, approxi-
mately 60 years after Ramanujan discovered it. Of course, Davis was unaware
that his theorem was ensconced in Ramanujan’s lost notebook. As we indicate
in the sequel, Ramanujan’s proof is different, and considerably more elemen-
tary, than Davis’s proof. Thus, Hardy’s remark is on the mark. Using methods
similar to those of Ramanujan (but of course, without knowledge of Ramanu-
jan’s work), B.G. Tasoev [300] established a general result, for which Davis’s
theorem is a special case. In regard to Ramanujan’s original problem, readers
might find a letter from S.D. Chowla to S.S. Pillai, written on August 25,
1929, of interest [20, p. 612].
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7.3.1 Ramanujan’s Claims

Ramanujan established three different, but related, results, which we relate in
a moderately more contemporary style. As customary, [x] denotes the greatest
integer in x.

Entry 7.3.1 (p. 266). Let ε > 0 be given. If a is any nonzero integer, then
there exist infinitely many positive integers N such that

Ne2/a − [Ne2/a] <
(1 + ε) log logN

|a|N logN
. (7.3.1)

Moreover, for all sufficiently large positive integers N ,

Ne2/a − [Ne2/a] >
(1 − ε) log logN

|a|N logN
. (7.3.2)

Entry 7.3.1 might be compared with a theorem of P. Bundschuh established
in 1971 [84]. If t is a nonzero integer, then there exist positive constants c1
and infinitely many rational numbers p/q such that

∣∣∣∣e
1/t − p

q

∣∣∣∣ < c1
log log q

q2 log q
;

and there exists a positive constant c2 such that for all rational numbers p/q,
∣∣∣∣e

1/t − p
q

∣∣∣∣ > c2
log log q

q2 log q
.

In his next theorem, Ramanujan considers two cases, – a even and a
odd. His result for a even is identical to that for Entry 7.3.1, except that
he formulates his conclusion in terms of 1 + [Ne2/a] − Ne2/a. We therefore
state Ramanujan’s claim only in the case that a is odd.

Entry 7.3.2 (p. 266). If a is any odd integer and ε > 0 is given, then there
exist infinitely many positive integers N such that

1 + [Ne2/a]−Ne2/a < (1 + ε) log logN

4|a|N logN
. (7.3.3)

Furthermore, given ε > 0, for all positive integers N sufficiently large,

1 + [Ne2/a]−Ne2/a > (1− ε) log logN
4|a|N logN

. (7.3.4)

It will be seen, from the proofs of these entries below, that the constants
multiplying

log logN

N logN

on the right-hand sides of (7.3.1)–(7.3.4) are optimal.
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We now provide a precise statement of Davis’s theorem [102, Theorem 2],
which readers will immediately see is equivalent to Ramanujan’s Entries 7.3.1
and 7.3.2. In his paper, Davis, in fact, proves his theorem only in the special
case of e, indicating that the proof of the more general result follows along
the same lines. Although both the proofs of Davis and Ramanujan employ
continued fractions, they are quite different. Davis uses, for example, inte-
grals, hypergeometric functions, and Tannery’s theorem. On the other hand,
Ramanujan utilizes only elementary properties of continued fractions.

Theorem 7.3.1. Let a = ±2/t, where t is a positive integer, and set

c =

{
1/t, if t is even,

1/(4t), if t is odd.

Then, for each ε > 0, the inequality
∣∣∣∣e

a − p
q

∣∣∣∣ < (c+ ε)
log log q

q2 log q

has an infinity of solutions in integers p, q. Furthermore, there exists a number
q′, depending only on ε and t, such that

∣∣∣∣e
a − p

q

∣∣∣∣ > (c− ε) log log q
q2 log q

for all integers p, q, with q ≥ q′.

7.3.2 Proofs of Ramanujan’s Claims on Page 266

Proof. We begin with the continued fraction

tanhx =
x

1 +

x2

3 +

x2

5 +

x2

7 + · · · , x ∈ C, (7.3.5)

first established by J.H. Lambert, and rediscovered by Ramanujan, who
recorded it in his second notebook [268, Chap. 12, Sect. 18], [38, p. 133, Corol-
lary 3]. Write

tanhx = 1− 2

e2x + 1

in (7.3.5), solve for 2/(e2x + 1), take the reciprocal of both sides, and set
x = 1/a, where a is any nonzero integer. Hence,

1

2

(
e2/a + 1

)
=

1

1 −
1

a +

1

3a +

1

5a +

1

7a + · · · . (7.3.6)
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Now consider the nth approximant un/vn of (7.3.6) [218, pp. 8–9], [38,
p. 105, Entry 1], i.e., for n ≥ 3,

1

1 −
1

a +

1

3a +

1

5a +

1

7a + · · · +
1

(2n− 3)a
=
un
vn
.

Then, provided that |a| ≥ 2,

u1 = 1, v1 = 1; u2 = |a|, v2 = |a− 1|. (7.3.7)

Also, from standard recurrence relations [218, pp. 8–9],

un+1 − un−1 = (2n− 1)|a|un; vn+1 − vn−1 = (2n− 1)|a|vn. (7.3.8)

From the second equality in (7.3.8), we can deduce that

vn+1 ∼ 2|a|nvn and log vn ∼ n logn, (7.3.9)

as n→ ∞.
Now in general, if we define v0 = 1, then [38, p. 105, Entry 1] [312, p. 18]

a1
b1 +

a2
b2 + · · · +

an
bn

=: a1
un
vn

=

n∑

k=1

(−1)k+1a1a2 · · ·ak
vk−1vk

.

If we use the formula above in (7.3.6), we easily find that

1

2

(
e2/a + 1

)
=
un
vn

+ (−1)n
(

1

vnvn+1
− 1

vn+1vn+2
+ · · ·

)
. (7.3.10)

It follows from (7.3.9) and (7.3.10) that as n tends to ∞,

e2/a + 1− 2un
vn

∼ (−1)n

|a|nv2n
. (7.3.11)

We now subdivide our examination of (7.3.11) into two cases. First, sup-
pose that a is even. Then, using the fact that v1 and v2 in (7.3.7) are odd, the
recurrence relation for vn in (7.3.8), and induction, we easily find that vn is odd
for all n ≥ 1. Now chooseN = vn. By (7.3.9), we see that n ∼ logN/ log logN ,
as N → ∞. Hence, by (7.3.11), as N → ∞,

N(e2/a + 1)− 2un ∼ (−1)n log logN

|a|N logN
. (7.3.12)

Second, suppose that a is odd. Ramanujan then claims that if n is odd,
then vn is odd, while if n is even, then vn is even. However, these claims are
incorrect. By (7.3.7), (7.3.8), and induction, we find, instead, that

v3m and v3m+1 are odd; v3m+2 is even.
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Thus, choose N = vn, when n = 3m or n = 3m + 1. In these cases, as
in (7.3.12), we conclude that

N(e2/a + 1)− 2un ∼ (−1)n log logN

|a|N logN
. (7.3.13)

However, if n = 3m+ 2, we can choose N = 1
2v3m+2. Hence, in this case,

N(e2/a + 1)− un ∼ (−1)m log logN

4|a|N logN
. (7.3.14)

Turning to Ramanujan’s claims in Entries 7.3.1 and 7.3.2, from the asymp-
totic formulas (7.3.12) and (7.3.14), we see that all of Ramanujan’s claims in
these entries readily follow. This completes the proof. ��

7.4 The Third Manuscript

Page 343 in the volume [269] containing Ramanujan’s lost notebook is devoted
to an unusual kind of approximation to certain algebraic numbers. Ramanu-
jan’s claims are surprising, and, indeed they do not appear to be valid. We
copy page 343 verbatim below, and afterward we briefly discuss Ramanujan’s
claims:
�,m, n are any integers including 0.

θ =
5
√
2.

a =
1

5
√
2− 1

, b =

√
5

(1 + 5
√
4)5/2

ambnθ = pm,n + εm,n

where − 1
2 < εm,n <

1
2 and pm,n is an integer. Then

εm,n = O

(
5n/2

( 5
√
4−2 5

√
2 cos 2πs

5 +1)m/2( 5
√
16+2 5

√
4 cos 4πs

5 +1)5n/4

)

(7.4.1)

where s is the most unfavorable of the integers 1, 2, 3, 4.
—————

θ =
7
√
2

a =
1

7
√
2− 1

, b =
7

( 7
√
8− 1)7

, c =
7
√
2 + 1

7
√
4− 7

√
2 + 1

,

a�bmcnθ = p�,m,n + ε�,m,n
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ε�,m,n = O

(
7m( 7

√
4 + 2 7

√
2 cos 2πs

5 + 1)2n

( 7
√
64− 2 7

√
8 cos 2πs

7 + 1)�/2

× 1

( 7
√
64− 2 7

√
8 cos 6πs

7 + 1)7m/2( 7
√
64 + 2 7

√
8 cos 6πs

7 + 1)n/2

)
,

(7.4.2)

where s is the most unfavorable of the integers 1, 2, 3, 4, 5, 6.

We do not know for certain what Ramanujan meant by the term
“unfavorable.” We think that Ramanujan was indicating that we should
choose that value of s that makes the displayed error term the largest. It is
unclear why Ramanujan listed s = 1, 2, 3, 4 below (7.4.1) instead of just
writing s = 1, 2, because cos 2πs

5 = cos 8πs
5 and cos 4πs

5 = cos 6πs
5 . Of course,

a similar remark holds for the corresponding phrase below (7.4.2). It is also
unclear what roles θ play in Ramanujan’s thinking.

In order for Ramanujan’s claims to have some validity, the numbers ambnθ
and a�bmcnθ would need to become close to integers as �, m, and n become
large. It would be astounding if such were the case. Table 7.3 provides some
calculations of pm,n, εm,n, and the error terms for s = 1, 2. We first notice that
with increasing m and n, the remainders εm,n do not appear to be tending to
0, but, as we might expect, appear to be randomly distributing themselves in
the interval [− 1

2 ,
1
2 ]. Also, note that if we set m = 0 and choose s = 1, then

the error terms in these apparently “unfavorable” instances actually tend to
infinity as n tends to infinity. In other words, in order to obtain a meaningful
claim in the case s = 1, both m and n would both need to tend to infinity.
Thus, Ramanujan’s claim is meaningless in these cases. Moreover, if we set
m = 0, then p0,n ≡ 0 and ε0,n → 0. Thus, for another reason, to obtain a
meaningful claim, both m and n would need to tend to infinity.

If Ramanujan’s assertions were correct, then �, m, and n would need to
tend to infinity on very special sequences. However, it is doubtful that such
sequences exist.
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m,n ambnθ pm,n εm,n Error, s = 1 Error, s = 2

1, 0 7.725 8 −0.27 0.7882 0.4892

2, 0 51.951 52 −0.05 0.6213 0.2393

3, 0 349.372 349 +0.37 0.4897 0.1171

4, 0 2,349.532 2, 350 −0.47 0.3860 0.0573

5, 0 15,800.658 15, 801 −0.34 0.3042 0.0280

6, 0 106,259.805 106, 260 −0.19

7, 0 714,599.734 714, 600 −0.27

8, 0 4,805,700.336 4, 805, 700 +0.34

9, 0 32,318,449.897 32, 318, 450 −0.10

10, 0 217,342,349.872 217, 342, 350 −0.13

0, 1 0.2729 0 +0.27 4.1813 0.4578

0, 2 0.0745 0 +0.07 17.4833 0.2096

0, 3 0.0203 0 +0.02 73.1028 0.0960

0, 4 0.0055 0 +0.01

1, 1 2.108 2 +0.11 3.2958 0.2240

2, 2 3.869 4 −0.13 10.8621 0.0502

3, 3 7.100 7 +0.10 35.7988 0.0112

4, 4 13.031 13 +0.03 117.9842 0.0025

5, 5 23.914 24 −0.09

6, 6 23.887 24 −0.11

7, 7 80.543 81 −0.46

8, 8 147.815 148 −0.18

9, 9 271.274 271 +0.27

10, 10 497.849 498 −0.15

Table 7.3. Values of pm,n and εm,n
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Number Theory

8.1 In Anticipation of Sathe and Selberg

In the top portion of page 337 in [269], Ramanujan offers the following entry,
which we quote.

Entry 8.1.1 (p. 337). φ(x) is the number of numbers (not exceeding x)
whose number of prime divisors does not exceed k.

φ(x) ∼ x

log x

{
1 +

log log x

1!
+

(log log x)2

2!
+ · · ·+ (log log x)[k]

[k]!

}
. (8.1.1)

This is true when k is infinite. Is this true when k is a function of x?

At the start, it should be pointed out that φ(x) is not well-defined, because
it is not clear if Ramanujan is counting multiplicities of prime factors or
not. We shall assume that he did count multiplicities. If k is bounded, then
the asymptotic formulas are identical, but if k > c log log x for any positive
constant c, then they are not.

As an asymptotic formula, only the last term in (8.1.1), which is the largest,
is relevant. In fact, with this interpretation, (8.1.1) needs to be slightly cor-
rected. Assuming that k is a positive integer, we should replace the last term
in curly brackets by (log log x)k−1/(k − 1)!. One could also interpret (8.1.1)
as an asymptotic series, as Ramanujan did in his first sentence below (8.1.1).
In the latter interpretation, for an elementary proof of this asymptotic formula
(8.1.1), see the text by G.H. Hardy and E.M. Wright [153, §22.18, pp. 368–
370]. Undoubtedly, Ramanujan realized that the last term in (8.1.1) is dom-
inant for k = o(log log x). As pointed out by A. Granville [128], (8.1.1) is
correct for k < o(log log x) and for (k− log log x)/

√
log log x→ ∞. For an ac-

count of recent developments on this asymptotic formula and related results,
see G. Tenenbaum’s books [302, Chaps. II.5, II.6, III.5], [303, Chaps. II.5, II.6,
III.5].

G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook:
Part IV, DOI 10.1007/978-1-4614-4081-9 8,
© Springer Science+Business Media New York 2013
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If we consider only distinct prime factors, then our knowledge of the
corresponding asymptotic formula is not as complete. In such a case, see
papers by A.J. Hildebrand and Tenenbaum [157] and by S. Kerner [181], as
well as Tenenbaum’s book [303, Chap. II.6].

The question about uniformity was first settled by L.G. Sathe in a se-
ries of papers [275–278], and slightly later and more succinctly by A. Sel-
berg [281], [282, pp. 418–422]. We offer one of Selberg’s theorems in the
formulation given by G. Tenenbaum [303, p. 298, Theorem II.6.4]. As usual,
let Ω(n) denote the total number of prime factors of n. Let

Nk(x) := |{n ≤ x : Ω(n) = k}|.
Theorem 8.1.1. Let 0 < δ < 1. Then, there exist positive constants c1 = c1(δ)
and c2 = c2(δ) such that, uniformly for x ≥ 3, 1 ≤ k ≤ (2 − δ) log log x, and
N ≥ 0,

Nk(x) =
x

log x

⎧
⎨

⎩

N∑

j=0

Qj,k(log log x)

logj x
+Oδ

(
(log log x)k

k!
RN (x)

)⎫⎬

⎭ ,

where Qj,k is a polynomial of degree at most k − 1 and

RN (x) := e−c1
√
log x +

(
c2N + 1

log x

)N+1

.

Further extensions have been accomplished by, among others, H. De-
lange [103], J.-L. Nicolas [232], and M. Balazard, Delange, and Nicolas [21].
For a thorough discussion of results on this important and famous problem,
see Tenenbaum’s book [303, Chap. II.6].

8.2 Dickman’s Function

Dickman’s function ρ(u) was introduced by K. Dickman in 1930 [106], and is
defined as follows. For 0 ≤ u ≤ 1, let ρ(u) ≡ 1. For each integer k ≥ 1, ρ(u) is
defined inductively for k ≤ u ≤ k + 1 by

ρ(u) = ρ(k)−
∫ u

k

ρ(v − 1)
dv

v
. (8.2.1)

Dickman’s function is continuous at u = 1 and differentiable for u > 1. Differ-
entiating (8.2.1), we readily find that ρ(u) satisfies the differential–difference
equation

uρ′(u) + ρ(u− 1) = 0, u > 1. (8.2.2)

Dickman’s function arises naturally in prime number theory. Let P+(n)
denote the largest prime factor of the positive integer n, and set

Ψ(x, y) := |{n ≤ x : P+(n) ≤ y}|. (8.2.3)
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Let u = log x/ log y. Then [302, pp. 365–367], uniformly for x ≥ y ≥ 2, as
x→ ∞,

Ψ(x, y) = xρ(u) +O

(
x

log y

)
. (8.2.4)

In particular, for
√
x ≤ y ≤ x,

Ψ(x, y) ∼ x(1 − log u), (8.2.5)

and for x1/3 ≤ y ≤
√
x,

Ψ(x, y) ∼ x
(
1− log u+

∫ u

2

log(v − 1)
dv

v

)
. (8.2.6)

With this background, we now record the entry on the lower portion of
page 337 in [269].

Entry 8.2.1 (p. 337). Let φ(x) denote the number of numbers of the form

2a23a35a5 · · · pap , p ≤ xε,
not exceeding x. Then, for 1

2 ≤ ε ≤ 1,

φ(x) ∼ x

{
1−

∫ 1

ε

du0
u0

}
; (8.2.7)

for 1
3 ≤ ε ≤ 1

2 ,

φ(x) ∼ x

⎧
⎨

⎩1−
∫ 1

ε

du0
u0

+

∫ 1
2

ε

du1
u1

∫ 1−u1

u1

du0
u0

⎫
⎬

⎭ ; (8.2.8)

for 1
4 ≤ ε ≤ 1

3 ,

φ(x) ∼ x

⎧
⎨

⎩1−
∫ 1

ε

du0
u0

+

∫ 1
2

ε

du1
u1

∫ 1−u1

u1

du0
u0

−
∫ 1

3

ε

du2
u2

∫ 1
2 (1−u2)

u2

du1
u1

∫ 1−u1

u1

du0
u0

⎫
⎬

⎭ ; (8.2.9)

and for 1
5 ≤ ε ≤ 1

4 ,

φ(x) ∼ x

⎧
⎨

⎩1−
∫ 1

ε

du0
u0

+

∫ 1
2

ε

du1
u1

∫ 1−u1

u1

du0
u0

−
∫ 1

3

ε

du2
u2

∫ 1
2 (1−u2)

u2

du1
u1

∫ 1−u1

u1

du0
u0

+

∫ 1
4

ε

du3
u3

∫ 1
3 (1−u3)

u3

du2
u2

∫ 1
2 (1−u2)

u2

du1
u1

∫ 1−u1

u1

du0
u0

⎫
⎬

⎭ ; (8.2.10)

and so on.
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In the notation (8.2.3), Ramanujan’s function φ(x) is equal to Ψ(x, xε).
Dickman [106] and N.G. de Bruijn [82] proved the now famous asymptotic
formula

Ψ(x, x1/u) ∼ xρ(u), x→ ∞. (8.2.11)

For a lucid account of de Bruijn’s contributions to prime number theory and,
in particular, to Dickman’s function, see P. Moree’s papers [224] and [225].
From [303, p. 507, Corollary 5.19 (due to Hildebrand); p. 511, Theorem 5.21
(due to Hildebrand and Tenenbaum)], we have, for any ε > 0,

Ψ(x, y) = xρ(u) exp

{
O

(
log(u+ 1)

log y
+

u

exp{(log y)3/5−ε}

)}
,

uniformly for x ≥ 2 and (log x)1+ε ≤ y ≤ x. This result contains all previous
results on smooth approximations to Ψ(x, y).

We now show that Ramanujan’s asymptotic formulas (8.2.7)–(8.2.10) are
the first four instances of (8.2.11). Thus, although technically Ramanujan did
not define Dickman’s function ρ(u), if he had stated a general theorem (which
he clearly possessed), he obviously would have needed to define a function
equal to or equivalent to ρ(u). We are extremely grateful to Hildebrand for
the following analysis, including the heuristic argument near the end of this
section.

First, we prove Theorem 8.2.1, which, in fact, is a special case of a result
of Tenenbaum [301, Eq. (12)]. Second, after stating Theorem 8.2.1, we show
that this theorem is equivalent to Entry 8.2.1 of Ramanujan. Third, upon the
conclusion of our proof, we give a heuristic approach to Theorem 8.2.1, and we
conjecture that this is the method used by Ramanujan to deduce Entry 8.2.1.

Theorem 8.2.1. Define, for u ≥ 0,

I0(u) := 1, Ik(u) :=

∫
· · ·
∫

t1,...,tk≥1
t1+···+tk≤u

dt1 · · · dtk
t1 · · · tk

, k ≥ 1. (8.2.12)

Then, for u ≥ 0,

ρ(u) =
∞∑

k=0

(−1)k

k!
Ik(u). (8.2.13)

The series on the right-hand side of (8.2.13) is finite, since if k > u, then
Ik(u) = 0, for the conditions t1, . . . , tk ≥ 1 and t1 + · · ·+ tk ≤ u are vacuous
in this case.

If we make the changes of variable ε = 1/u and uj = εtj = tj/u, 1 ≤
j ≤ k, and use the symmetry of the integral Ik(u) in the variables t1, . . . , tk,
then, as shown below, we see that the kth term on the right-hand side of
(8.2.13) is identical to the kth term in the expressions in curly brackets in
(8.2.7)–(8.2.10). To that end, for ε = 1/u, u > 1, and k ≤ 1/ε,
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1

k!
Ik

(
1

ε

)
=

1

k!

∫
· · ·
∫

ε≤u1,...,uk≤1
u1+···+uk≤1

du1 · · · duk
u1 · · ·uk

=

∫
· · ·
∫

ε≤u1≤···≤uk≤1
u1+···+uk≤1

du1 · · · duk
u1 · · ·uk

=

∫ 1/k

ε

du1
u1

∫ (1−u1)/(k−1)

u1

du2
u2

· · ·
∫ 1−uk−1

uk−1

duk
uk
.

The integrals Ik(u) have recently appeared in the study of the “Dickman
polylogarithm.” See papers by D. Broadhurst [79] and K. Soundararajan [296].

Proof of Theorem 8.2.1. Our proof hinges on the identity

I ′k(u) =
k

u
Ik−1(u− 1), k ≥ 1, u > k. (8.2.14)

Assuming (8.2.14) for the time being, we proceed with the proof of Theo-
rem 8.2.1.

For 0 ≤ u ≤ 1, ρ(u) ≡ 1, by definition, while the series on the right side of
(8.2.13) reduces to I0(u), which equals 1, by definition. Thus, (8.2.13) holds
for 0 ≤ u ≤ 1.

Next, observe that the right-hand side of (8.2.13) is a continuous function
of u. Thus, to show that it is equal to ρ(u) for u ≥ 0, it suffices to show that
for nonintegral values of u > 1, it satisfies the same differential–difference
equation as ρ(u), i.e., (8.2.2). By (8.2.14) and the fact that Ik(u) = 0 for
k ≥ u, we find that for u > 1 and u nonintegral,

d

du

( ∞∑

k=0

(−1)k

k!
Ik(u)

)
=
d

du

⎛

⎝1 +
∑

1≤k<u

(−1)k

k!
Ik(u)

⎞

⎠

=
∑

1≤k<u

(−1)k

k!
I ′k(u)

=
∑

1≤k<u

(−1)k

k!

k

u
Ik−1(u − 1)

=
1

u

∑

0≤k<u−1

(−1)k+1

k!
Ik(u − 1)

= − 1

u

∞∑

k=0

(−1)k

k!
Ik(u− 1),

and so we have shown that the right-hand side of (8.2.13) satisfies (8.2.2),
which was our goal.
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It remains to prove (8.2.14). For k = 1,

I1(u) =

∫ u

1

dt

t
.

Thus,

I ′1(u) =
1

u
=

1

u
I0(u− 1), for u > 1.

Thus, (8.2.14) is valid for k = 1.
For k ≥ 2, write

I ′k(u) :=
d

du

∫
· · ·
∫

t1,...,tk≥1

t1+···+tk≤u

dt1 · · · dtk
t1 · · · tk

=
d

du

∫ u

1

( ∫
· · ·
∫

t1,...,tk≥1

t1+···+tk=v

dt1 · · · dtk
t1 · · · tk

)
dv

=

∫
· · ·
∫

t1,...,tk≥1

t1+···+tk=u

dt1 · · · dtk
t1 · · · tk

=: Ik−1(u), (8.2.15)

where Ik−1 is a (k − 1)-dimensional integral, namely, the k-fold convolution
of the function

f(t) =

{
1/t, t ≥ 1,

0, t < 1,

with itself.
Recall from (8.2.14) and (8.2.15) that our goal is to express Ik−1(u) in

terms of Ik−1(u − 1). Since in the integral definition of Ik−1(u) in (8.2.15),
the sum t1+ · · ·+tk is equal to u, multiplying the integrand by (t1+ · · ·+tk)/u
does not change the value of the integral. Hence,

Ik−1(u) =

∫
· · ·
∫

t1,...,tk≥1

t1+···+tk=u

t1 + · · ·+ tk
u

dt1 · · · dtk
t1 · · · tk

= k

∫
· · ·
∫

t1,...,tk≥1

t1+···+tk=u

tk
u

dt1 · · · dtk
t1 · · · tk
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= k

∫
· · ·
∫

t1,...,tk−1≥1

t1+···+tk−1≤u−1

1

u

dt1 · · · dtk−1

t1 · · · tk−1

=
k

u
Ik−1(u− 1).

By (8.2.15), we see that (8.2.14) has been proved, which was our intent. ��
We now offer a heuristic argument for (8.2.13). Perhaps this was the

argument that was used by Ramanujan. Let x > 0 and u ≥ 1. Set

P =
{
p : p prime, x1/u < p ≤ x

}
,

A = {n ∈ N : n ≤ x} ,
Ap = {n ∈ N : n ≤ x, p | n} .

Then, by the inclusion–exclusion principle,

Ψ(x, x1/u) = |A| −
∣∣∣
⋃

p∈P

Ap

∣∣∣

= |A| −
∑

p∈P

|Ap|+
∑

p1<p2

pj∈P

|Ap1 ∩ Ap2 |

−
∑

p1<p2<p3

pj∈P

|Ap1 ∩Ap2 ∩ Ap3 |+ · · ·

= S0 − S1 + S2 − S3 + · · · ,

say. We now show that the kth term, (−1)kSk above, can be approximated
by the kth term on the right-hand side of (8.2.13), multiplied by the factor x.

For k = 0,
S0 = |A| = [x],

which is our claim in this case. For k = 1, using a familiar estimate [302, p. 16]
for the sum of the reciprocals of primes and making the change of variable
y = xt/u below, we find that

S1 =
∑

p∈P

|Ap| =
∑

x1/u<p≤x

[
x

p

]

≈ x
∑

x1/u<p≤x

1

p
≈ x

∫ x

x1/u

dy

y log y
= x

∫ u

1

dt

t
= xI1(u).

For k ≥ 2, we first note that

|Ap1 ∩ · · · ∩ Apk
| =

⎧
⎨

⎩

[
x

p1 · · · pk

]
, if p1 < · · · < pk and p1 · · · pk ≤ x,

0, if p1 < · · · < pk and p1 · · · pk > x.
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Summing over p1, . . . , pk and later setting yj = x
tj/u, 1 ≤ j ≤ k, we find that

Sk
x

≈
∑

· · ·
∑

p1<···<pk

pj∈P
p1···pk≤x

1

p1 · · · pk

≈
∫

· · ·
∫

x1/u<y1<···<yk≤x
y1···yk≤x

dy1 · · · dyk
y1 log y1 · · · yk log yk

=

∫
· · ·
∫

1<t1<···<tk≤u
t1+···+tk≤u

dt1 · · · dtk
t1 · · · tk

=
1

k!
Ik(u),

where Ik(u) is defined in (8.2.12). Thus, up to the multiplicative factor (−1)k,
this is the kth term in the series (8.2.13). This completes our heuristic argu-
ment, which, with effort, can be made rigorous.

R.C. Vaughan has informed us that ρ(s) = (s + 1)(F (s + 1) − f(s + 1)),
where F (s) and f(s) are familiar sieving functions [129, p. 113], and that,
moreover, G. Greaves [129, p. 220] had shown that F (s) and f(s) can be
represented by integrals similar to those in Theorem 8.2.1 below. Greaves
further remarks [129, p. 220] that these representations for F (s) and f(s) are
implicit in the work of E. Bombieri [73] and H. Siebert [287].

A representation of ρ(u) similar to that in Theorem 8.2.1 was developed
by S. Chowla and T. Vijayaraghavan [97, p. 34, Eq. (5)], [96, pp. 682–688] and
can be found in Moree’s dissertation [223, p. 30, formula (10)]. Their formula
was (slightly) corrected and simplified 2 years later by A.A. Buchstab [83].
Evidently, without any knowledge of its connection with prime number theory,
W. Gontcharoff [125] independently discovered an integral representation for
Dickman’s function in his study of the largest cycle in a random permutation.
Another representation for ρ(u) as a sum of multiple integrals of the sort
appearing in (8.2.7)–(8.2.10) was posed as a problem by H.G. Diamond and
F.S. Wheeler [105]. An extension of (8.2.4) has been made by J.-H. Evertse,
Moree, C.L. Stewart, and R. Tijdeman [117] to ψK,T (x, y), which is defined
to be the number of ideals in a number field K of norm ≤ X composed of
prime ideals that lie outside a given finite set of prime ideals T and that
have norm ≤ Y . Excellent sources for information on the Dickman function
and its prominence in prime number theory are Tenenbaum’s treatises [302,
Chap. III.5], [303, Chap. III.5] and Moree’s dissertation [223].

We close this section with a brief mention of analogues of the foregoing
work. Consider the number of polynomials over a finite field of degree n,
where all their irreducible factors are of degree ≤ d. Then n/d is the analogue
of log x/ log y, and one can give an argument in this setting analogous to
what we have given above. Readers might consult M. Car’s paper [85] for
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further information on this theory. An analogue of the Dickman function also
arises in studying the length of the largest cycle of a random permutation
in the symmetric group of degree n, Sn; see, e.g., a paper by L.A. Shepp
and S.P. Lloyd [285]. The Dickman function also occurs in the theory of the
Poisson–Dirichlet distribution [15].

8.3 A Formula for ζ(1
2
)

On page 332 in [269], Ramanujan states two versions of a formula, one of which
can be found as Entry 8 of Chap.15 in Ramanujan’s second notebook [268], [38,
p. 314]. Although the formula may be regarded as a representation for ζ(12 ), it
also can be viewed as in identity for an infinite sum of theta functions. After
stating the first version, we give a brief survey of the activity generated by
the proof of R.J. Evans and the second author [53] in their examination of
all the theorems found in Chap. 15 of Ramanujan’s second notebook. Then
we offer Ramanujan’s elegant reformulation of the formula, which had been
missed by all other authors, except S. Wigert [316, p. 9], who in 1925 proved,
in fact, a more general formula that includes Entry 8.3.2 below as a special
case. Of course, he had no knowledge that a special case of his discovery
can be found in Ramanujan’s second notebook or lost notebook. In another
paper [317], he generalized his work even further.

Entry 8.3.1 (p. 332). Let α and β be positive numbers such that αβ = 4π3.
Then

∞∑

n=1

1

en2α − 1
=
π2

6α
+

1

4

+

√
β

4π

{
ζ

(
1

2

)
+

∞∑

n=1

cos(
√
nβ)− sin(

√
nβ)− e−

√
nβ

√
n(cosh(

√
nβ)− cos(

√
nβ))

}
. (8.3.1)

The factor
√
n in the denominator on the right-hand side of (8.3.1) is

missing in the formulation in the lost notebook.
D. Klusch [182] published a different version of (8.3.1). However,

S. Kanemitsu, Y. Tanigawa, and M. Yoshimoto [170, 173] pointed out that
a mistake in the proof vitiated the formulation given by Klusch. M. Kat-
surada [178] generalized (8.3.1) in two different ways. In the first, he extended
Ramanujan’s result by considering a class of generalized Hurwitz zeta func-
tions that are hypergeometric in nature, and by deriving a generalized formula
involving the values of these functions at 1

2 . Second, he extended (8.3.1) by
establishing a corresponding formula for the Lerch zeta function. Kanemitsu,
Tanigawa, and Yoshimoto in [169] and [170] proved formulas in which ζ(12 ) is
replaced by the Riemann zeta function at any rational argument. Wigert [316],
in fact, had established a formula for ζ( 1k ) for any positive even integer
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k. Kanemitsu, Tanigawa, and Yoshimoto [173] next established formulas in
which ζ(12 ) is replaced by a multiple Hurwitz zeta function evaluated at
rational arguments in (0, 1). S. Egami [114] proved an analogue of (8.3.1)
for Dirichlet L-functions L(12 , χ). Kanemitsu, Tanigawa, and Yoshimoto [174]
extended Egami’s result by establishing a formula for L(ab , χ), where a/b is
rational with a odd and b even. They also provided two numerical examples
showing how the rapidly convergent series appearing in their formulas can be
used to accurately calculate L-series at 1

2 and 1
4 .

We now provide Ramanujan’s second formulation.

Entry 8.3.2 (p. 332). Let α and β be positive numbers such that αβ = 4π3.
If φ(n), n ≥ 1, and ψ(n), n ≥ 1, are defined by

∞∑

j=1

xj
2

1− xj2 =

∞∑

n=1

φ(n)xn (8.3.2)

and ∞∑

j=1

jxj
2

1− xj2 =

∞∑

n=1

ψ(n)xn, (8.3.3)

then

∞∑

n=1

φ(n)e−nα =
π2

6α
+

1

4
(8.3.4)

+

√
β

2π

{
1

2
ζ

(
1

2

)
+

∞∑

n=1

ψ(n)√
n
e−

√
nβ
(
cos(

√
nβ)− sin(

√
nβ)

)}
.

The term 1
4 on the right-hand side of (8.3.4) was inadvertently omitted by

Ramanujan in [269].
It is not obvious that (8.3.1) and (8.3.4) are different versions of each other,

and so we now demonstrate this. First,

∞∑

j=1

xj
2

1− xj2 =
∞∑

j=1

∞∑

k=1

xj
2k =

∞∑

n=1

⎛

⎝
∑

j2|n
1

⎞

⎠xn.

Hence, from (8.3.2),

φ(n) =
∑

j2|n
1.

Similarly,
∞∑

j=1

jxj
2

1− xj2 =
∞∑

n=1

⎛

⎝
∑

j2|n
j

⎞

⎠xn,
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i.e., from (8.3.3),

ψ(n) =
∑

j2|n
j.

Second,

S :=

∞∑

n=1

ψ(n)√
n
e−

√
nβ
(
cos(

√
nβ)− sin(

√
nβ)

)

=

∞∑

n=1

∑

j2|n
j

1√
n
e−

√
nβ
(
cos(

√
nβ)− sin(

√
nβ)

)

=

∞∑

k=1

1√
k

∞∑

j=1

e−j
√
kβ
(
cos(j

√
kβ)− sin(j

√
kβ)
)
. (8.3.5)

Elementary calculations give

∞∑

j=1

e−jx cos(jy) =
e−x(cos y − e−x)

1− 2e−x cos y + e−2x

and ∞∑

j=1

e−jx sin(jy) =
e−x sin y

1− 2e−x cos y + e−2x
.

Using these last two identities in (8.3.5), we find that

S =

∞∑

k=1

1√
k

⎧
⎨

⎩
e−

√
kβ
(
cos(

√
kβ)− e−

√
kβ
)
− e−

√
kβ sin(

√
kβ)

1− 2e−
√
kβ cos(

√
kβ) + e−2

√
kβ

⎫
⎬

⎭

=
1

2

∞∑

k=1

1√
k

{
cos(

√
kβ)− sin(

√
kβ)− e−2

√
kβ

cosh(
√
kβ)− cos(

√
kβ)

}
. (8.3.6)

If we now use (8.3.6) in (8.3.5), and then substitute this in (8.3.4), after a slight
amount of rearrangement, we obtain (8.3.1). This then completes the proof
that Ramanujan’s elegant formulation (8.3.4) is equivalent to the identity in
(8.3.1).

8.4 Sums of Powers

The contents of this section first appeared in a paper by the second author and
D. Schultz [67]. On a page published with Ramanujan’s lost notebook [269,
p. 338], Ramanujan records the following seven equalities.
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Entry 8.4.1 (p. 338).

x+ (x− 1) + (x − 2) + · · · = 1

2
x2 +

1

2
x+

⎧
⎨

⎩
+
1

8
,

+0,

x2 + (x − 1)2 + (x− 2)2 + · · · = 1

3
x3 +

1

2
x2 +

1

6
x+

⎧
⎪⎨

⎪⎩

+
1

36
√
3
,

− 1

36
√
3
,

x3 + (x − 1)3 + (x− 2)3 + · · · = 1

4
x4 +

1

2
x3 +

1

4
x2 +

⎧
⎨

⎩
+0,

− 1

64
,

x4 + (x − 1)4 + (x− 2)4 + · · · = 1

5
x5 +

1

2
x4 +

1

3
x3 − 1

30
x

+

⎧
⎪⎪⎨

⎪⎪⎩

+
1

900

√
15 + 4

√
6
5 ,

− 1

900

√
15 + 4

√
6
5 ,

x5 + (x − 1)5 + (x− 2)5 + · · · = 1

6
x6 +

1

2
x5 +

5

12
x4 − 1

12
x2 +

⎧
⎨

⎩
+

1

128
,

+0,

x6 + (x − 1)6 + (x− 2)6 + · · · = 1

7
x7 +

1

2
x6 +

1

2
x5 − 1

6
x3 +

1

42
x

+

{
+

−
1

2,352

√

(29 2
3 + 11

√
2)

3

√
21− 7

√
2 + (29 2

3 − 11
√
2)

3

√
21 + 7

√
2− 11,

x7 + (x − 1)7 + (x− 2)7 + · · · = 1

8
x8 +

1

2
x7 +

7

12
x6 − 7

24
x4 +

1

12
x2

+

⎧
⎨

⎩
+0,

− 17

2,048
.

After these equalities, Hardy has appended a handwritten note, “I’m not
clear what this means.”

Because Ramanujan had recorded these equations only for his own use,
he did not provide interpretations for the left-hand sides or for the brackets
on the right-hand sides. However, there is an interpretation that is consistent
with the displayed equations (except for a slight error in the equation for sixth
powers). We interpret the left-hand side of each equation as the sum of powers
of only positive terms, and we interpret the right-hand side as a polynomial
pn(x) plus bounds for the “error term” Rn(x), which we shall explain later.
Thus, write
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sn(x) :=

�x�∑

i=0

(x − i)n = pn(x) +Rn(x), 1 ≤ n ≤ 7. (8.4.1)

We now interpret and discuss Ramanujan’s claims. Ramanujan is claiming
values for the extrema of Rn(x) given by the upper and lower values in the
brackets. To confirm this, notice first that if x is a positive integer, then

pn(x) =

x∑

j=0

jn, n ≥ 1. (8.4.2)

Secondly,

sn(x + 1) =

�x+1�∑

j=0

(x+ 1− j)n

=

�x�+1∑

j=0

(x+ 1− j)n

= (x+ 1)n +

�x�+1∑

j=1

(x+ 1− j)n

= (x+ 1)n + sn(x). (8.4.3)

We also know that the polynomial pn(x) satisfies the same functional equation
for all natural numbers, namely, pn(x+1) = (x+1)n+ pn(x). However, since
a polynomial is uniquely determined by its values on a finite set of points,
pn(x + 1) = (x + 1)n + pn(x) for all x. This, (8.4.3), and (8.4.1) then imply
that Rn(x+1) = Rn(x). So, we can compute its extrema by examining Rn(x)
on the interval [0, 1]. Observe that for 0 ≤ x < 1,

Rn(x) = x
n − pn(x), (8.4.4)

and so the minimum and maximum can be found from elementary calculus.
We now reformulate Ramanujan’s assertions in terms of the familiar

Bernoulli polynomials Bn(x), n ≥ 0, which are defined by

text

et − 1
=

∞∑

n=0

Bn(x)
tn

n!
, |t| < 2π.

Recall that the Bernoulli numbers Bn, n ≥ 0, are defined by Bn = Bn(0),
n ≥ 0. It is easy to show that for n ≥ 1, B2n+1 = 0. It is well known that [1,
p. 804, Eq. (23.1.4)]

m∑

j=1

jn =
Bn+1(m+ 1)−Bn+1

n+ 1
, m, n ≥ 1. (8.4.5)
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Furthermore [1, p. 804, Eqs. (23.1.5), (23.1.6), (23.1.8)],

B′
n(x) = nBn−1(x), n ≥ 1, (8.4.6)

Bn(x+ 1)−Bn(x) = nx
n−1, n ≥ 0, (8.4.7)

and

Bn(1− x) = (−1)nBn(x), n ≥ 0. (8.4.8)

In particular, Bn(1) = (−1)nBn, n ≥ 0, which, since B2n+1 = 0, for n ≥ 1,
implies that

Bn(1) = Bn, n ≥ 2. (8.4.9)

By (8.4.4), (8.4.2), (8.4.5), and (8.4.7), for n ≥ 1,

Rn(x) = x
n − Bn+1(x+ 1)−Bn+1

n+ 1

= xn − Bn+1(x)− (n+ 1)xn −Bn+1

n+ 1

=
Bn+1 −Bn+1(x)

n+ 1
. (8.4.10)

Hence, by (8.4.6),

R′
n(x) = −

B′
n+1(x)

n+ 1
= −Bn(x), n ≥ 1. (8.4.11)

Also, from (8.4.10) and (8.4.9),

Rn(0) = 0 and Rn(1) = 0, n ≥ 1. (8.4.12)

Lastly, since [1, p. 805, Eq. (23.1.21)],

Bn(
1
2 ) = −(1− 21−n)Bn, n ≥ 0, (8.4.13)

we can conclude from (8.4.10) that

Rn(
1
2 ) =

2− 2−n

n+ 1
Bn+1, n ≥ 1. (8.4.14)

We now establish Ramanujan’s claims. We first examine the sums for odd
powers n.

For n = 1, from (8.4.11),

R′
1(x) = −B1(x) =

1
2 − x,

which has the critical point x = 1
2 . Since B2 = 1

6 , we see from (8.4.14) that
R1(

1
2 ) =

1
8 . Since R1(0) = R1(1) = 0 by (8.4.12), Ramanujan’s first claim is

established.
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Let n = 3. From (8.4.11),

R′
3(x) = −B3(x) = −x(x− 1)(x− 1

2 ).

Since the critical points are 0, 1, and 1
2 , since R3(0) = R3(1) = 0 by (8.4.12),

and since R3 = − 1
64 by (8.4.14), because B4 = − 1

30 , we verify Ramanujan’s
assertion for third powers.

Put n = 5. Then from (8.4.11),

R′
5(x) = −B5(x) = −x(x− 1)(x− 1

2 )(x
2 − x− 1

3 ),

which has the critical points 0, 1, 12 ,
1
2 ± 1

2

√
7
3 . Since B6 = 1

42 , we find from

(8.4.14) that

R5

(
1

2

)
=

1

128
= 0.0078125.

Furthermore,

R5

(
1

2
± 1

2

√
7

3

)
= 0.00308 . . . .

Hence, the maximum and minimum of R5(x) are 1
128 and 0, as claimed by

Ramanujan.
For n = 7, by (8.4.11),

R′
7(x) = −B7(x) = −x(x − 1)(x− 1

2 )(x
4 − 2x3 + x+ 1

3 ),

which has the real roots 0, 1, 12 , and the complex roots

3±
√
3(9± 2i

√
3)

6
.

Since B8 = − 1
30 , we find from (8.4.14) that

R7

(
1

2

)
= − 17

211
,

and so the last assertion in Ramanujan’s list has been verified.
We now turn to the cases for even powers n. First, if n = 2,

R′
2(x) = −B2(x) = −x2 + x− 1

6 ,

which has the roots 1
2

(
1±

√
1
3

)
. Thus, from (8.4.10),

R2

(
1

2

(
1±

√
1

3

))
= −1

3
B3

(
1

2

(
1±

√
1

3

))
= ± 1

36
√
3
.



198 8 Number Theory

Thus, Ramanujan’s claim for the sum of squares has been verified.
If n = 4, then

R′
4(x) = −B4(x) = −x4 + 2x3 − x2 + 1

30 ,

which has the roots

15±
√
15(15± 2

√
30)

30
.

Now

R5

⎛

⎝15∓
√
15(15− 2

√
30)

30

⎞

⎠ = ± 1

900

√

15 + 4

√
6

5
= ±0.00489164 . . .

and

R5

⎛

⎝
15±

√
15(15 + 2

√
30)

30

⎞

⎠ = ± 1

900

√

15− 4

√
6

5
= ±0.00362062 . . . .

Thus, again Ramanujan’s claim is justified.
The calculations for the case n = 6 are the most involved, and this is the

only case in which the results do not agree with Ramanujan’s. Let the roots
of the polynomial

R′
6(x) = −B6(x) = −x6 + 3x5 − 5x4

2
+
x2

2
− 1

42

be denoted by xi, 1 ≤ i ≤ 6. Write the roots of this polynomial as xi =
1
2 +yi,

where the yi are roots of

y6 − 5

4
y4 +

7

16
y2 − 31

1,344
. (8.4.15)

The roots of this polynomial can be found by Cardano’s formula, and they
are

12y2i = 5− 2t21t2 − 2t1t
2
2, (8.4.16)

where

t1 =
3

√
11 + 6

√
2

7
, t2 =

3

√
11− 6

√
2

7
. (8.4.17)

Observe that to obtain real roots of (8.4.16), we need to take the real cube
roots for t1 and t2 in (8.4.17). We find numerically that these real roots, say
y1 and y2, are y1 = 0.2524593 . . . and y2 = −0.2524593 . . . .

We would now like to determine the values of R6(
1
2 + yi), i = 1, 2. To do

this, observe that R6(
1
2 + y) is a polynomial of the seventh degree in y, and
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that if yi is a root of (8.4.15), we can use this equation to reduce the seventh
and sixth powers on yi to fifth-degree expressions. After elementary algebra,
we find that

R6

(
1

2
+ yi

)
=

yi
4,704

(
93− 392y2i + 336y4i

)
.

Square both sides, expand, then substitute the values given for y2i from
(8.4.16), and finally reduce the exponents on the ti using the values given
in (8.4.17). We thus find that

R6(x1) =
1

2,352
√
3

√
259− (9− 10

√
2)t21t2 − (9 + 10

√
2)t1t22 = 0.0037236 . . .,

and R6(x2) is the negative of this. An equivalent expression, more in line with
that given by Ramanujan, is

± 1

2,352
√
21

√

1,813− (47 + 39
√
2)

3

√
21− 7

√
2− (47− 39

√
2)

3

√
21 + 7

√
2,

which is not equal to the expression given by him. It therefore appears that
Ramanujan made an error in his calculations, which in view of the computa-
tional difficulties above is not surprising. The authors had the advantage of
being able to use Mathematica.

In examining the polynomials B3(x), B5(x), and B7(x) above, we note
that 0, 1, and 1

2 are trivial zeros of each, and in general, it is easy to see
(e.g., from their Fourier expansions) that these three points are trivial zeros
for B2n+1(x), n ≥ 1. Moreover, J. Lense [212] has shown that these are the
only zeros of B2n+1(x), n ≥ 1, in [0, 1]. On the basis of four examples above,
we might conjecture that R4n+1(

1
2 ), n ≥ 0, yields the maximum value of

Rn(x) on (0, 1) and that R4n+3(
1
2 ), n ≥ 0, provides the minimum value of

Rn(x) on (0, 1). Indeed, this is true and was evidently first established by
D.H. Lehmer [211].

8.5 Euler’s Diophantine Equation a3 + b3 = c3 + d3

On page 341 in his lost notebook [269], Ramanujan offers a truly remark-
able method for finding an infinite family of solutions to Euler’s diophantine
equation a3 + b3 = c3 + d3.

Entry 8.5.1 (p. 341). If

1 + 53x+ 9x2

1− 82x− 82x2 + x3
=

∞∑

n=0

anx
n,

2− 26x− 12x2

1− 82x− 82x2 + x3
=

∞∑

n=0

bnx
n,
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and

2 + 8x− 10x2

1− 82x− 82x2 + x3
=

∞∑

n=0

cnx
n,

then
a3n + b3n = c3n + (−1)n. (8.5.1)

This is another of those many results of Ramanujan for which one won-
ders, “How did he ever think of this?” M.D. Hirschhorn has devoted four
papers [141, 158–160] (the former with J.H. Han) to examining Entry 8.5.1.
In the remainder of this section, we offer Hirschhorn’s approach from [158].
At the close of Sect. 8.5, we offer a few further comments on the work of
Ramanujan and Hirschhorn.

First Proof of Entry 8.5.1. For brevity, set

A1 =
64 + 8

√
85

85
, B1 =

64− 8
√
85

85
, C1 =

43

85
, (8.5.2)

A2 =
77 + 7

√
85

85
, B2 =

77− 7
√
85

85
, C2 = −16

85
, (8.5.3)

A3 =
93 + 9

√
85

85
, B3 =

93− 9
√
85

85
, C3 =

16

85
. (8.5.4)

With the use of partial fractions, it is a straightforward, albeit somewhat
tedious, task to show that

an = A1α
n +A2β

n + C1(−1)n,

bn = A2α
n +B2β

n + C2(−1)n,

cn = A3α
n +B3β

n + C3(−1)n,

where

α =
83 + 9

√
85

2
and β =

83− 9
√
85

2
.

It follows that

a3n =
1

853

{
(1,306,624+141,824

√
85)α3n+(1,306,624−141,824

√
85)β3n

−(1,230,144+132,096
√
85)(−α2)n−(1,230,144− 132,096

√
85)(−β2)n

+(96,960+12,120
√
85)αn+(96,960−12,120

√
85)βn+267,245(−1)n

}
,

b3n =
1

853

{
(1,418,648+153,664

√
85)α3n+(1,418,648−153,664

√
85)β3n

+(484,512+51,744
√
85(−α2)n+(484,512−51,744

√
85)(−β2)n

+(466,620 + 42,420
√
85)αn+(466,620−42,420

√
85)βn+173,440(−1)n

}
,
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c3n =
1

853

{
(2,725,272+295,488

√
85)α3n+(2,725,272− 295,488

√
85)β3n

−(745,632+80,352
√
85)(−α2)n−(745,632−80,352

√
85)(−β2)n

+(563,580+54,540
√
85)αn+(563,580−54,540

√
85)βn−173,440(−1)n

}
,

from which, after some algebra, (8.5.1) follows. ��

It is clear that Ramanujan must have had a more insightful, more in-
teresting, and less tedious proof. Since Ramanujan had previously devoted
considerable effort to finding solutions to Euler’s diophantine equation [49,
246, 249, 252], [65, pp. 224–226], [268], [39, pp. 197–200], [40, pp. 52, 54–56,
107–108], he could have used previously discovered parameterizations of solu-
tions that he had found, probably along with recurrence relations, to establish
Entry 8.5.1. One of Ramanujan’s families of solutions [246, 268], [40, p. 56] to
Euler’s diophantine equation is given by

(3a2+5ab−5b2)3+(4a2−4ab+6b2)3+(5a2−5ab−3b2)3 = (6a2−4ab+4b2)3.

(8.5.5)

Hirschhorn [141], [158]–[160] studied Ramanujan’s claim over a period of
several years and proposed that Ramanujan may have proceeded along the
following lines. In [141], at the suggestion of Maurice Craig, the authors make
the change of variables a = A + B and b = A − 2B to deduce (8.5.6) below.
We now present a version of the proof that we just described.

Second Proof of Entry 8.5.1. Begin with the identity (8.5.5) and make the
aforementioned changes of variable a = A+B and b = A− 2B to deduce that

(A2+7AB−9B2)3+(2A2−4AB+12B2)3 = (2A2+10B2)3+(A2−9AB−B2)3.

(8.5.6)

Define the sequence {hn} by

hn+2 = 9hn+1 + hn, n ≥ 0, h0 = 0, h1 = 1. (8.5.7)

Then

h2n+1 − hn+2hn = h2n+1 − (9hn+1 + hn)hn

= −(h2n − hn+1hn−1)

= · · · = (−1)n(h21 − h2h0) = (−1)n. (8.5.8)

Set
A = hn+1 and B = hn.

Then, by (8.5.8),

A2 − 9AB −B2 = h2n+1 − hn(9hn+1 + hn) = (−1)n. (8.5.9)
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Let

an = A2 + 7AB − 9B2 = h2n+1 + 7hn+1hn − 9h2n, (8.5.10)

bn = 2A2 − 4AB + 12B2 = 2h2n+1 − 4hn+1hn + 12h2n, (8.5.11)

cn = 2A2 + 10B2 = 2h2n+1 + 10h2n. (8.5.12)

Then, by computer algebra and (8.5.9),

a3n + b3n = c3n + (−1)n.

Next we must show that an, bn, and cn satisfy the expansions given in
Entry 8.5.1. The characteristic polynomial for the recurrence (8.5.7) is x2 −
9x − 1 and its roots are 1

2 (9 ±
√
85). Using the initial conditions given in

(8.5.7), we can conclude from the general theory of linear recurrence relations
that

hn =
1√
85

{(
9 +

√
85

2

)n

−
(
9−

√
85

2

)n}
,

and hence that

h2n =
1

85

{(
83 + 9

√
85

2

)n

+

(
83− 9

√
85

2

)n

− 2(−1)n

}
,

h2n+1 =
1

85

⎧
⎨

⎩

(
83 + 9

√
85

2

)n+1

+

(
83− 9

√
85

2

)n+1

+ 2(−1)n

⎫
⎬

⎭ ,

and

hnhn+1 =
1

85

{(
9 +

√
85

2

)(
83 + 9

√
85

2

)n

+

(
9−

√
85

2

)(
83− 9

√
85

2

)n

− 9(−1)n

}
.

It follows that

∞∑

n=0

h2nx
n =

x− x2
1− 82x− 82x2 + x3

,

∞∑

n=0

h2n+1x
n =

1− x
1− 82x− 82x2 + x3

,

and

∞∑

n=0

hnhn+1x
n =

9x

1− 82x− 82x2 + x3
.
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Hence, using (8.5.10)–(8.5.12), we easily find that

∞∑

n=0

anx
n =

(1− x) + 7(9x)− 9(x− x2)
1− 82x− 82x2 + x3

=
1 + 53x+ 9x2

1− 82x− 82x2 + x3
,

∞∑

n=0

bnx
n =

2(1− x)− 4(9x) + 12(x− x2)
1− 82x− 82x2 + x3

=
2− 26x− 12x2

1− 82x− 82x2 + x3
,

and

∞∑

n=0

cnx
n =

2(1− x) + 10(x− x2)
1− 82x− 82x2 + x3

=
2 + 8x− 10x2

1− 82x− 82x2 + x3
,

which are the claims of Ramanujan in Entry 8.5.1. ��

Ramanujan also offers a companion to Entry 8.5.1.

Entry 8.5.2 (p. 341). If

1 + 53x+ 9x2

1− 82x− 82x2 + x3
=

∞∑

n=1

αn−1x
−n,

2− 26x− 12x2

1− 82x− 82x2 + x3
=

∞∑

n=1

βn−1x
−n,

and

2 + 8x− 10x2

1− 82x− 82x2 + x3
=

∞∑

n=1

γn−1x
−n,

then
α3n + β3n = γ3n − (−1)n. (8.5.13)

We have corrected Ramanujan’s formulation of (8.5.13), because he had
written +(−1)n instead of −(−1)n in (8.5.13).

Proof. The proof follows along the same lines at that for Entry 8.5.1. Using
the notation (8.5.2)–(8.5.4) and expanding the left-hand sides in Entry 8.5.2
into partial fractions, we are led to the formulas, for n ≥ 0,

αn = A1β
n+1 +B1α

n+1 + C1(−1)n,

βn = A2β
n+1 +B2α

n+1 + C2(−1)n,

γn = A3β
n+1 +B3α

n+1 + C3(−1)n.

If we replace n by n− 1, then, for n ≥ 1, we are led to
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α3n−1 + β
3
n−1 + γ

3
n−1

= (A1β
n +B1α

n − C1(−1)n)3 + (A2β
n +B2α

n − C2(−1)n)3

− (A3β
n +B3α

n − C3(−1)n)3

= (A3
1 +A

3
2 −A3

3)β
3n + (B3

1 +B3
2 −B3

3)α
3n

+ (−C3
1 − C3

2 + C3
3 − 6A1B1C1 − 6A2B2C2 + 6A3B3C3)(−1)n

+ (−3A2
1C1 − 3A2

2C2 + 3A2
3C3)(−1)nβ2n

+ (−3B2
1C1 − 3B2

2C2 + 3B3
3C3)(−1)nα2n

+ (3A2
1B1 + 3A2

2B2 − 3A2
3B3 + 3A1C

2
1 + 3A2C

2
2 − 3A3C

2
3 )β

n

+ (3A1B
2
1 + 3A2B

2
2 − 3A3B

2
3 + 3B1C

2
1 + 3B2C

2
2 − 3B3C

2
3 )α

n

= (−1)n,

which is what we wanted to prove. ��

In [159], Hirschhorn used an idea of D. Zeilberger to show that it suffices
to check the first seven cases of (8.5.1).

A beautiful generalization of Entry 8.5.1 has been developed by J. McLaugh-
lin [222], who established the following theorem.

Theorem 8.5.1. Define 11 sequences of integers ak, bk, ck, dk, ek, fk, pk,
qk, rk, sk, and tk, k ≥ 0, by

x2 + 164x+ 3

x3 − 99x2 + 99x− 1
=:

∞∑

k=0

akx
k,

−5x2 + 138x+ 3

x3 − 99x2 + 99x− 1
=:

∞∑

k=0

pkx
k,

−7x2 + 134x+ 1

x3 − 99x2 + 99x− 1
=:

∞∑

k=0

bkx
k,

3x2 + 244x+ 1

x3 − 99x2 + 99x− 1
=:

∞∑

k=0

qkx
k,

−x2 + 298x− 1

x3 − 99x2 + 99x− 1
=:

∞∑

k=0

ckx
k,

x2 + 254x− 7

x3 − 99x2 + 99x− 1
=:

∞∑

k=0

rkx
k,

−5x2 + 228x− 7

x3 − 99x2 + 99x− 1
=:

∞∑

k=0

dkx
k,

−7x2 + 148x− 5

x3 − 99x2 + 99x− 1
=:

∞∑

k=0

skx
k,

3x2 + 258x− 5

x3 − 99x2 + 99x− 1
=:

∞∑

k=0

ekx
k,

3

1− x =:

∞∑

k=0

tkx
k,

−3x2 + 94x− 3

x3 − 99x2 + 99x− 1
=:

∞∑

k=0

fkx
k.

Then, for 1 ≤ j ≤ 5 and each k ≥ 0,

ajk + bjk + c
j
k + d

j
k + e

j
k + f

j
k − pjk − q

j
k − rjk − sjk − t

j
k = 1. (8.5.14)

Note that (8.5.14) holds for each integer j, 1 ≤ j ≤ 5, in contrast to Ra-
manujan’s theorem, in which the exponent is fixed at 3. McLaughlin provides
the following example to illustrate his theorem. If
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{a1, b1, c1, d1, e1, f1, p1, q1, r1, s1, t1}
= {−461,−233,−199, 465, 237, 203,−435,−343, 439, 347, 3},

then

(−461)j + (−233)j + (−199)j + 465j + 237j + 203j

− (−435)j − (−343)j − 439j − 347j − 3j = 1,

for 1 ≤ j ≤ 5.
Following Entry 8.5.1, Ramanujan records the following six examples:

Entry 8.5.3 (p. 341).

93 + 103 = 123 + 1,

63 + 83 = 93 − 1,

1353 + 1383 = 1723 − 1,

11,1613 + 11,4683 = 14,2583 + 1,

7913 + 8123 = 1,0103 − 1,

65,6013 + 67,4023 = 83,8023 + 1.

Readers will immediately recognize the taxicab-number representations
in the first example above. For further information about the taxicab-number
1729 in Ramanujan’s work, consult the second author’s book [39, pp. 199–200].

8.6 On the Divisors of N !

On page 326 of [269], Ramanujan offers four disparate claims in the theory
of numbers. We examine three of them in this and the following two sections.
(The remaining claim is discussed in Chap. 6 of [14].)

Except for notation, we quote Ramanujan in his first claim.

Entry 8.6.1 (p. 326). If d(N !) be the no. of divisors of N !, then

C
N

logN (1−ε)
< d(N !) < C

N
logN (1+ε)

(8.6.1)

where

C = (1 + 1)
√
1 + 1

2
3

√
1 + 1

3
4

√
1 + 1

4
5

√
1 + 1

5 · · · . (8.6.2)

To the right of (8.6.1) in [269] is an appended note that reads, “old arith-
metical conjecture,” which was probably written by Hardy. We are unable to
trace the origin of this conjecture. However, in fact, Ramanujan proved a more
precise version of (8.6.1) in his paper [259, Eqs. (265)–(267)], [267, p. 127].
Namely, he proved that [259, Eq. (266)]
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d(N !) = C
N

logN +O
(

N
log2 N

)
.

P. Erdős, S.W. Graham, A. Ivić, and C. Pomerance [116, p. 339] have, in
fact, established an asymptotic series for d(N !).

Theorem 8.6.1. Define the sequence of integrals ck, k ≥ 0, by

ck =

∫ ∞

1

log([t] + 1)

t2
logk t dt. (8.6.3)

Then, for any fixed integer K ≥ 0,

d(n!) = exp

{
n

logn

K∑

k=0

ck

logk n
+O

(
n

logK+2 n

)}
. (8.6.4)

In particular,

c0 =

∞∑

k=2

log k

k(k − 1)
≈ 1.25775. (8.6.5)

In order for Ramanujan’s claim (8.6.1) to be compatible with (8.6.4) and
(8.6.3), in particular with (8.6.5), it would be required that

logC = c0. (8.6.6)

To that end, as observed first by M. Tip Phaovibul, we see that

logC =

∞∑

k=1

1

k
log

(
1 +

1

k

)
=

∞∑

k=1

1

k
{log(k + 1)− log k}

=

∞∑

k=2

(
1

k − 1
− 1

k

)
log k =

∞∑

k=2

log k

k(k − 1)
= c0.

8.7 Sums of Two Squares

We quote from the second claim on page 326 in [269].

Entry 8.7.1 (p. 326). If S(N) be the no. of integers in which N can be
expressed as the sum of 2 squares, then the maximum order of S(N)

=
√
max. order of d(N2 + aN + b) · eO(logN)1/2+ε

. (8.7.1)

Perhaps needless to say, “the number of integers” is best replaced by “the
number of ways.” As Ramanujan must have indeed also assumed, we take a
and b to be positive integers. The error term in (8.7.1) is under the assumption
of the Riemann Hypothesis. Our attention therefore is focused on “max order”
on both sides of (8.7.1).
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In the sequel, we frequently employ the following inequalities for the
logarithmic integral Li(x) without comment:

Li(2x) =
2x

log x
+

2(1− log 2)x

log2 x
+O

(
x

log3 x

)

≤ 2Li(x) =
2x

log x
+

2x

log2 x
+O

(
x

log3 x

)
. (8.7.2)

We first address the maximum order of S(N), for which the notation
Q2(N) is used in Ramanujan’s unpublished manuscript that was to form part
of his paper [259]. This handwritten manuscript was published with the lost
notebook [269, pp 281–308] in 1988, while an annotated version was pub-
lished in the first volume of the Ramanujan Journal by J.-L. Nicolas and
G. Robin [233]. It was revised and included as Chap. 10 in the present authors’
third volume on the lost notebook [14]. Using the prime number theorem, Ra-
manujan showed that the maximum order of Q2(N) is

max. order of Q2(N) = 2
1
2Li(2 logN)+O

{
logNe−a

√
log N

}

= 2
(1+o(1))

logN
log logN , (8.7.3)

where a is a positive constant. The Q2-highly composite numbers were defined
by Ramanujan in [233], [14, Chap. 10]. A number N is Q2-highly composite if
whenever M < N , then Q2(M) < Q2(N). They are of the form [14, Sect. 52,
p. 362]

N = qa1
1 q

a2
2 · · · qak

k , (8.7.4)

where q1 = 5, q2 = 13, . . . are the primes congruent to 1 modulo 4 in increasing
order. For such numbers N , Q2(N) = d(N).

Now suppose that a = b = 0 in (8.7.1). Then Ramanujan proved in [259,
Sect. 49, Eq. (256)] that

max. order of d(N2) = 3
Li

(
1
2 logN2

)
= 3

(1+o(1))
logN

log logN . (8.7.5)

Hence, in comparing (8.7.3) with (8.7.5), we see that

max. order of Q2(N) >
√
max. order of d(N2 + aN + b) · eO(logN)1/2+ε

,
(8.7.6)

for a = b = 0. Thus, in this instance, Ramanujan’s assertion in Entry 8.7.1 is
incorrect.

In general, Ramanujan proved that for infinitely many n [259, Sect. 5], [267,
p. 86],

d(n) = 2
(1+o(1))

logN
log logN . (8.7.7)

Thus, if N2+aN+b factors over Q into (N+r1)(N+r2) and we apply (8.7.7)
to each of the factors, then [259, Sect. 49, Eq. (256)]
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d(N2 + aN + b) ≤ d(N + r1)d(N + r2) = 2
2(1+o(1))

logN
log logN , (8.7.8)

and so we see, in view of (8.7.3), that Ramanujan’s claim in Entry 8.7.1 may
hold. Of course, (8.7.5) shows that, at least in this special case, there is a
strict inequality in (8.7.8), vitiating the possible validity of Entry 8.7.1.

Let us now discuss the case that N2 + aN + b is irreducible, in which case
we might expect that d(N2 + aN + b) is “small.” Consider the case a = 0 and
b = 1. The prime factors of N2 + 1 are all congruent to 1 modulo 4, and so,
invoking (8.7.3) twice, we find that

d(N2 + 1) = Q2(N
2 + 1) ≤ max. order of Q2(N

2 + 1)

≈ 2
1
2Li(2(log(N

2+1))) ≈ 2
1
2Li(4 logN)

≤ 2Li(2 logN) = 2
2(1+o(1))

logN
log logN . (8.7.9)

Thus, again, we see the possibility of Entry 8.7.1 being valid. However, the
first inequality of (8.7.9) is likely quite crude, for it is possible that N2 + 1
has relatively few divisors.

In summary, we see that Entry 8.7.1 is likely valid for some choices of a
and b but not valid for other choices. In contrast to Ramanujan’s assertion, it
seems probable that in all cases,

max. order of Q2(N) ≥
√
max. order of d(N2 + aN + b) · eO(logN)1/2+ε

.
(8.7.10)

8.8 A Lattice Point Problem

On page 326 of [269], Ramanujan considers an analogue of the famous circle
problem for higher powers. For each positive integer k ≥ 2, let

Rk,2(x) :=
∑

mk+nk≤x
m,n≥0

1, (8.8.1)

where Ramanujan does not consider mk + nk and nk +mk to be distinct. He
then asserts the following asymptotic formula.

Entry 8.8.1 (p. 326).

Rk,2(x) =
x2/k

4k

{Γ (1/k)}2
Γ (2/k)

+O
(
x1/k+ε

)
, (8.8.2)

as x→ ∞, for each fixed ε > 0.
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In a parenthetical remark after (8.8.2), Ramanujan writes, “Assuming the
equation xn + yn = un + vn (x and y being different from u and v) has not
got an infinite no. of solutions.” Perhaps Ramanujan wanted to determine
the number of distinct integers N that are the sum of 2 kth powers. If fact, if
there were only finitely many solutions to uk+vk = xk+yk, then this number
would equal Rk,2(x) +O(1).

We are uncertain who first considered this lattice point problem. The ear-
liest reference known to us is a paper by J.G. van der Corput [100] in 1923.
Van der Corput [100], E. Krätzel, in a series of three papers [197–199], and
B. Randol [270] proved that for k ≥ 3,

Rk,2(x) =
x2/k

4k

{Γ (1/k)}2
Γ (2/k)

+O
(
x1/k−1/k2

)
. (8.8.3)

Moreover, in [199], Krätzel showed that the error term in (8.8.3) is sharp.
More precisely, he proved that

Rk,2(x) =
x2/k

4k

{Γ (1/k)}2
Γ (2/k)

+Ω
(
x1/k−1/k2

)
.

8.9 Mersenne Numbers

A Mersenne number is a number of the form 2p − 1, where p is a prime. If in
addition 2p − 1 is prime, then it is called a Mersenne prime. In a two-page
manuscript published with the lost notebook [269, pp. 259–260], Ramanu-
jan uses a different definition for a Mersenne prime; he calls p, not 2p − 1, a
Mersenne prime when the latter is prime. We adhere here to Ramanujan’s defi-
nition. So, the first Mersenne primes are p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107,
127, 521, 607, 1,279, 2,203, 2,281, 3,217. As of this writing, 47 Mersenne primes
are known. A famous and long outstanding conjecture is that there are in-
finitely many Mersenne primes.

The aforementioned pages 259–260 are not part of the original lost note-
book, and so it is difficult to assess precisely when they were written.
None of Ramanujan’s claims on these two pages are correct, as observed by
P.G. Brown [81], who evidently was the first person to examine the pages and
write about them in print. However, most likely, Ramanujan knew that his
thoughts were speculative and so wanted to stimulate further discussion and
computation. At the time of his writing, very few Mersenne primes had been
computed. In fact, the 10th, 11th, and 12th were computed in 1911, 1914,
and 1876, respectively, and so he had at most a list of 12 Mersenne primes
at his disposal. With such little numerical data, Ramanujan certainly was
aware that any assertions he might make would be tenuous at best. Thus,
ending the paper [81] with the statement, “Clearly even the great Ramanujan
had his ‘bad days’” seems uncharitable, since Ramanujan was undoubtedly
trying to stimulate discussion.
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Ramanujan thought that Mersenne primes were either of the form a2 +
ab+ b2 or a2 + b2. It is well known that every odd prime p that is congruent
to 1 modulo 4 can be represented by the form a2 + b2 [234, p. 164] and that
every prime p with p ≡ 1 (mod 6) can be represented by the form a2 + ab +
b2 [234, p. 176]. Thus, Ramanujan speculated that there are no Mersenne
primes congruent to 11 modulo 12. Among the 12 Mersenne primes that were
known up to Ramanujan’s death in 1920, only 107 is congruent to 11 modulo
12, and since 107 was not discovered until 1914 by R.E. Powers, it is not clear
that at the time Ramanujan recorded his speculation, he even knew of this
Mersenne prime. In fact, the second Mersenne prime congruent to 11 modulo
12 is the 28th Mersennne prime, namely 86,243, which was discovered by
D. Slowinski in 1982. Of the 45 known Mersenne primes exceeding 3, only 5
are ≡ 11 (mod 12). On the other hand, 9 are congruent to 1 modulo 12, 18 are
congruent to 5 modulo 12, and 13 are congruent to 7 modulo 12. On the basis
of this limited data, it could be speculated that the Mersenne primes congruent
to 11 modulo 12 have smaller density than those in the remaining three residue
classes modulo 12. Other than the fact that the quadratic forms a2 + ab+ b2

and a2 + b2 avoid primes congruent to 11 modulo 12, we do not have any
explanation for Ramanujan’s bringing these forms into the theory of Mersenne
primes. Nonetheless, representations of Mersenne primes by the quadratic
form x2 + 7y2 are relevant. In particular, if M� = 2�−1 is a Mersenne prime
with � ≡ 1 (mod 3) and we write M� = x

2 + 7y2, where x and y are integers,
then x is divisible by 8 [213].

We now quote Ramanujan’s ten statements on Mersenne primes and com-
ment on each. Most of our remarks are those supplied by Brown [81].

1. “All Mersenne’s primes are either of the form a2 + ab+ b2 or of the form
a2 + b2. Then since a number of the form 12n− 1 cannot be expressed in
any one of the above two forms, we infer that”

As we indicated above, 107 provides a counterexample, since 2107 − 1 is
prime, and as we also indicated above, Ramanujan may likely not have
had access to this fact when he wrote.

2. “A Mersenne’s prime is never of the form 12k − 1. Thus for example
211−1, 223−1, 247−1, 259−1, 271−1, 283−1, 2107−1, 2131−1, 2167−1,
2179 − 1, 2191 − 1, 2227 − 1, 2239 − 1, 2251 − 1, etc. should be composite
numbers. Hence we may divide all Mersenne primes into two classes, one
comprising primes that can be expressed as a2 + ab + b2 and the other
containing primes that cannot be expressed as a2 + ab+ b2.”

It is unclear how many of these numbers Ramanujan had actually calcu-
lated.

3. “Hence the Mersenne’s primes of the 1st class except 1 and 3 are of the
form 6n+1, while those of the 2nd except 2 are of the form 12n+5. Thus
we have,
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Nos. of the 1st class : −1, 3, 7, 13, 19, 31, 61, 127, etc.

Nos. of the 2nd class : −2, 5, 17, 89, 257, etc.”

Observe that 2257 − 1 is not prime. It is curious that Mersenne made the
same mistake.

4. “Theorem. If P be any prime, and p any odd prime and if either of Pp−1
P−1

or Pp−1
p(P−1) happens to be a prime, then that prime will be a Mersenne’s

prime of the 1st class. As a particular case we have when p = 3.”

This claim is incorrect. For example,

75 − 1

7− 1
= 2,801,

which is prime. However, 22,801 − 1 is composite. Also,

313 − 1

3(31− 1)
= 331,

which is prime. However, 2331−1 is composite. It might be remarked that
one can find the factorizations of 2n − 1 for n < 1,200 in [78].

5. “If P be any prime and if either of P 2 + P + 1 or P 2+P+1
3 happens to

be a prime, then that prime will be a Mersenne’s prime of the 1st class.
As another particular case when P = 2 we have”

This claim is also not true. For example, 172 + 17 + 1 = 307, which is

prime, but 2307 − 1 is composite. Also, 312+31+1
3 = 331, which, as seen

above, is not a Mersenne prime.

6. “If p be a Mersenne’s prime then 2p− 1 will be a Mersenne’s prime of the
1st class. As examples of (5) and (6) we have

12 + 1 + 1 = 3; 22 + 2 + 1 = 7; 32 + 3 + 1 = 13; 52 + 5 + 1 = 31;
72+7+1

3 = 19; (112 + 11 + 1 = 133 composite); 132+13+1
3 = 61;

172 + 17+ 1 = 307; 192+19+1
3 = 127; and so on. Again 22 − 1 = 3;

hence 23 − 1 = 7 a prime; hence 27 − 1 = 127 a prime; hence
2127 − 1 is a prime. 25 − 1 = 31; hence 231 − 1 is prime.”

This statement is false. For example, 13 is a Mersenne prime, but 213 − 1
is not.

7. “From (3) we can infer that the number of Mersenne’s primes of the 2nd
class is always about 1

2 of the number of those of the 1st class. There may
be a general theorem like (4) for the Mersenne’s primes of the 2nd class
of which the particular case analogous to (6) will be.”

Of the first 44 Mersenne primes exceeding 3, 22 are in the 1st class and
17 are in the 2nd class, which does not support Ramanujan’s speculation.
As indicated earlier, 5 is not in either class.
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8. “If 2p + 1 be a prime, then 2p + 1 will be a Mersenne’s prime of the 2nd
class. Thus for example we have

2+1=3; hence 23−1 is a prime; 22+1 = 5 hence 25−1 is a prime;
24 + 1 = 17 hence 217 − 1 is a prime; 28 + 1 = 257; hence 2257 − 1
is a prime and so on.”

This claim is false, because, as we remarked earlier, 2257 − 1 is not prime.

9. “Mersenne’s primes of the 2nd class are always of the form (2a)2+(4b+1)2

where a assumes all integral values, 0, 1, 2, 3 etc. without an exception,
b is a positive integer including 0, 4b + 1 is never greater than 2a and
for every value of a, there is at least one value of b. Thus we have, when
a = 0, b = 0 hence 22− 1 is a prime; when a = 1, b must be 0 hence 25− 1
is a prime; when a = 2, b must be 0 hence 217 − 1 is a prime; when a = 3,
b may be 0 or 1, but when b = 0, (28)2 + 1 becomes composite, hence b
must be 1 since (23)2 + 52 is a prime, hence 289 − 1 is a prime.”

This statement is also false. Consider the prime 4,253 ≡ 5 (mod12). Then
24,253 − 1 is prime, and we have the unique representation (up to order
and the signs of the summands) 4,253 = 532 +382, but neither summand
is a power of 2. Furthermore, if a = 4, then b = 0, 1, 2, or 3, and then
(2a)2 + (4b+ 1)2 = 257, 281, 337, 425, respectively, and none of these four
numbers is a Mersenne prime. It should be noted that the Mersenne prime
4,253 was not discovered until 1961.

10. “Another theorem analogous to (8) is, if 2p + 1 is a prime then 22
p

+ 1 is
also a prime.”

A counterexample to this claim is given by 28 + 1, which is prime, but
22

8

+ 1 is composite.



9

Divisor Sums

9.1 Introduction

Pages 270 and 271 in [269] are devoted to sums involving σk(n), the sum of the
kth powers of the divisors of the positive integer n. At the top of the page is a
note, possibly written by Gertrude Stanley, indicating that these pages were
intended to be a conclusion of Ramanujan’s paper [265], [267, pp. 179–199].
Indeed, this is most certainly true. In the upper right-hand corners of the
two pages are the numbers (29) and (30), respectively, and the pages are
written in ¶18; the last section of [265] is numbered 17. We do not know why
Ramanujan deleted Sect. 18 from his paper, but perhaps he thought that the
content of Sect. 18 strayed slightly from that of the remainder of the paper.
The last result in the omitted section appears to be incorrect, but it is easily
corrected. The two primary results in this section are of the same type as
five theorems on pages 277 and 278 of his second notebook [268], which were
first proved in print by P. Bialek and the second author [45]. These proofs
can also be found in [41, pp. 426–444]. Although, as usual, he did not supply
hypotheses for the aforementioned theorems in his notebooks, in the partial
manuscript at hand, Ramanujan indicates that his proofs are valid for (real)
s > 2, while in [268] and [45], s = n is restricted to be an integer.

Pages 272 and 273 of [269] also have some relation to [265], and so evidently
for this reason, the editors placed the pages at this juncture. We discuss these
pages in Sect. 9.4.

Page 255 is also connected with ¶17 of [265]. However, Ramanujan ev-
idently did not include this material in his paper because his claims are
imprecisely stated. We have put two of them on a firmer foundation.

In Sect. 9.6, we examine a short, elementary partial manuscript on the
divisor function d(n). The results proved here are at the level of exercises
in an introductory graduate (or undergraduate) course on analytic number
theory.

G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook:
Part IV, DOI 10.1007/978-1-4614-4081-9 9,
© Springer Science+Business Media New York 2013
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Lastly, page 368 is an isolated page that we address in Sect. 9.7. It is
devoted to some of Ramanujan’s musings on the Dirichlet divisor problem,
which we discuss in detail in Chap. 2.

9.2 Ramanujan’s Conclusion to [265]

We first record Ramanujan’s Sect. 18 on pages 270 and 271 of [269] exactly
as he wrote it. Then in Sect. 9.3, we supply more details, as well as further
comments.

I shall conclude this paper by finding an expression for

∞∑

n=1

σs(n)x
n,

∞∑

n=1

rs(n)x
n

which shows the asymptotic nature for large values of s. If Re(x) > 0, Re(x)
being the real part of x, it is well known that

π + 2π(e−2πx + e−4πx + e−6πx + · · · )

=
1

x
+

1

x+ i
+

1

x− i +
1

x+ 2i
+

1

x− 2i
+ · · · . (9.2.1)

Differentiating the two sides of (9.2.1) s− 1 times we obtain

1s−1e−2πx + 2s−1e−4πx + 3s−1e−6πx + · · ·

=
Γ (s)

(2π)s

{
1

xs
+

1

(x+ i)s
+

1

(x− i)s +
1

(x+ 2i)s
+ · · ·

}
(9.2.2)

if s is an integer greater than 1. This result is quite elementary. But it can be
shown by the theory of residues that (9.2.2) is true for all values of s greater
than 1. It follows from this that

∞∑

n=1

σs−1(n)e
−2πnx =

∞∑

n=1

(1s−1e−2πnx + 2s−1e−4πnx + · · · )

=
Γ (s)

(2π)s

∞∑

n=1

{
1

(nx)s
+

1

(nx+ i)s
+

1

(nx− i)s + · · ·
}
.

The double series in the last equation is absolutely convergent if s > 2. From
this we easily deduce that

σs−1(1)e
−2πx + σs−1(2)e

−4πx + · · ·

=
Γ (s)

(2π)s
ζ(s)

{
1

xs
+
∑ 1

(μx+ νi)s
+
∑ 1

(μx − νi)s

}

=
Γ (s)

(2π)s
ζ(s)

⎧
⎨

⎩
1

xs
+ 2

∑ cos
(
s tan−1 ν

μx

)

(μ2x2 + ν2)
1
2 s

⎫
⎬

⎭ , (9.2.3)
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where s > 2 and μ and ν assume all positive integral values which are prime
to each other.

Let us consider some particular cases of (9.2.3). Suppose x = 1. Then

2
∑ cos

(
s tan−1 ν

μ

)

(μ2 + ν2)
1
2 s

=
∑ cos

(
s tan−1 ν

μ

)
+ cos

(
s tan−1 μ

ν

)

(μ2 + ν2)
1
2 s

= 2 cos
πs

4

∑ cos
(
s tan−1 μ− ν

μ+ ν

)

(μ2 + ν2)
1
2 s

.

It follows that if s > 2, then

σs−1(1)e
−2π + σs−1(2)e

−4π + σs−1(3)e
−6π + · · · (9.2.4)

=
Γ (s)

(2π)s
ζ(s)

⎧
⎨

⎩1 + 2 cos
πs

4

∑ cos
(
s tan−1 μ− ν

μ+ ν

)

(μ2 + ν2)
1
2 s

⎫
⎬

⎭

=
Γ (s)

(2π)s
ζ(s)

{
1 + 2 cos

πs

4

(
1

2
1
2 s

+
2 cos

(
s tan−1 1

3

)

5
1
2 s

+
2 cos

(
s tan−1 1

2

)

10
1
2 s

+
2 cos

(
s tan−1 1

5

)

13
1
2 s

+ · · ·
)}

,

where μ and ν are positive integers that are prime to each other and 2, 5, 10,
13, . . . are sums of two squares that are prime to each other.

Similarly putting x = 1
2 (
√
3 + i) in (9.2.3) we can show that if s > 2 then

σs−1(1)e
−π

√
3 − σs−1(2)e

−2π
√
3 + σs−1(3)e

−3π
√
3 − · · · = −2

Γ (s)

(2π)s
ζ(s)

×

⎧
⎪⎪⎨

⎪⎪⎩
cos
πs

6
+ 2 cos

π(s+ 1)

6
cos
π(s− 1)

6

∑ cos

(
s tan−1 K

λ
√
3

)

(μ2 + μν + ν2)
1
2 s

⎫
⎪⎪⎬

⎪⎪⎭
. (9.2.5)

9.3 Proofs and Commentary

Up to the two examples given by Ramanujan, the argument is straightfor-
ward. The identity (9.2.1) is equivalent to the partial fraction decomposition
of coth(πx). Ramanujan’s remark that (9.2.2) is valid for s > 1 is correct.
In fact, this more general version is called the Lipschitz summation formula
[183, p. 65].

Let us consider the first example in which x = 1. To obtain the sec-
ond equality in the display prior to (9.2.4), we use elementary trigonometry.
To that end,



216 9 Divisor Sums

cos

(
s tan−1 ν

μ

)
+ cos

(
s tan−1 μ

ν

)

= cos

(
s tan−1 ν

μ

)
+ cos

(
s

{
π

2
− tan−1 ν

μ

})

= 2 cos
(πs
4

)
cos

(
s

{
π

4
− tan−1 ν

μ

})
. (9.3.1)

However,

π

4
− tan−1 ν

μ
= tan−1 1− tan−1 ν

μ
= tan−1

(
1− ν/μ
1 + ν/μ

)
= tan−1 μ− ν

μ+ ν
.

(9.3.2)

If we put (9.3.2) into (9.3.1), we find that the proof of (9.2.4) is finished.
Note that on the right-hand side of (9.2.5) there are two undefined con-

stants, K and λ. Unfortunately, we are unable either to identify them or to
obtain an identity of the form given by Ramanujan. However, we are able to
obtain an identity for the left side of (9.2.5), which appears to be somewhat
simpler than that given by Ramanujan.

Using the first equality in (9.2.3), following Ramanujan, we set x = eπi/6,
but we also invoke (9.2.3) a second time, now with x = e−πi/6. For the first
application, we need the elementary calculations

(μeπi/6 + νi)s = (μ2 + μν + ν2)
1
2 s exp

(
is tan−1 μ+ 2ν√

3μ

)
,

(μeπi/6 − νi)s = (μ2 − μν + ν2)
1
2 s exp

(
is tan−1 μ− 2ν√

3μ

)
,

and for the second application, we need

(μe−πi/6 + νi)s = (μ2 − μν + ν2)
1
2 s exp

(
is tan−1 −μ+ 2ν√

3μ

)
,

(μe−πi/6 − νi)s = (μ2 + μν + ν2)
1
2 s exp

(
−is tan−1 μ+ 2ν√

3μ

)
.

Using these calculations, we now add the two equalities arising from (9.2.3)
and find that

2

∞∑

n=1

(−1)nσs−1(n)e
−nπ

√
3 =

Γ (s)

(2π)s
ζ(s)

{
2 cos

(πs
6

)
(9.3.3)

+

∞∑

μ,ν=1
(μ,ν)=1

2 cos

(
s tan−1 μ+ 2ν√

3μ

)

(μ2 + μν + ν2)
1
2 s

+

∞∑

μ,ν=1
(μ,ν)=1

2 cos

(
s tan−1 μ− 2ν√

3μ

)

(μ2 − μν + ν2)
1
2 s

}
.
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We now replace ν by −ν in the second sum on the right-hand side of (9.3.3),
observe that the first expression on the right-hand side of (9.3.3) corresponds
to the term ν = 0 in either double sum, and lastly divide both sides by 2.
Hence, we conclude that

∞∑

n=1

(−1)nσs−1(n)e
−nπ

√
3 =

Γ (s)

(2π)s
ζ(s)

∞∑

μ=1,ν=−∞
(μ,ν)=1

cos

(
s tan−1 μ+ 2ν√

3μ

)

(μ2 + μν + ν2)
1
2 s

.

9.4 Two Further Pages on Divisors
and Sums of Squares

Some of the pages published with the lost notebook have been numbered and
arranged in consecutive runs, especially in the latter portions of [269]. We do
not know who provided the numbering, but it was not Ramanujan and most
likely not G.H. Hardy either. After pages 270 and 271, there is a string of nine
consecutive pages beginning with number 22. The editors evidently designated
pages 22 and 23 as pages 272 and 273 in [269], because their content pertains
to pages 270 and 271. We first discuss page 273, which contains two asymptotic
formulas. If k | n, then in the sequel we interpret

sin(πn)

sin( 1kπn)
= lim

x→n

sin(πx)

sin( 1kπx)
.

Entry 9.4.1 (p. 273). If s > 1, then, as n→ ∞,

σs(n) = n
s sin(πn)

{
1

1s+1 sin(πn)
+

1

2s+1 tan(12πn)
+

1

3s+1 sin(13πn)

+
1

4s+1 tan(14πn)
+

1

5s+1 sin(15πn)
+

1

6s+1 tan(16πn)
+ · · ·

}
.

Entry 9.4.1 is identical to (14.3) in Ramanujan’s paper [265], [267, p. 193].

Entry 9.4.2 (p. 273). Let s be an integer greater than 1, and let r2s(n)
denote the number of representations of the positive integer n as a sum of 2s
squares. Furthermore, set

R(s) :=

∞∑

k=0

cos(kπs)

(2k + 1)s
, s > 1.

Then, as n→ ∞,

r2s(n) =
πsns−1

(s− 1)!R(s)
sin(πn)

{
1

1s sin(πn)
+

1

2s sin(12πn+
1
2πs)

+
1

3s sin(13πn+ πs)
+

1

4s sin(14πn+
3
2πs)

+
1

5s sin(15πn+ 2πs)
+ · · ·

}
.
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Entry 9.4.2 is the same as (14.4) of Ramanujan’s paper [265], [267, p. 193].
On page 272 of [269], Ramanujan offers an asymptotic formula for rs(n)

in three related guises. This asymptotic formula is originally due to Hardy
[146], [149, pp. 345–374]. To the best of our knowledge, all the theorems
that Ramanujan recorded in his earlier notebooks [268] and lost notebook
[269] were discovered by Ramanujan himself, albeit some of his results were
rediscoveries. Thus, did Ramanujan, independently of Hardy, establish this
asymptotic formula? We know that Ramanujan did discover different asymp-
totic formulas for rs(n). To that end, let us recall what Hardy wrote about
his and Ramanujan’s asymptotic formulas [147, pp. 143, 159]: “I must now
introduce ideas which are not to be found (at any rate explicitly) in Ramanu-
jan’s work. They are the ideas from which Littlewood and I started in our
work on Waring’s problem.” “Ramanujan formed ‘singular series’; thus the
series (11.11)–(11.41) of no. 21 of the Papers are the singular series relevant
in this problem. But his approach to them is quite different; he determines
the ‘divisor-function’ δ2s(n), as an approximation to r2s(n), independently,
and then expands it as a singular series. Here the singular series comes first,
and δ2s(n) appears as its sum.” Paper no. 21 is the paper [265], and the series
(11.11)–(11.41) are four asymptotic formulas for δ2s(n), associated with the
four residue classes of s modulo 4.

Entry 9.4.3 (p. 272). If s ≥ 5, as n→ ∞,

rs(n) =
(πn)

1
2 s

nΓ (12s)

∑

p,q

(
e−2nπip/q

{
1

q

q−1∑

λ=0

e2πiλ
2p/q

}s)
+O

(
n

1
4 s
)
, (9.4.1)

where the outer sum is over all positive integers p and q, with (p, q) = 1 and
p < q.

The next entry is an alternative formulation of Entry 9.4.3.

Entry 9.4.4 (p. 272). Let s be an integer at least 5. For (p, q) = 1 and
0 < p < q, set

cp,q =
1
√
q

q−1∑

λ=0

e2πiλ
2p/q. (9.4.2)

Then, as n→ ∞,

rs(n) =
(πn)

1
2 s

nΓ (12s)

∑

p,q

(
e−2nπip/q

q
1
2 s

(cp,q)
s

)
+O

(
n

1
4 s
)
. (9.4.3)

Next, Ramanujan calculates several values of the Gauss sum in (9.4.2),
which he uses in his third version of Hardy’s asymptotic formula. All of the
following values are elementary.
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c1,1 = 0; c1,2 = 0; c1,3 = i, c2,3 = −i; c1,4 = 1 + i,

c3,4 = 1− i; c1,5 = 1, c2,5 = −1, c3,5 = −1, c4,5 = 1;

c1,6 = 0, c5,6 = 0; c1,7 = i, c2,7 = i, c3,7 = −i,
c4,7 = i, c5,7 = −i, c6,7 = −i; c1,8 = 1 + i, c3,8 = −1 + i,

c5,8 = −1− i, c7,8 = 1− i.

Entry 9.4.5 (p. 272). If s ≥ 5, then, as n→ ∞,

rs(n) =
(πn)

1
2 s

nΓ (12s)

{
1

1
1
2 s

+
2 cos(12nπ −

1
4sπ)

2
1
2 s

+
2 cos(23nπ −

1
2sπ)

3
1
2 s

+
2 cos(14nπ −

1
4sπ) + 2 cos(34nπ −

3
4sπ)

4
1
2 s

+
2 cos(25nπ) + 2 cos(45nπ − sπ)

5
1
2 s

+ · · ·
}

+O
(
n

1
4 s
)
. (9.4.4)

Using the calculations prior to Entry 9.4.5, we can easily verify the truth
of Entry 9.4.5.

A clear, readable account of Hardy’s proof of the asymptotic formulas
(9.4.1), (9.4.3), and (9.4.4) can be found in M.I. Knopp’s text [183, Chap. 5].
These formulas were extended by P.T. Bateman [23] to include the cases
s = 3, 4.

9.5 An Aborted Conclusion to [265]?

Page 255 in [269] is devoted to three claims about sums involving σk(n).
Almost certainly, these results were intended to be recorded at the end of the
last section, ¶17, of [265]. It does not seem possible to give correct, precise
versions of these claims, and so, undoubtedly, Ramanujan, recognizing this,
kept this page in his files in the event that he could later find correct renditions.

We discuss the first claim in detail, and show that any precise statement
of the claim must incorporate error terms. Then we indicate that even with
the addition of error terms, no matter what choices we make for the two pa-
rameters, some of the main terms should actually be subsumed in the error
terms. Thus, it does not appear possible to state a precise theorem. We provide
here a detailed argument by P. Pongsriiam and the second author [63] pro-
viding, we hope, conclusive evidence of our claims about Ramanujan’s claim.
We state the second and third claims without further discussion, since they
aim to generalize the first claim.

In the analysis that follows, we make heavy use of the estimate [265, fifth
line of Sect. 17], [267, p. 196]

n∑

k=1

ks = ζ(−s) +
(n+ 1

2 )
s+1

s+ 1
+O(ns−1), (9.5.1)
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for any complex number s and positive integer n, where if s = −1, we interpret
the first two expressions on the right-hand side of (9.5.1) to equal

γ + log(n+ 1
2 ), (9.5.2)

where γ denotes Euler’s constant. The identity (9.5.1) is well known, but
usually not in this form. This elegant formulation is actually found in Chap. 7
of Ramanujan’s second notebook [268], [37, p. 150, Entry 1].

We are now ready to record verbatim the first of the three entries on
page 255 of [269].

Entry 9.5.1 (p. 255).

1sσr(1) + 2sσr(2) + 3sσr(3) + · · ·+ nsσr(n) (9.5.3)

lies between

ζ(−s)ζ(−r − s) + n1+s

1 + s
ζ(1− r) + n1+r+s

1 + r + s
ζ(1 + r)

+
1

2
nsζ(−r) + 1

2
nr+sζ(r) +

ns+(r+1)/2

1− r2 (9.5.4)

and

ζ(−s)ζ(−r − s) + n1+s

1 + s
ζ(1 − r) + n1+r+s

1 + r + s
ζ(1 + r) (9.5.5)

+
1

2
ns {2ζ(1− r)− ζ(−r)} + 1

2
nr+s {2ζ(1 + r)− ζ(r)} − n

s+(r+1)/2

1− r2 .

Note that, perhaps surprisingly, the bounds (9.5.4) and (9.5.5) are asym-
metric. Because Ramanujan stated (9.5.4) and (9.5.5) as inequalities, we as-
sume in the analysis that follows that s is real. However, all of our analysis
can be extended to encompass complex values of s. In analyzing the sum in
Entry 9.5.1, error terms arrive in our estimates. So that these error terms will
be o(1) as n→ ∞, we furthermore require the hypotheses

s+ 1
2r < 0, s+ r < 1, and s < 1. (9.5.6)

If we add some additional hypotheses and assume that n is sufficiently large,
then it will be shown that (9.5.4) is valid. But, as our analysis shows, (9.5.5)
does not appear to be correct, because of the appearances of two extra ex-
pressions in (9.5.5). In view of all these observations and restrictions, after
readers gain an appreciation of the aforementioned pitfalls, we offer a more
precise version of Entry 9.5.1 at the close of this section.

Proof. Set

S(s, r) :=
n∑

k=1

ksσr(k) =
n∑

k=1

ks
∑

d|k
dr =

∑

dl≤n

(dl)sdr =
∑

dl≤n

ds+rls. (9.5.7)
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Applying Dirichlet’s hyperbola method to the sum on the far right side of
(9.5.7), we find that

S(s, r) =
∑

d≤√
n

ds+r
∑

l≤n/d

ls +
∑

l≤√
n

ls
∑

d≤n/l

ds+r −
∑

l≤√
n

ls
∑

d≤√
n

ds+r

= a1 + a2 − a3, (9.5.8)

say. We first examine a1.
If {x} denotes the fractional part of x, write

⌊n
d

⌋
+

1

2
=
n

d
+

1

2
−
{n
d

}
=
n

d
+ εn,d,

so that

εn,d =
1

2
−
{n
d

}
∈
(
−1

2
,
1

2

]
.

Then, applying (9.5.1), we find that

a1 =
∑

d≤√
n

ds+r

⎛

⎜⎜⎜⎝

(⌊n
d

⌋
+

1

2

)s+1

s+ 1
+ ζ(−s) +O

((n
d

)s−1
)
⎞

⎟⎟⎟⎠

=
∑

d≤√
n

ds+r

⎛

⎜⎝

(n
d
+ εn,d

)s+1

s+ 1
+ ζ(−s) +O

((n
d

)s−1
)
⎞

⎟⎠

=
∑

d≤√
n

ds+r

⎛

⎜⎝

(n
d

)s+1

s+ 1
+
(n
d

)s
εn,d + ζ(−s) +O

((n
d

)s−1
)
⎞

⎟⎠

=
ns+1

s+ 1

∑

d≤√
n

dr−1 + ns
∑

d≤√
n

εn,dd
r + ζ(−s)

∑

d≤√
n

ds+r

+O

⎛

⎝ns−1
∑

d≤√
n

dr+1

⎞

⎠

=
ns+1

s+ 1

⎛

⎜⎜⎝

(
�
√
n�+ 1

2

)r

r
+ ζ(1 − r) +O

(
n

1
2 (r−2)

)
⎞

⎟⎟⎠+ ns
∑

d≤√
n

εn,dd
r

+ ζ(−s)

⎛

⎜⎜⎜⎝

(
�
√
n�+ 1

2

)s+r+1

s+ r + 1
+ ζ(−s− r) +O

(
n

1
2 (s+r−1)

)
⎞

⎟⎟⎟⎠
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+O

⎛

⎝ns−1
∑

d≤√
n

dr+1

⎞

⎠

=
ns+1

s+ 1

(
�
√
n�+ 1

2

)r

r
+
ns+1

s+ 1
ζ(1− r) + ns

∑

d≤√
n

εn,dd
r

+ ζ(−s)

(
�
√
n�+ 1

2

)s+r+1

s+ r + 1
+ ζ(−s)ζ(−s− r)

+O

(
ns+

1
2 r

)
+O

(
n

1
2 (s+r−1)

)
+O

(
ns−1 log n

)
, (9.5.9)

where the “extra” factor of logn arises from the possibility that r may be
equal to −2, whence the need to use (9.5.2) in our estimate.

Next, by a similar argument with the use of (9.5.1), or by a change of
variables (s, r) 
→ (s+ r,−r),

a2 = − ns+r+1

s+ r + 1

(
�
√
n�+ 1

2

)−r

r
+
ns+r+1

s+ r + 1
ζ(r + 1) + ns+r

∑

l≤√
n

εn,l
lr

+ ζ(−s− r)

(
�
√
n�+ 1

2

)s+1

s+ 1
+ ζ(−s− r)ζ(−s)

+O

(
ns+

1
2 r

)
+O

(
n

1
2 (s−1)

)
+O

(
ns+r−1 logn

)
. (9.5.10)

Lastly, by (9.5.1),

a3 =

⎛

⎜⎜⎜⎝

(
�
√
n�+ 1

2

)s+1

s+ 1
+ ζ(−s) +O

(
n

1
2 (s−1)

)
⎞

⎟⎟⎟⎠

×

⎛

⎜⎜⎜⎝

(
�
√
n�+ 1

2

)s+r+1

s+ r + 1
+ ζ(−s− r) +O

(
n

1
2 (s+r−1)

)
⎞

⎟⎟⎟⎠

=

(
�
√
n�+ 1

2

)s+1

s+ 1

(
�
√
n�+ 1

2

)s+r+1

s+ r + 1
+ ζ(−s− r)

(
�
√
n�+ 1

2

)s+1

s+ 1

+ ζ(−s)

(
�
√
n�+ 1

2

)s+r+1

s+ r + 1
+ ζ(−s)ζ(−s− r)
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+O

(
ns+

1
2 r

)
+O

(
n

1
2 (s+r−1)

)
+O

(
n

1
2 (s−1)

)
. (9.5.11)

If we now amalgamate (9.5.9)–(9.5.11), simplify, and use our hypotheses
(9.5.6), we arrive at

a1 + a2 − a3 = ζ(−s)ζ(−s − r) + ns+1

s+ 1
ζ(1 − r) + ns+r+1

s+ r + 1
ζ(r + 1)

+A1 +A2 +A3 +A4 −A5

+O

(
ns+

1
2 r

)
+O

(
n

1
2 (s−1)

)
+O

(
n

1
2 (s+r−1)

)
, (9.5.12)

where

A1 := ns+r
∑

l≤√
n

εn,l
lr
, A2 := ns

∑

d≤√
n

εn,dd
r, (9.5.13)

A3 :=
ns+1

r(s+ 1)

(
�
√
n�+ 1

2

)r

, A4 := − ns+r+1

r(s+ r + 1)

(
�
√
n�+ 1

2

)−r

,

(9.5.14)

A5 :=

(
�
√
n�+ 1

2

)s+1

s+ 1

(
�
√
n�+ 1

2

)s+r+1

s+ r + 1
. (9.5.15)

We now turn to A1, which is defined in (9.5.13). Set

E1 := ns+r
∑

l≤√
n

{n
l

} 1

lr
. (9.5.16)

Then, by (9.5.1),

A1 =
ns+r

2

∑

l≤√
n

1

lr
− ns+r

∑

l≤√
n

{n
l

} 1

lr

=
ns+r

2

∑

l≤√
n

1

lr
− E1

=
ns+r

2

⎛

⎜⎜⎜⎝

(
�
√
n�+ 1

2

)−r+1

−r + 1
+ ζ(r) +O

(
n−

1
2 (r+1)

)
⎞

⎟⎟⎟⎠− E1

=
ns+r

2

⎛

⎝n
1
2 (−r+1)

−r + 1
+ ζ(r) +O

(
n−

1
2 r

)⎞

⎠− E1

=
ns+

1
2 (r+1)

2(−r + 1)
+
ns+r

2
ζ(r) +O

(
ns+

1
2 r

)
− E1. (9.5.17)
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Next, we examine A2, also defined in (9.5.13). Put

E2 := ns
∑

d≤√
n

{n
d

}
dr. (9.5.18)

By an argument much like that above, or by invoking the substitution (s, r) 
→
(s+ r,−r), we find that

A2 =
ns+

1
2 (r+1)

2(r + 1)
+
ns

2
ζ(−r) +O

(
ns+

1
2 r

)
− E2. (9.5.19)

Combining (9.5.17) and (9.5.19), we arrive at

A1 + A2 = ns+
1
2 (r+1)

(
1

2(r + 1)
+

1

2(−r + 1)

)
(9.5.20)

+
ns

2
ζ(−r) + n

s+r

2
ζ(r) +O

(
ns+

1
2 r

)
− E1 − E2

=
ns+

1
2 (r+1)

1− r2
+
ns

2
ζ(−r) + n

s+r

2
ζ(r) − E1 − E2 +O

(
ns+

1
2 r

)
.

We next turn to the pair A3, A4, defined in (9.5.14). Setting

�
√
n�+ 1

2
=

√
n+ εn, so that εn ∈

(
−1

2
,
1

2

]
,

and invoking the binomial theorem, we find that

A3 =
ns+

1
2 r+1

r(s + 1)
+
ns+

1
2 (r+1)

s+ 1
εn +O

(
ns+

1
2 r

)

and

A4 = − ns+
1
2 r+1

r(s+ r + 1)
+
ns+

1
2 (r+1)

s+ r + 1
εn +O

(
ns+

1
2 r

)
.

Recalling that A5 is defined in (9.5.15), we find that

A5 =

(√
n+ εn

)2s+r+2

(s+ 1)(s+ r + 1)

=
ns+

1
2 r+1

(s+ 1)(s+ r + 1)
+

(2s+ r + 2)ns+
1
2 (r+1)εn

(s+ 1)(s+ r + 1)
+O

(
ns+

1
2 r

)
.

The last three calculations thus yield

A3 +A4 −A5 = ns+
1
2 r+1

(
1

r(s + 1)
− 1

r(s+ r + 1)
− 1

(s+ 1)(s+ r + 1)

)



9.5 An Aborted Conclusion to [265]? 225

+ ns+
1
2 r+

1
2

(
εn
s+ 1

+
εn

s+ r + 1
− (2s+ r + 2)εn

(s+ 1)(s+ r + 1)

)

+O

(
ns+

1
2 r

)

= 0 +O

(
ns+

1
2 r

)
. (9.5.21)

Observing that E1, E2 > 0, we collect (9.5.12), (9.5.20), and (9.5.21) to
conclude that

S(s, r) = a1 + a2 − a3 ≤ ζ(−s)ζ(−s − r) + ns+1

s+ 1
ζ(1 − r) + ns+r+1

s+ r + 1
ζ(r + 1)

+
ns+

1
2 (r+1)

1− r2
+
ns

2
ζ(−r) + n

s+r

2
ζ(r) − E1 − E2

+O

(
ns+

1
2 r

)
+O

(
n

1
2 (s−1)

)
+O

(
n

1
2 (s+r−1)

)

= ζ(−s)ζ(−s − r) + ns+1

s+ 1
ζ(1 − r) + ns+r+1

s+ r + 1
ζ(r + 1)

+
ns+

1
2 (r+1)

1− r2
+
ns

2
ζ(−r) + n

s+r

2
ζ(r)

− E1 − E2 + o(1), (9.5.22)

as n→ ∞, where we used (9.5.6). If we can show that either E1 or E2 is � 1
as n tends to ∞ for certain values of s and r, then Ramanujan’s upper bound
(9.5.4) will indeed have been verified.

To that end, and to also obtain a lower bound, we need to estimate E1

and E2, given, respectively, in (9.5.16) and (9.5.18). By (9.5.1),

E1 ≤ ns+r
∑

�≤√
n

1

�r
= ns+r

{
(�
√
n�+ 1

2 )
−r+1

1− r + ζ(r) +O
(
n−

1
2 r
)}

=
ns+

1
2 (r+1)

1− r + ns+rζ(r) +O
(
ns+

1
2 r
)

(9.5.23)

and

E2 ≤ ns
∑

d≤√
n

dr = ns
{
(�
√
n�+ 1

2 )
r+1

r + 1
+ ζ(−r) +O

(
n

1
2 (r−1)

)}

=
ns+

1
2 (r+1)

r + 1
+ nsζ(−r) +O

(
ns+

1
2 r
)
. (9.5.24)

We now observe that if we require that s > 0 or that s+ r > 0, then (9.5.22)
will imply the truth of (9.5.4).
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Returning to our goal of obtaining a lower bound, by (9.5.12), (9.5.20),
(9.5.21), (9.5.23), (9.5.24), and (9.5.6), we conclude that

S(s, r) = a1 + a2 − a3 ≥ ζ(−s)ζ(−s − r) + ns+1

s+ 1
ζ(1 − r) + ns+r+1

s+ r + 1
ζ(r + 1)

− n
s+

1
2 (r+1)

1− r2
+
ns

2
ζ(−r) + n

s+r

2
ζ(r) − nsζ(−r) − ns+rζ(r)

+O

(
ns+

1
2 r

)
+O

(
n

1
2 (s−1)

)
+O

(
n

1
2 (s+r−1)

)

= ζ(−s)ζ(−s − r) + ns+1

s+ 1
ζ(1 − r) + ns+r+1

s+ r + 1
ζ(r + 1)

− n
s+

1
2 (r+1)

1− r2
− n

s

2
ζ(−r)− n

s+r

2
ζ(r) + o(1), (9.5.25)

which does not agree with (9.5.5), because Ramanujan records additive factors
of nsζ(1−r) and nr+sζ(1+r), which do not appear in our lower bound above.
Observe that in contrast to obtaining the upper bound (9.5.4) when either
s > 0 or s+ r > 0, we cannot dispense with the term o(1) in (9.5.25). ��

Let us now collect (9.5.22) and (9.5.25) so that we may state an improved
version of Ramanujan’s Entry 9.5.1.

Entry 9.5.2 (p. 255). Let s and r be real numbers satisfying the inequalities
(9.5.6). Then, for n sufficiently large,

S(s, r) =

n∑

k=1

ksσr(k) ≤ ζ(−s)ζ(−s− r) +
ns+1

s+ 1
ζ(1 − r) + ns+r+1

s+ r + 1
ζ(r + 1)

+
ns+

1
2 (r+1)

1− r2
+
ns

2
ζ(−r) + n

s+r

2
ζ(r),

provided that either s > 0 or s+ r > 0. Furthermore, if n is sufficiently large,

S(s, r) ≥ ζ(−s)ζ(−s− r) + ns+1

s+ 1
ζ(1− r) + ns+r+1

s+ r + 1
ζ(r + 1)

− n
s+

1
2 (r+1)

1− r2
− n

s

2
ζ(−r) − n

s+r

2
ζ(r) + o(1).

We close this section with the remaining two formulas on page 255.

Entry 9.5.3 (p. 255). For unspecified parameters r and s and t = [
√
n],

nα
n∑

k=1

ks−ασr(k)−
n∑

k=1

ksσr(k)
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= nαζ(α− s)ζ(α − r − s)− ζ(−s)ζ(−r − s)

+
αn1+s

(1 + s)(1 − α+ s)
ζ(1 − r) + αn1+r+s

(1 + r + s)(1− α+ r + s)
ζ(1 + r)

− α
2
ns−1

t∑

m=1

(
1

6
− εm + ε2m

)(
mr+1 +

nr

mr−1

)
+O( ),

which lies between

nαζ(α − s)ζ(α − r − s)− ζ(−s)ζ(−r − s)

+
αn1+s

(1 + s)(1 − α+ s)
ζ(1− r) + αn1+r+s

(1 + r + s)(1 − α+ r + s)
ζ(1 + r)

− α

12
ns−1ζ(−r − 1)− α

12
nr+s−1ζ(r − 1)− αns+r/2

3(4− r2)

and

nαζ(α − s)ζ(α − r − s)− ζ(−s)ζ(−r − s)

+
αn1+s

(1 + s)(1 − α+ s)
ζ(1− r) + αn1+r+s

(1 + r + s)(1 − α+ r + s)
ζ(1 + r)

− α

24
ns−1

{
3(1− 2r−1)ζ(1 − r) − ζ(−r − 1)

}

− α

24
nr+s−1

{
3

(
1− 1

2r+1

)
ζ(1 + r) − ζ(r − 1)

}
+
αns+r/2

6(4− r2) .

Ramanujan does not indicate the function within the O-term above.

9.6 An Elementary Manuscript on the Divisor
Function d(n)

Pages 278 and 279 are devoted to a brief manuscript on d(n). All of the argu-
ments are straightforward and familiar to those who have had an introductory
course in analytic number theory. We shall therefore simply copy Ramanujan’s
manuscript while interjecting in square brackets a few comments for readers.

(For Re s > 1), as s→ 1,

∞∑

n=1

1

ns
=

1

s− 1
+ γ + o(1),

∞∑

n=1

logn

ns
=

1

(s− 1)2
+K + o(1).
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Hence
∑∞

n=1

logn

ns
∑∞

n=1

1

ns

=
1

s− 1
− γ + o(1).

But
∑∞

n=1

logn

ns
∑∞

n=1

1

ns

≡
∑

p

log p

ps − 1
,

(where the sum is over all primes p, and where Ramanujan is using the
representation of ζ(s) as an Euler product.) Therefore

∑

p

log p

ps − 1
=

1

s− 1
− γ + o(1)

so that ∞∑

n=1

1

ns
−
∑

p

log p

ps − 1
= 2γ + o(1). (9.6.1)

But ∑

n<x

1

n
= log x+ γ + o(1). (9.6.2)

Assuming π(x) ∼ x/ log x we have [18, p. 117, Exercise 7]

∑

p<x

log p

p− 1
= log x+B + o(1). (9.6.3)

Hence from (9.6.1)–(9.6.3)
γ −B = 2γ

that is
B = −γ.

Hence we have ∑

p<x

log p

p− 1
= log x− γ + o(1).

(The well-known asymptotic formula given above is the last formula on
page 278. On page 279, Ramanujan begins afresh with a new numbering sys-
tem for the tagged equations, and so it is not clear whether Ramanujan had
intended these two pages to be parts of the same manuscript.)

∑

n<x

logn

n
=

1

2
log2 x− γ1 + o(1), (9.6.4)

where γ1 = 0.072815845483680 . . . . (γ1 is called the first Stieltjes constant.
The Stieltjes constants are examined in detail in Chap. 7 of Ramanujan’s
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second notebook [268], and an extensive discussion of them can be found
in [37, pp. 164–165]. Also consult S. Finch’s book [119, p. 166–169] for a
brief discussion of Stieltjes constants. Because Ramanujan recorded 15 decimal
places of γ1 below (9.6.4), it is likely that he had seen a table of Stieltjes
constants to 16 decimal places composed by J.P. Gram [127] in 1895.) As
s→ 1 ∞∑

n=1

logn

ns
=

1

(s− 1)2
− γ1 + o(1). (9.6.5)

Since ∞∑

n=1

1

ns
=

1

s− 1
+ γ + γ1(s− 1) + o(s− 1), (9.6.6)

( ∞∑

n=1

1

ns

)2

=
1

(s− 1)2
+

2γ

s− 1
+ γ2 + 2γ1 + o(1) =

∞∑

n=1

d(n)

ns
, (9.6.7)

where d(n) is the number of divisors of n. But from (9.6.5) (and (9.6.6)) we
have

∞∑

n=1

2γ + logn

ns
=

1

(s− 1)2
+

2γ

s− 1
+ 2γ2 − γ1 + o(1). (9.6.8)

Hence we have

∞∑

n=1

2γ + logn

ns
−

∞∑

n=1

d(n)

ns
= γ2 − 3γ1 + o(1). (9.6.9)

But from ((9.6.2) and) (9.6.4) we have

∑

n<x

2γ + logn

n
=

1

2
log2 x+ 2γ log x+ 2γ2 − γ1 + o(1). (9.6.10)

Assuming ∑

n<x

d(n) = x(2γ − 1 + log x) +O(
√
x),

(then, by partial summation,)

∑

n<x

d(n)

n
=

1

2
log2 x+ 2γ log x+B + o(1). (9.6.11)

Hence from (9.6.9)–(9.6.11),

2γ2 − γ1 −B = γ2 − 3γ1.

Hence,
∑

n<x

d(n)

n
= (γ + log x)2 − 1

2
log2 x+ 2γ1 + o(1).
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9.7 Thoughts on the Dirichlet Divisor Problem

Page 368 is an isolated page in [269] on sums involving the divisor function
d(n), the number of positive divisors of the positive integer n. It appears
that the claims on this page were motivated by the famous Dirichlet divisor
problem [145], [150, pp. 268–292], which we now briefly describe. If x > 0 and
γ denotes Euler’s constant, write

D(x) :=
∑

n≤x

′
d(n) = x log x+ (2γ − 1)x+

1

4
+Δ(x), (9.7.1)

where Δ(x) denotes the “error term.” The prime ′ on the summation sign on
the left side indicates that if x is an integer, only 1

2d(x) is counted. Finding
the order of magnitude of Δ(x) for large x is known as Dirichlet’s divisor
problem. It is conjectured that for each ε > 0, Δ(x) = O(x1/4+ε), as x→ ∞.
It was shown by Gauss that Δ(x) = O(

√
x). For our purposes, it will suffice

to use M.G. Voronöı’s [310] upper bound, namely,

Δ(x) = O(x1/3 log x). (9.7.2)

For an early history of the Dirichlet divisor problem, consult Hardy’s paper
[145], [150, pp. 268–292], and for a more recent history, consult A. Ivić’s
book [166, pp. 380–383]. At the bottom of page 368 in [269], one can find a
handwritten note by Hardy: “Idea. You can replace the Bessel functions of
the Voronöı identity by circular functions, at the price of complicating the
‘sum.’ Interesting idea, but probably of no value for the study of the divisor
problem.” In this section, we prove and discuss the claims made by Ramanujan
on page 368.

Entry 9.7.1 (p. 368). If γ denotes Euler’s constant, then, as x→ ∞,

∑

n≤x

2γ + logn√
n

= 2
√
x (log x+ 2γ − 2) + C + o(1), (9.7.3)

where

C = ζ

(
1

2

){
3

2
γ − 1

4
π − 1

2
log(8π)

}
. (9.7.4)

The value of C in (9.7.4) is actually not given by Ramanujan.

Proof. From Ramanujan’s notebooks [268], [37, p. 155] or from his paper
[253], [267, pp. 47–49], as x→ ∞,

∑

n≤x

2γ√
n
= 2γ

{
2
√
x+ ζ

(
1

2

)
+O

(
1√
x

)}
. (9.7.5)
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From [37, p. 226, Entry 24(ii)], as x→ ∞,

∑

n≤x

logn√
n

= log x

{
2
√
x+ ζ

(
1

2

)
+O

(
1√
x

)}
− 4

√
x

− ζ
(
1

2

)
log x− ζ

(
1

2

){
1

2
γ +

1

4
π +

1

2
log(8π)

}
+ o(1)

= 2
√
x log x− 4

√
x− ζ

(
1

2

){
1

2
γ +

1

4
π +

1

2
log(8π)

}
+ o(1).

(9.7.6)

If we add (9.7.5) and (9.7.6), we obtain (9.7.3) to complete the proof. We note
in passing that in 1899, M. Lerch [214] derived a formula (in closed form) for

∞∑

n=1

(−1)n
logn√
n
.

��

Entry 9.7.2 (p. 368). Let

d′(n) = d(n)− 2γ − logn. (9.7.7)

Then ∞∑

n=1

d′(n)√
n

= ζ2
(
1

2

)
− C, (9.7.8)

where C is defined by (9.7.4).

Proof. We first show that the series on the left-hand side of (9.7.8) converges.
Let

D(x) :=
∑

n≤x

{d(n) − 2γ − logn} .

Recall Stirling’s formula [11, p. 20, Theorem 1.4.2]

logΓ (x) =

(
x− 1

2

)
log x− x+O(1), (9.7.9)

as x tends to ∞. Using (9.7.1) and (9.7.9), we easily deduce that

D(x) = Δ(x) +O(log x), (9.7.10)

as x→ ∞. By partial summation,

∑

n≤x

d′(n)√
n

=
D(x)√
x

− 1 + 2γ +
1

2

∫ x

1

D(t)

t3/2
dt. (9.7.11)
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By (9.7.2), the first expression on the right-hand side of (9.7.11) tends to 0
as x tends to ∞, and the integral on the right-hand side of (9.7.11) converges
absolutely as x→ ∞.

We now proceed along the lines of Hardy in [145, Sect. II], [150, pp. 272–
273]. Recall the inverse Mellin transform

e−s =
1

2πi

∫ c+i∞

c−i∞
Γ (z)s−zdz, c > 0, s > 0. (9.7.12)

Upon inverting the order of integration and summation, we easily find that
for c > 1,

F(s) :=

∞∑

n=1

d(n)− 2γ − logn√
n

e−s
√
n (9.7.13)

=
1

2πi

∫ c+i∞

c−i∞
Γ (z)

{
ζ2(12 + 1

2z)− 2γζ(12 + 1
2z) + 2

d

dz
ζ(12 + 1

2z)

}
s−zdz.

We now move the line of integration to (−p − 1
2 − i∞,−p − 1

2 + i∞) by
integrating around the rectangle with vertices c± iT,−p− 1

2 ± iT , where p is a
positive integer and T > 0. Using Stirling’s formula [11, p. 21, Corollary 1.1.4]

Γ (x+ iy) ∼
√
2π|y|x−1/2e−π|y|/2, |y| → ∞, (9.7.14)

we easily can show that the integrals along the horizontal sides of the rectangle
tend to 0 as T → ∞. If Rα denotes the residue of the integrand’s pole at z = α,
then by the residue theorem,

F(s) = Jp +R1 +

p∑

n=0

R−n, (9.7.15)

where

Jp :=

∫ −p− 1
2+i∞

−p− 1
2−i∞

Γ (z)

{
ζ2(12 + 1

2z)− 2γζ(12 + 1
2z) + 2

d

dz
ζ(12 + 1

2z)

}
s−zdz.

(9.7.16)

To calculate the residue at z = 1, we need the Laurent expansions [11, p. 13,
Theorem 1.2.5; p. 17]

s−z =
1

s
(1− (log s)(z − 1) + · · · ) ,

Γ (z) = 1− γ(z − 1) + · · · ,

ζ(12 + 1
2z) =

2

z − 1
+ γ + · · · , (9.7.17)
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as well as the Laurent expansions of ζ2(12 + 1
2z) and d

dz ζ(
1
2 + 1

2z), which
are easily obtained from (9.7.17). Omitting the lengthy but straightforward
calculation, we find that

R1 = 0, (9.7.18)

i.e., the singularity at z = 1 is removable. The residue at z = 0 is more easily
calculable, and we readily find that

R0 = ζ2
(
1

2

)
− 2γζ

(
1

2

)
+ ζ′

(
1

2

)
. (9.7.19)

Because of the presence of ζ′
(
1
2

)
in (9.7.19), we would like to obtain a more

palatable representation for R0. In the second author’s work on the earlier
notebooks of Ramanujan, he used a familiar integral representation for ζ(s)
to show that [37, p. 227]

ζ′(12 )
ζ(12 )

=
1

2
log(8π) +

1

4
π +

1

2
γ. (9.7.20)

(This formula was also established by Lerch [214].) Perhaps a slightly easier
method of calculating ζ′

(
1
2

)
is to employ the functional equation of ζ(z) in

the form [306, p. 16]

ζ(1 − z) = 21−zπ−z cos(12πz)Γ (z)ζ(z), (9.7.21)

and then differentiate it and set z = 1
2 . If we substitute (9.7.20) into (9.7.19),

we readily find that

R0 = ζ2
(
1

2

)
− ζ

(
1

2

){
3

2
γ − 1

4
π − 1

2
log(8π)

}
. (9.7.22)

There is no need to calculate R−n, n ≥ 1. However, we need to show that
Jp approaches 0 as p tends to ∞, and that limp→∞

∑p
n=1R−n, as a power

series in s with no constant term, has a finite radius of convergence. Thus,
by (9.7.15), F(s) will be represented by an analytic function of s, the value of
which at s = 0 will be given by (9.7.22). Hence, we will then have completed
the proof of (9.7.8).

To that end, if z = −p− 1
2 + iy, then by the functional equation (9.7.21),

|ζ(12 + 1
2z)| = |ζ(− 1

2p+
1
4 + 1

2 iy)|

= |2−
1
2p+

1
4+

1
2 iyπ−

1
2p−

3
4+

1
2 iy sin

{
1
2π
(
− 1

2p+
1
4 + 1

2 iy
)}

× Γ
(
1
2p+

3
4 − 1

2 iy
)
ζ
(
1
2p+

3
4 − 1

2 iy
)
|

< K(2π)−
1
2pe

1
4π|y||Γ

(
1
2p+

3
4 − 1

2 iy
)
|, (9.7.23)

where K is a positive constant, which will not necessarily be the same at
each occurrence in the sequel. Utilizing (9.7.23), the reflection formula for
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the gamma function, and Stirling’s formula (9.7.14), we further find that for
z = −p− 1

2 + iy,

|s−zΓ (z)ζ(12 + 1
2z)| < Ks

p(2π + 1
2 )

− 1
2pe

1
4π|y|

× |Γ (−p− 1
2 + iy)Γ

(
1
2p+

3
4 − 1

2 iy
)
|

= K

(
s√
2π

)p
∣∣∣∣∣∣

πe
1
4π|y|Γ (12p+

3
4 − 1

2 iy)

sin
{
π(−p− 1

2 + iy)
}
Γ (p+ 3

2 − iy)

∣∣∣∣∣∣

< K

(
s√
2π

)p

e−
3
4π|y|

| 12y|
1
2p+

1
4 e−

1
2π|

1
2y|

|y|p+1e−
1
2π|y|

= K

(
s

2
√
π

)p

e−
1
2π|y||y|−

1
2p−

3
4

< K

(
s

2
√
π

)p

e−
1
2π|y|, |y| > 1. (9.7.24)

Similarly, it can be shown that [145, p. 6], [150, p. 273]

|s−zΓ (z)ζ2(12 + 1
2z)| < K

( s
4π

)p
e−

1
2π|y|. (9.7.25)

There remains one further expression in the integrand of (9.7.16) to esti-
mate. From the functional equation (9.7.21),

−ζ′(1 − z) = 21−zπ−z cos(12πz)Γ (z)ζ(z)

×
{
− log(2π)− 1

2
tan(12πz)π + ψ(z) +

ζ′(z)
ζ(z)

}
, (9.7.26)

where ψ(z) = Γ ′(z)/Γ (z). Recall another version of Stirling’s formula [11,
p. 22, Corollary 1.4.5],

ψ(z) = log z +O(1/|z|), −π + δ ≤ arg z ≤ π − δ, (9.7.27)

for each fixed δ > 0, as |z| → ∞. In particular, (9.7.27) implies that

ψ(p+ 3
2 − iy) = O(log |y|+ log p), (9.7.28)

as both |y| and p tend to ∞. If we now replace z by 1 − z in (9.7.26), set
z = −p− 1

2 + iy, use (9.7.28), and employ the same analysis that we used in
(9.7.24), we find that

|s−zΓ (z)
d

dz
ζ(12 + 1

2z)| < K
(
s

2
√
π

)p

(log |y|+ log p)e−
1
2π|y|. (9.7.29)

Hence, employing our estimates (9.7.24), (9.7.25), and (9.7.29) in (9.7.16),
we deduce that



9.7 Thoughts on the Dirichlet Divisor Problem 235

|Jp| < K
(
s

2
√
π

)p ∫ ∞

−∞
(log |y|+ log p)e−

1
2π|y|dy

< K

(
s

2
√
π

)p

log p = o(1),

as p tends to ∞, provided that 0 < s < 2
√
π. Hence, we have shown that F(s)

can be represented by an analytic function for 0 < s < 2
√
π. More precisely,

F(s) = ζ2
(
1

2

)
− 2γζ

(
1

2

)
+ ζ′

(
1

2

)
+

∞∑

n=1

R−n.

By continuity, we conclude that F(0) has the value claimed in (9.7.8). ��

Entry 9.7.3 (p. 368). Let C be defined by (9.7.4). If w is any positive num-
ber, except 2

√
n, then,

∑

2
√
n<w

d(n)

(
1− w

π
√
n

)
+

∑

2
√
n>w

d(n)

{
2

π
sin−1 w

2
√
n
− w

π
√
n

}

=
∑

2
√
n<w

d(n)−
∑

2
√
n<w

d′(n)
w

π
√
n
+

∑

2
√
n>w

d′(n)
{
2

π
sin−1 w

2
√
n
− w

π
√
n

}

−
∑

2
√
n<w

(2γ + logn)w

π
√
n

+
∑

2
√
n>w

(2γ + logn)

{
2

π
sin−1 w

2
√
n
− w

π
√
n

}

=
∑

2
√
n<w

d(n)− w
π

{
ζ2
(
1

2

)
− C

}
+

∑

2
√
n>w

d′(n)
2

π
sin−1 w

2
√
n

− w
π

∑

2
√
n<w

2γ + log n√
n

+
∑

2
√
n<w

2γ + logn√
n

{
2

π
sin−1 w

2
√
n
− w

π
√
n

}
.

Proof. The two equalities above are merely rearrangements of the expressions
on the far left-hand side. One needs to use the definition of d′(n) given by
(9.7.7) as well as Entry 9.7.2. ��

We have reformulated the next (and last) entry on page 368, which is
expressed in terms of the far right-hand side of Entry 9.7.4. For simplicity, we
have chosen to use the sum on the far left side in Entry 9.7.4.

Entry 9.7.4 (p. 368). For w > 0,

∑

2
√
n<w

d(n)

(
1− w

π
√
n

)
+

∑

2
√
n>w

d(n)

{
2

π
sin−1 w

2
√
n
− w

π
√
n

}
+
w

π
ζ2
(
1

2

)

=
1

2
w2 +

1

4
− 1

2

∞∑

n=1

d(n)

n
e−2πw

√
n +

1

2

∞∑

n=1

d(n)

n
cos(2πw

√
n). (9.7.30)
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Because of poor photocopying in [269], we are uncertain whether we have
correctly identified the expression cos(2πw

√
n) in the last sum on the right-

hand side above. Our apprehension arises from
√
n; in fact, Ramanujan uses

the summation index q, instead of n. With a magnifying glass, one verifies that
the square root is present, but we cannot verify that the argument under the
square root sign has been correctly determined.

Entry 9.7.4 does not appear to be correct. For example, consider 0 < w ≤
2. There is no contribution from the first expression on the left-hand side of
(9.7.30). Since

2

π
sin−1 w

2
√
n
− w

π
√
n
=

w3

24πn3/2
+ · · · ,

and since for every ε > 0, d(n) = O(nε), as n → ∞, we see that the infinite
series on the left-hand side of (9.7.30) converges absolutely and uniformly
for 0 ≤ w ≤ 2. Of course, the first series on the right-hand side of (9.7.30)
converges absolutely and uniformly on δ ≤ w ≤ 2 for each δ > 0. However, the
latter series on the right-hand side of (9.7.30) rapidly oscillates for 0 < w ≤ 2.
In fact, it is not clear for which values of w (if any) the series converges.

The series ∞∑

n=1

d(n)

n
cos(2πwn)

has been the subject of several investigations, in terms of both finding criteria
for convergence and for estimating its partial sums. In particular, see papers
by S.D. Chowla [94], [95, pp. 230–249], A. Walfisz [311], and J.R. Wilton [319].

In his brief note at the bottom of page 368, Hardy refers to the Voronöı
summation formula and replacing the Bessel functions by circular functions.
If Y1(x) and K1(x) are the Bessel functions usually so denoted [314, pp. 64,
78], x > 0, and γ denotes Euler’s constant, then

∑

n≤x

′
d(n) = x(log x+ 2γ − 1) +

1

4

−
∞∑

n=1

d(n)
(x
n

)1/2(
Y1(4π

√
nx) +

2

π
K1(4π

√
nx)

)
, (9.7.31)

where the prime ′ on the summation sign on the left-hand side indicates that
if x is an integer N , then only 1

2d(N) is counted. See also papers by A. Oppen-
heim [239], K. Chandrasekharan and R. Narasimhan [90], and Berndt [26] for
proofs. In view of the first expression on the left-hand side of (9.7.30), Hardy
might also be thinking of a corresponding identity for

∑
n≤x d(n)(n − x),

namely,

∑

n≤x

d(n)(x − n) = 1

2
x2
(
log x+ 2γ − 3

2

)
+

1

4
x− 1

144

− 1

2π

∞∑

n=1

d(n)
x

n

(
Y2(4π

√
nx)− 2

π
K2(4π

√
nx)

)
, (9.7.32)
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which was first proved by Oppenheim [239]. See also papers by Chandrasekha-
ran and Narasimhan [90] and Berndt [26]. Hardy’s remark on replacing the
Bessel functions by circular functions undoubtedly refers to the fact that the
asymptotic expansions of both Yν(x) and Kν(x), as x→ ∞, involve trigono-
metric functions [314, pp. 199, 202]. However, replacing each of these functions
in either (9.7.31) or (9.7.32) by the first terms in their asymptotic expansions
would, of course, not yield an identity, which is what Ramanujan claims to be
true. It is interesting that inverse trigonometric functions, instead of trigono-
metric functions, appear in Ramanujan’s assertion (9.7.30).



10

Identities Related to the Riemann Zeta

Function and Periodic Zeta Functions

10.1 Introduction

On page 196 in his lost notebook, Ramanujan lists several identities that
are related to the Riemann zeta function, Dirichlet L-series, and periodic
zeta functions. Some of the identities are connected to previous results of
Ramanujan in [256] and [258], but none of the identities on page 196 can be
found in these papers. Furthermore, all of the identities on page 196 are new.
The purpose of this chapter is to examine all of these interesting identities.
Two of the identities were examined and generalized in a paper that the second
author wrote with H.H. Chan and Y. Tanigawa [47].

10.2 Identities for Series Related to ζ(2) and L(1, χ)

At the top of page 196 in [269], Ramanujan records three identities related
to ζ(2), and at the bottom of the page, he states a similar result related to
L(1, χ), where χ is the nonprincipal primitive character modulo 4. In each of
the first three identities, the coefficient 4 of the series on the right-hand side
must be replaced by 2. We record the results in corrected form.

Entry 10.2.1 (p. 196). Let Rex ≥ 0. Then

∞∑

n=1

e−n2πx

n2
=
π2

6
− π

√
x+

1

2
πx− 2π2x3/2

∞∑

n=1

∫ ∞

0

te−π(n+tx)2/xdt, (10.2.1)

where the principal value of the square root is taken.

Proof. We assume throughout the proof that x ≥ 0. The more general
result for Re x ≥ 0 will then hold by analytic continuation. We begin with
the familiar theta transformation formula, which is found in Ramanujan’s

G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook:
Part IV, DOI 10.1007/978-1-4614-4081-9 10,
© Springer Science+Business Media New York 2013
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notebooks [268], [39, p. 43, Entry 27(i)]. It will be convenient, however, to use
the formulation, for Re t > 0,

∞∑

n=1

e−n2πt = −1

2
+

1

2
√
t
+

1

2
√
t

∞∑

n=1

e−n2π/t, (10.2.2)

which is found in Titchmarsh’s treatise [306, p. 22, Eq. (2.6.3)], for example.
Integrate both sides of (10.2.2) over [0, x], invert the order of integration and
summation by absolute convergence, and multiply both sides by −π to reach
the identity

∞∑

n=1

e−n2πx

n2
=
π2

6
− π

√
x+

1

2
πx− π

2

∞∑

n=1

∫ x

0

e−n2πt

√
t
dt. (10.2.3)

In comparing (10.2.3) with (10.2.1), we see that we must address the integrals
on the right side of (10.2.3). First, set t = x/u and then set n2u = (n+ tx)2.
Hence,

∫ x

0

e−n2πt

√
t
dt =

√
x

∫ ∞

1

e−n2πu/x

u3/2
du = 2x3/2n

∫ ∞

0

e−π(n+tx)2/x

(n+ tx)2
dt. (10.2.4)

When examining (10.2.1) in relation to (10.2.3) and (10.2.4), we see that it
remains to show that

2π

∫ ∞

0

te−π(n+tx)2/xdt = n

∫ ∞

0

e−π(n+tx)2/x

(n+ tx)2
dt. (10.2.5)

Integrating the latter integral by parts, in particular integrating
1/(n + tx)2 and differentiating the exponential, we readily find that for
Rex > 0,

n

∫ ∞

0

e−π(n+tx)2/x

(n+ tx)2
dt =

e−n2π/x

x
− 2πn

x

∫ ∞

0

e−π(n+tx)2/xdt.

On the other hand, after a little trickery and then a direct integration, we find
that

2π

∫ ∞

0

te−π(n+tx)2/xdt =
2π

x

∫ ∞

0

(n+ tx)e−π(n+tx)2/xdt

− 2πn

x

∫ ∞

0

e−π(n+tx)2/xdt

=
e−n2π/x

x
− 2πn

x

∫ ∞

0

e−π(n+tx)2/xdt.

From these two calculations, we see that (10.2.5) has been demonstrated, and
so the proof is complete. ��
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In Chap. 15 of his second notebook [268], [38, p. 306, Theorem 3.1],
Ramanujan stated a general asymptotic formula for

∞∑

n=1

e−xnp

nm−1,

as x→ 0+. If we set p = 2 andm = −1, and replace x by πx in this asymptotic
formula, we find that

∞∑

n=1

e−n2πx

n2
=
π2

6
− π

√
x+

1

2
πx+ o(1), (10.2.6)

as x → 0+, which should be compared with (10.2.1). In [38, pp. 306–308], a
proof of Ramanujan’s general asymptotic formula was obtained by contour
integration. In the course of this proof, the error term, i.e., o(1) in (10.2.6),
is represented by a certain contour integral. It seems to be very difficult,
however, to transform this contour integral into the expression involving the
infinite series on the right-hand side of (10.2.1).

Entry 10.2.2 (p. 196). Let Rex ≥ 0. Then

∞∑

n=1

cos(n2πx)

n2
=
π2

6
− π

√
x

2
+ 2π2x3/2

×
∞∑

n=1

∫ ∞

0

te−2nπt cos

(
π

4
− πn

2

x
+ πt2x

)
dt (10.2.7)

and

∞∑

n=1

sin(n2πx)

n2
= π

√
x

2
− 1

2
πx+ 2π2x3/2

×
∞∑

n=1

∫ ∞

0

te−2nπt sin

(
π

4
− πn

2

x
+ πt2x

)
dt, (10.2.8)

where the principal value of the square root is taken.

Proof. As in the previous proof, we shall assume that x ≥ 0; an appeal to
analytic continuation then establishes Entry 10.2.2 for Rex ≥ 0. We shall
prove (10.2.7) and (10.2.8) with x replaced by y. In (10.2.1), replace x by
z = x+ iy, with y ≥ 0. Let θ = arg z. Then (10.2.1) takes the form

∞∑

n=1

e−n2πz

n2
=
π2

6
− π|z|1/2(cos 1

2θ + i sin
1
2θ) +

1

2
π(x + iy)

− 2π2|z|3/2(cos 3
2θ + i sin

3
2θ) (10.2.9)

×
∫ ∞

0

t exp

{
− π

|z|2
(
(n+ tx)2 + 2it(n+ tx)y − t2y2

)
(x− iy)

}
dt.
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Now,

E(x, y) := −2π2|z|3/2(cos 3
2θ + i sin

3
2θ)t

× exp

{
− π

|z|2
(
(n+ tx)2 + 2it(n+ tx)y − t2y2

)
(x− iy)

}

= −2π2|z|3/2(cos 3
2θ + i sin

3
2θ)t exp

(
− π

|z|2
(
(n+ tx)2 − t2y2

)
x

+ 2t(n+ tx)y2 + i
(
2tx(n+ tx)y − y(n+ tx)2 − t2y3

))
,

from which we see that

ReE(x, y) = −2π2|z|3/2 cos 3
2θ t exp

{
− π

|z|2
(
(n+ tx)2 − t2y2

)
x

}

× cos
π

|z|2
(
2tx(n+ tx)y − y(n+ tx)2 − t2y3

)

+ 2π2|z|3/2 sin 3
2θ t exp

{
− π

|z|2
(
(n+ tx)2 − t2y2

)
x

}

× sin
π

|z|2
(
2tx(n+ tx)y − y(n+ tx)2 − t2y3

)
.

Setting x = 0 and θ = 1
2π, we find that

ReE(0, y) = 2π2y3/2
1√
2
te−2nπt cos

(
−πn

2

y
+ πt2y

)

− 2π2y3/2
1√
2
te−2nπt sin

(
−πn

2

y
+ πt2y

)

= 2π2y3/2te−2nπt cos

(
π

4
− πn

2

y
+ πt2y

)
. (10.2.10)

If we now use (10.2.10) in (10.2.9), we deduce (10.2.7) with x replaced by y.
A similar calculation of ImE(x, y) followed by setting x = 0 and θ = 1

2π
yields (10.2.8) with x replaced by y. ��

Entry 10.2.3 (p. 196). For x ≥ 0,

∞∑

n=0

(−1)n
e−(2n+1)2πx/4

2n+ 1
=
π

4
− π

√
x

∞∑

n=0

(−1)n
∫ ∞

0

e−π(2n+1+2tx)2/(4x)dt.

(10.2.11)

Proof. We begin by specializing the well-known theta relation for an odd
primitive character [101, p. 70, Eq. (9)]. In our case, this odd primitive char-
acter is the real nonprincipal character modulo 4. Accordingly, for t > 0,

∞∑

n=0

(−1)n(2n+ 1)e−(2n+1)2πt/4 = t−3/2
∞∑

n=0

(−1)n(2n+ 1)e−(2n+1)2π/(4t).

(10.2.12)
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Integrate both sides of (10.2.12) over [0, x], and then multiply both sides by
−π/4 to deduce that

∞∑

n=0

(−1)n
e−(2n+1)2πx/4

2n+ 1

=

∞∑

n=0

(−1)n

2n+ 1
− π

4

∞∑

n=0

(−1)n(2n+ 1)

∫ x

0

t−3/2e−(2n+1)2π/(4t)dt

=
π

4
− π

√
x

4

∞∑

n=0

(−1)n(2n+ 1)

∫ ∞

1

e−(2n+1)2πu/(4x)

√
u

du, (10.2.13)

where we utilized Leibniz’s series for π/4 and made the substitution t = x/u
in the integrals on the right side. Next, set (2n+1)2u = (2n+1+2tx)2. Then

∫ ∞

1

e−(2n+1)2πu/(4x)

√
u

du =
4x

2n+ 1

∫ ∞

0

e−(2n+1+2tx)2π/(4x)dt. (10.2.14)

If we substitute (10.2.14) into (10.2.13), we obtain (10.2.11) to complete the
proof. ��

10.3 Analogues of Gauss Sums

We now offer three claims from the middle of page 196 of [269]. These were
first proved in a more general setting by Berndt, Chan, and Tanigawa [47].
More precisely, they evaluate the sum

∞∑

n=1

e2πin
2/k

n2m
,

where m and k are positive integers, in several ways, obtaining evaluations
in terms of trigonometric functions, Stirling numbers of the second kind, and
ballot numbers. On page 196, Ramanujan considers only the case m = 1.

Entry 10.3.1 (p. 196). Let a be an even positive integer. Then

∞∑

n=1

cos

(
πn2

a

)

n2
=
π2

6
− π2√

a

a∑

r=1

r

a

(
1− r

a

)
sin

(
π

4
+
πr2

a

)
, (10.3.1)

∞∑

n=1

sin

(
πn2

a

)

n2
= − π

2

√
a

a∑

r=1

r

a

(
1− r

a

)
cos

(
π

4
+
πr2

a

)
, (10.3.2)

∞∑

n=1

sin

(
π

4
+
πn2

a

)

n2
=
π2

6
√
2
− π2√

a

a∑

r=1

r

a

(
1− r

a

)
cos

(
πr2

a

)
. (10.3.3)
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We first prove (10.3.3) assuming the truth of (10.3.1) and (10.3.2).

Proof of (10.3.3) of Entry 10.3.1. Using the addition formulas for sin and
cos, we easily find that

∞∑

n=1

sin

(
π

4
+
πn2

a

)

n2
=

1√
2

⎛

⎜⎜⎝
∞∑

n=1

sin

(
πn2

a

)

n2
+

∞∑

n=1

cos

(
πn2

a

)

n2

⎞

⎟⎟⎠

=
π2

6
√
2
− π2√

2a

a∑

r=1

r

a

(
1− r

a

){
cos

(
π

4
+
πr2

a

)
+ sin

(
π

4
+
πr2

a

)}

=
π2

6
√
2
− π2√

a

a∑

r=1

r

a

(
1− r

a

)
cos

(
πr2

a

)
.

��

We evaluate the more general series

Sa(r) :=

∞∑

n=1

cos

(
πn2

a

)

nr
and Ta(r) :=

∞∑

n=1

sin

(
πn2

a

)

nr
, (10.3.4)

where r is an even positive integer. In order to effect these evaluations, we
need to introduce periodic Bernoulli numbers.

Let A = {an}, −∞ < n < ∞, denote a sequence of numbers with period
k. Then the periodic Bernoulli numbers Bn(A), n ≥ 0, can be defined [66,
p. 55, Proposition 9.1], for |z| < 2π/k, by

z
∑k−1

n=0 ane
nz

ekz − 1
=

∞∑

n=0

Bn(A)

n!
zn.

Furthermore [66, p. 56, Eq. (9.5)], for each positive integer n,

Bn(A) = k
n−1

k−1∑

j=0

a−jBn

(
j

k

)
, (10.3.5)

where Bn(x), n ≥ 0, denotes the nth Bernoulli polynomial. We say that A is
even if an = a−n for every integer n.

The complementary sequence B = {bn}, −∞ < n <∞, is defined by [66,
p. 32]

bn =
1

k

k−1∑

j=0

aje
−2πijn/k. (10.3.6)
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It is easily checked that if A is even, then B is even, and that (10.3.6)
holds if and only if

an =

k−1∑

j=0

bje
2πijn/k, −∞ < n <∞. (10.3.7)

Now set

ζ(s;A) :=

∞∑

n=1

an
ns
, Re s > 1.

If A and r are even and if r ≥ 2, then [66, p. 49, Eq. (6.25)]

ζ(r;B) =
(−1)r+1Br(A)

2 r!

(
2πi

k

)r

.

From (10.3.6) and (10.3.7), we see that the sequences A and B are not sym-
metric. Thus, we note from above that since A is even,

ζ(r;A) =
(−1)r+1Br(B)k

2 r!

(
2πi

k

)r

. (10.3.8)

We are now ready to state general evaluations in closed form for Sa(r) and
Ta(r).

Theorem 10.3.1. If Sa(r) and Ta(r) are defined by (10.3.4) and if r and a
are even positive integers, then

Sa(r) =
(−1)1+r/22r−1πr

r!
√
a

a−1∑

m=0

Br

(m
a

)
sin

(
πm2

a
+
π

4

)
(10.3.9)

and

Ta(r) =
(−1)1+r/22r−1πr

r!
√
a

a−1∑

m=0

Br

(m
a

)
cos

(
πm2

a
+
π

4

)
. (10.3.10)

In our work below, we need the value of the Gauss sum [54, p. 43,
Exercise 5]

c−1∑

n=0

eπin
2/c = eπi/4

√
c, (10.3.11)

where c is an even positive integer.
Before proceeding further, we show that (10.3.1) and (10.3.2) are special

cases of (10.3.9) and (10.3.10), respectively. Let r = 2 in Theorem 10.3.1.
Recall that B2(x) = x

2 − x+ 1
6 . Then
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Sa(2) =
π2√
a

a−1∑

m=0

{(m
a

)2
− m
a

+
1

6

}
sin

(
πm2

a
+
π

4

)

=
π2

6
√
a

a−1∑

m=0

sin

(
πm2

a
+
π

4

)
+
π2√
a

a−1∑

m=0

{(m
a

)2
− m
a

}
sin

(
πm2

a
+
π

4

)

=
π2

6
+
π2√
a

a−1∑

m=0

{(m
a

)2
− m
a

}
sin

(
πm2

a
+
π

4

)
,

upon the use of (10.3.11) twice.
The proof of (10.3.2) follows along the same lines, but note that in this

case, by (10.3.11),
a−1∑

m=0

cos

(
πm2

a
+
π

4

)
= 0.

Proof of Theorem 10.3.1. Let

an = cos

(
πn2

a

)
, −∞ < n <∞,

which is an even periodic sequence with period a, since a is even. Then, from
(10.3.6) and (10.3.11),

b−m =
1

a

a−1∑

j=0

cos

(
πj2

a

)
e2πijm/a

=
1

2a
e−πim2/a

a−1∑

j=0

eπi(j+m)2/a +
1

2a
eπim

2/a
a−1∑

j=0

e−πi(j+m)2/a

=
1

2a
e−πim2/a

a−1∑

j=0

eπij
2/a +

1

2a
eπim

2/a
a−1∑

j=0

e−πij2/a

=
1

2a
e−πim2/a+πi/4

√
a+

1

2a
eπim

2/a−πi/4
√
a

=
1√
a
cos

(
πm2

a
− π

4

)

=
1√
a
sin

(
πm2

a
+
π

4

)
.

Therefore, by (10.3.5), with B in place of A,

Bn(B) = a
n−3/2

a−1∑

m=0

sin

(
πm2

a
+
π

4

)
Bn

(m
a

)
. (10.3.12)

If we substitute (10.3.12) into (10.3.8) and simplify, we deduce (10.3.9).
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The proof of (10.3.10) is analogous to that for (10.3.9). Now we set

an = sin

(
πn2

a

)
, −∞ < n <∞,

which of course is even, and repeat the same kind of argument that we gave
above. ��

We now provide another evaluation of the series on the left-hand sides of
(10.3.1) and (10.3.2) in closed form. However, we obtain evaluations in entirely
different forms from those claimed by Ramanujan in Entry 10.3.1.

Theorem 10.3.2. Let a be an even positive integer, a ≥ 2. Then

Sa(2) =
π2

6a2
+
π2 cos(aπ/4)

2a2
+
π2

a2

a/2−1∑

j=1

cos

(
j2π

a

)
csc2

(
jπ

a

)
(10.3.13)

and

Ta(2) =
π2 sin(aπ/4)

2a2
+
π2

a2

a/2−1∑

j=1

sin

(
j2π

a

)
csc2

(
jπ

a

)
. (10.3.14)

Proof. Setting n = ka+ j, 0 ≤ k <∞, 1 ≤ j ≤ a, we find that

Sa(2) =

a∑

j=1

cos

(
j2π

a

) ∞∑

k=0

1

(ka+ j)2

=
π2

6a2
+

1

a2

a−1∑

j=1

cos

(
j2π

a

) ∞∑

k=0

1

(k + j/a)2
. (10.3.15)

Singling out the term for j = a/2 and noting that the terms in the outer sum
with indices j and a− j are identical, we find from (10.3.15) that

Sa(2) =
π2

6a2
+
π2 cos(aπ/4)

2a2
+

1

a2

a/2−1∑

j=1

cos

(
j2π

a

)

×
( ∞∑

k=0

1

(k + j/a)2
+

∞∑

k=0

1

(k + (a− j)/a)2

)

=:
π2

6a2
+
π2 cos(aπ/4)

2a2
+

1

a2

a/2−1∑

j=1

cos

(
j2π

a

)
U(j, a), (10.3.16)

say. There remains the evaluation of U(j, a).
First observe that if for −∞ < k ≤ −1, we set k = −r − 1, then
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∞∑

k=−∞

(
1

(k + j/a)2
+

1

(k + (a− j)/a)2

)

=

∞∑

k=0

(
1

(k + j/a)2
+

1

(k + (a− j)/a)2

)

+

∞∑

r=0

(
1

(−r − 1 + j/a)2
+

1

(−r − j/a)2

)
= 2U(j, a). (10.3.17)

It therefore suffices to evaluate the bilateral sum in (10.3.17).
To evaluate U(j, a), recall the partial fraction decomposition

π cot(πz) =
1

z
+

∞∑

n=1

(
1

z + n
+

1

z − n

)
.

Differentiating once above, we find that

π2 csc2(πz) =

∞∑

n=−∞

1

(z + n)2
. (10.3.18)

Putting z = r/k in (10.3.18), we deduce that

U(j, a) = π2 csc2(πr/k). (10.3.19)

Putting (10.3.19) in (10.3.16), we complete the proof of (10.3.13).
The proof of (10.3.14) follows along exactly the same lines. In analogy

with (10.3.17), we now easily deduce that

Ta(2) =
1

a2

a∑

j=1

sin

(
j2π

a

) ∞∑

k=0

1

(k + j/a)2
.

By the same identical argument that we used above, we conclude that

Ta(2) =
π2 sin(aπ/4)

2a2
+
π2

a2

a/2−1∑

j=1

sin

(
j2π

a

)
csc2

(
jπ

a

)
.

��

We record a few examples to illustrate Theorem 10.3.2, namely,

S2(2) =
π2

24
, S4(2)=− π

2

48
+
π2

√
2

16
, S6(2) = −π

2

72
+
π2

√
3

18
,

T2(2) =
π2

8
, T4(2)=

π2
√
2

16
, T6(2) =

π2

24
+
π2

√
3

54
.

Equating the evaluations of Sa(2) and Ta(2) in (10.3.13) and (10.3.14),
respectively, with those in (10.3.1) and (10.3.2), we obtain identities that
would be surprising if we had not known of their origins, namely,
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π2

6a2
+
π2 cos(πa/4)

2a2
+
π2

a2

1
2a−1∑

j=1

cos

(
πj2

a

)
csc2

(
πj

a

)

=
π2

6
− π2√

a

a∑

r=1

r

a

(
1− r

a

)
sin

(
π

4
+
πr2

a

)

and

π2 sin(πa/4)

2a2
+
π2

a2

1
2a−1∑

j=1

sin

(
πj2

a

)
csc2

(
πj

a

)

= − π
2

√
a

a∑

r=1

r

a

(
1− r

a

)
cos

(
π

4
+
πr2

a

)
.

Note that on the left-hand sides above, the sums contain only trigonometric
functions, while on the right-hand sides the sums contain both polynomials
and trigonometric functions. Trigonometric identities involving polynomials
in the summands appear to be rare. The sums on both sides of the identities
may be regarded as new analogues of Gauss sums.

In fact, Ramanujan states a second equality for the sum on the left side of
(10.3.3). We slightly reformulate this result in the next entry.

Entry 10.3.2 (p. 196). If a is an even positive integer, then

4π2

a3/2

{
1

8π
+

∞∑

n=1

n cos(πn2/a)

e2nπ − 1

}
− 23/2π2

{
1

8πa
+

∞∑

n=1

n

e2nπa − 1

}

= − π2

a5/2

a∑

r=1

r(a − r) cos
(
πr2

a

)
. (10.3.20)

Proof. Our proof depends on two results from Ramanujan’s papers [256, 262].
First, if a is an even positive integer [262, Eq. (17)], [267, p. 132], then

1

8π
+

∞∑

n=1

n cos(πn2/a)

e2nπ − 1
=

∫ ∞

0

x cos(πx2/a)

e2πx − 1
dx+ a

√
1
2a

∞∑

n=1

n

e2nπa − 1
.

(10.3.21)
Now, from [256, Eq. (50)], [267, p. 67],

∫ ∞

0

x cos(πx2/a)

e2πx − 1
dx =

1

2

∫ ∞

0

cos(πu/a)

e2π
√
u − 1

du

=
1

2

(√
a/2

4π
− 1

2a

a∑

r=1

r(a− r) cos
(
πr2

a

))

=

√
a

8π
√
2
− 1

4a

a∑

r=1

r(a − r) cos
(
πr2

a

)
. (10.3.22)
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If we substitute (10.3.22) in (10.3.21) and then multiply both sides of the
resulting equality by 4π2/a3/2, we deduce that

π

2a3/2
+

4π2

a3/2

∞∑

n=1

n cos(πn2/a)

e2nπ − 1

=
π

2
√
2a

− π2

a5/2

a∑

r=1

r(a− r) cos
(
πr2

a

)
+

4π2√
2

∞∑

n=1

n

e2nπa − 1
,

which is easily seen to be equivalent to (10.3.20). ��



11

Two Partial Unpublished Manuscripts

on Sums Involving Primes

11.1 Introduction

Two unpublished manuscripts by Ramanujan on sums involving primes, but
in the handwriting of G.N. Watson, can be found on pages 228–232 in [269].
The original manuscripts in Ramanujan’s handwriting are in the library at
Trinity College, Cambridge. The first manuscript contains four sections, while
the second contains five. For each of the two papers, we copy Ramanujan’s
work, and then we supply more details, if needed, and offer further comments
after each manuscript. We have taken the liberty of making minor notational
adjustments. Several claims in the first manuscript are fallacious, indicating
that it emanates from an earlier portion of Ramanujan’s career sometime
before he departed for England in March 1914.

11.2 Section 1, First Paper

In this paper I consider approximate summations of series involving prime
numbers. The approximate summation of the series

φ(2) + φ(3) + φ(5) + · · ·+ φ(p) (11.2.1)

in terms of the number of terms is somewhat more regular and approximate
than that in terms of p. Let p be the greatest prime not exceeding x, π(x) the
number of primes not exceeding x and also let

ϑ(x) = log 2 + log 3 + log 5 + · · ·+ log p and π(x) = n.

Then it can easily be shown that

π(x) log x− ϑ(x) =
∫ x

2

π(t)

t
dt. (11.2.2)

G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook:
Part IV, DOI 10.1007/978-1-4614-4081-9 11,
© Springer Science+Business Media New York 2013
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Without assuming the prime number theorem we have

log x = logn+ log logn+O(1). (11.2.3)

It follows that

log 2 + log 3 + log 5 + · · ·+ log p = n logn+ n log logn+O(n). (11.2.4)

This is obtained by purely elementary reasoning. But

ϑ(p) ∼ p (11.2.5)

is as deep as the prime number theorem.

11.3 Section 2, First Paper

Let us now assume the Riemann hypothesis and express ϑ(x) in terms of n.
We have

ϑ(x) = x−
√
x−

∑

ρ

xρ

ρ
+O(x1/3), (11.3.1)

where ρ is a complex root of the Zeta-function, and

π(x) = Li(x)− 1

log x

(
√
x+

∑

ρ

xρ

ρ

)
+O

( √
x

log2 x

)

= Li

{
x−

√
x−

∑

ρ

xρ

ρ
+O

( √
x

log x

)}

= Li

{
ϑ(x) +O

( √
x

log x

)}
, (11.3.2)

where

Li(x) =

∫ x

0

dt

log t
.

It follows from (11.3.2) that

ϑ(x) = Li−1(n) +O

(√
n

logn

)
. (11.3.3)

But in terms of p we know only that

ϑ(x) = p+O
(√
p log2 p

)
. (11.3.4)

Let us consider more precisely the error in (11.3.3). We have

π(x) = Li(x)− 1

log x

(
√
x+

∑

ρ

xρ

ρ

)
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− 1

log2 x

(
2
√
x+

∑

ρ

xρ

ρ2

)
+O

( √
x

log2 x

)

= Li

{
ϑ(x) − 1

log x

(
2
√
x+

∑

ρ

xρ

ρ2

)
+O

( √
x

log2 x

)}
. (11.3.5)

But∣∣∣∣∣
∑

ρ

xρ

ρ2

∣∣∣∣∣ ≤
∑

ρ

∣∣∣∣
xρ

ρ2

∣∣∣∣ =
√
x
∑

ρ

1

ρ(1− ρ) = (2 + γ − log(4π))
√
x, (11.3.6)

where γ is Euler’s constant. It follows that
⎧
⎪⎪⎨

⎪⎪⎩

lim sup
{
ϑ(x)− Li−1(n)

}
√

logn

n
= 4 + γ − log(4π) (= 2.046 approx)

lim inf
{
ϑ(x)− Li−1(n)

}
√

logn

n
= log(4π)− γ (= 1.954 approx).

(11.3.7)
Thus we see that if the series of the form (11.2.1) are expressed in terms of
ϑ(x), then they can immediately be expressed in terms of n with the help
of (11.3.3).

11.4 Section 3, First Paper

It is easy to show that, if φ′(x) is continuous between 2 and x, then

φ(2) + φ(3) + φ(5) + · · ·+ φ(p) = π(x)φ(x) −
∫ x

2

φ′(t)π(t)dt. (11.4.1)

φ(2) log 2+φ(3) log 3+φ(5) log 5+· · ·+φ(p) log p = ϑ(x)φ(x)−
∫ x

2

φ′(t)ϑ(t)dt.

(11.4.2)
But it is easily seen that

φ(x)ϑ(x)−
∫
φ′(x)ϑ(x)dx =

∫
φ(x)dx−{x−ϑ(x)}φ(x)+

∫
φ′(x){x−ϑ(x)}dx.

(11.4.3)
Again we have by Taylor’s theorem

∫ ϑ(x)

φ(t)dt =

∫ x

φ(x)dx − {x− ϑ(x)}φ(x)

+
1

2
{x− ϑ(x)}2φ′{x(1− θ) + θϑ(x)}, (11.4.4)

where 0 ≤ θ ≤ 1. It follows from (11.4.2)–(11.4.4) that

φ(2) log 2 + φ(3) log 3 + φ(5) log 5 + · · ·+ φ(p) log p = C (11.4.5)

+

∫ ϑ(x)

φ(t)dt+

∫
φ′(x){x− ϑ(x)}dx−1

2
{x−ϑ(x)}2 φ′{x(1 − θ) + θϑ(x)}.
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11.5 Section 4, First Paper

Now let us consider the two forms

∑

p≤x

log p

ps − 1
,

∏

p≤x

(1− p−s).

First, let us assume all the known results about the primes, viz.
⎧
⎨

⎩
ϑ(x) = x+O

{
xe−a

√
log x

}

π(x) = Li(x)x+O
{
xe−a

√
log x

}
.

(11.5.1)

We have from (11.4.2)

∑

p≤x

log p

ps − 1
=
ϑ(x)

xs − 1
+ C(s) −

∫
ϑ(x)d

(
1

xs − 1

)
,

where C(s) is a constant depending on s only. In other words

∑

p≤x

log p

ps − 1
= C(s) +

x

xs − 1
−
∫
xd

(
1

xs − 1

)

+
O(xe−a

√
log x)

xs − 1
+

∫
O(xe−a

√
log x)d

(
1

xs − 1

)

= C(s) +

∫
dx

xs − 1
+O(x1−se−a

√
log x)

= C(s) +
x1−s − 1

1− s +O(x1−se−a
√
log x). (11.5.2)

If s > 1, then C(s) is obviously

1

1− s −
ζ′(s)
ζ(s)

,

and so

∑

p≤x

log p

ps − 1
= −ζ

′(s)
ζ(s)

+
x1−s

1− s +O(x
1−se−a

√
log x). (11.5.3)

If s > 1, then
∑

p≤x

log p

ps − 1
=
x1−s

1− s +O(x
1−se−a

√
log x). (11.5.4)

If s = 1, it is easy to see from (11.5.2) and (11.5.3) that

∑

p≤x

log p

ps − 1
= log x− γ +O(e−a

√
log x). (11.5.5)
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Similarly from (11.4.1) we can show that, if s < 1, then

∏

p≤x

1

1− p−s
= eLi(x

1−s) +O(x1−se−a
√
log x), (11.5.6)

if s > 1, then

∏

p≤x

1

1− p−s
= ζ(s)

{
1 + Li(x1−s) +O(x1−se−a

√
log x)

}
, (11.5.7)

and if s = 1, then

∏

p≤x

1

1− p−s
= eγ log x+O(e−a

√
log x), (11.5.8)

using
lim
ε→0

{Li(1± ε)− log |ε|} = γ. (11.5.9)

11.6 Commentary on the First Paper

The function φ is a generic function; but in Sect. 11.2, φ(x) = log x.
The identity (11.2.2) follows from partial summation. More precisely, by

an integration by parts,

ϑ(x) =

∫ x

2−
log t dπ(t) = log xπ(x) −

∫ x

2−

π(t)

t
dt.

To prove (11.2.3), we can use Chebyshev’s theorem: There exist constants
a, b > 0 such that for x sufficiently large,

ax

log x
< π(x) = n <

bx

log x
.

Taking logarithms throughout, we find that

log a+ log x− log log x < logn < log b+ log x− log log x,

from which it follows that

logn = log x− log log x+O(1). (11.6.1)

Taking the logarithm of both sides above, we find that

log logn = log log x+ log

(
1− log log x+O(1)

log x

)

= log log x+O(1). (11.6.2)
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Putting (11.6.2) in (11.6.1), we deduce (11.2.3).
The asymptotic formula (11.2.5) does not follow from Ramanujan’s previ-

ous discourse. In particular,

ϑ(x) ∼ n logn ∼ π(x) log x ∼ x

if and only if π(x) ∼ x/ log x. In other words, (11.2.5) is equivalent to the
prime number theorem. Thus, the insertion of (11.2.5) into his discussion is
perhaps slightly misleading.

In the definition of Li(x), it is assumed that the principal value of the
integral is taken.

Remember that Ramanujan has assumed the Riemann Hypothesis in
recording (11.3.4). There are misprints in (11.3.5), because the error terms
are of the same order of magnitude as the main terms. The correct error
terms should be

O

( √
x

log3 x

)
.

Furthermore, Ramanujan used the Riemann Hypothesis in rearranging the
sum on ρ in (11.3.6). The evaluation of that sum follows readily from calcu-
lations that can be found in H. Davenport’s text [101, pp. 80–81]. The first
equality sign in (11.3.7) should be replaced by the inequality sign ≤, while
the second equality sign in (11.3.7) should be replaced by ≥.

At the beginning of Sect. 11.4, Ramanujan more properly should have writ-
ten φ′(t) instead of φ′(x). This kind of inconsistency is common in Ramanu-
jan’s writing, both in his notebooks and in his published papers. Usually, no
confusion arises from such anomalous writing.

The constant term C(s) in (11.5.2) is equal to 0 if the lower limit is taken to
be 2− in the representation of the far left side as a Riemann–Stieltjes integral.
More precisely, by an integration by parts,

∑

p≤x

log p

ps − 1
=

∫ x

2−

dθ(t)

ts − 1
=
θ(x)

xs − 1
−
∫ x

2−
θ(t)

d

dt

(
1

ts − 1

)
. (11.6.3)

As indicated in (11.5.2), Ramanujan then uses the prime number theorem
in the form employing θ(x). Ramanujan did not specify any limits in the
integrals, and so if he had chosen a lower limit greater than 2, then C(s)
would not be identically equal to 0. But at any rate, no matter what limits
are chosen, his following claim, that for s > 1,

C(s) =
1

1− s −
ζ′(s)
ζ(s)

,

is not justified.
The claim (11.5.4) is false, as can be seen, for example, by letting x tend

to ∞. Also note that Ramanujan provides only one term in the Laurent
expansion of (x1−s − 1)/(1− s) about s = 1, vitiating his claim of validity.
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Upon letting s → 1 in (11.5.6), we see that (11.5.6) is incorrect. In
particular, it conflicts with (11.5.8), which is originally due to F. Mertens.

The assertion (11.5.9) follows from a well-known integral representation
for Euler’s constant [119, p. 31], namely

∫ 1

0

(
1

log x
+

1

1− x

)
dx = γ.

11.7 Section 1, Second Paper

[φ′(x) is a monotonic and continuous function such that log |φ′(x)| = O(x).]
Consider the function

F (x) =
∑

p≤x

φ{ϑ(p)} log p− 1

2
φ{ϑ(x)} log x−

∫ ϑ(x)

φ(z)dz

+ i log x

∫ ∞

0

φ(ϑ(x) + iz log x)− φ(ϑ(x) − iz log x)
e2πz − 1

dz.

Now F (x) is obviously a continuous function except when x is of the form p.
Also

lim
ε→0

F (p+ ε) = F (p).

Again

lim
ε→0
F (p− ε) = F (p)− φ{ϑ(p)} log p− 1

2
φ{ϑ(p)− log p} log p

+
1

2
φ{ϑ(p)} log p+

∫ ϑ(p)

ϑ(p)−log p

φ(z)dz

+ i log p

∫ ∞

0

φ(ϑ(p) − log p+ iz log p)− φ(ϑ(p) − log p− iz log p)
e2πz − 1

dz

− i log p
∫ ∞

0

φ(ϑ(p) + iz log p)− φ(ϑ(p) − iz log p)
e2πz − 1

dz.

But it is well known that

1

h

∫ x

x−h

φ(z)dz =
1

2
φ(x) +

1

2
φ(x− h) + i

∫ ∞

0

φ(x+ ihz)− φ(x− ihz)
e2πz − 1

dz

− i
∫ ∞

0

φ(x − h+ ihz)− φ(x− h− ihz)
e2πz − 1

dz. (11.7.1)

Hence
lim
ε→0

F (p− ε) = F (p).

Thus we see that F (x) is continuous without exception.
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Now the derived function F (x) viz.

− 1

2x
φ{ϑ(x)} + i

x

∫ ∞

0

φ{ϑ(x) + iz log x} − φ{ϑ(x) − iz log x}
e2πz − 1

dz

− log x

x

∫ ∞

0

z
φ′{ϑ(x) + iz log x} + φ′{ϑ(x) − iz log x}

e2πz − 1
dz

is finite and continuous except at the isolated points x = p. Hence

F (x) =

∫ x

F (x)dx.

That is to say

∑

p≤x

φ{ϑ(p)} log p =
∫ ϑ(x)

0

φ(z)dz +
1

2
φ{ϑ(x)} log x

− 1

2

∫ x

1

φ{ϑ(z)}dz
z

+R(x) (11.7.2)

where

R(x) = log x

∫ ∞

0

φ{ϑ(x) + iz log x} − φ{ϑ(x) − iz log x}
i(e2πz − 1)

dz

−
∫ x

1

dy

y

∫ ∞

0

φ{ϑ(y) + iz log y} − φ{ϑ(y)− iz log y}
i(e2πz − 1)

dz

−
∫ x

1

log y

y
dy

∫ ∞

0

z
φ′{ϑ(y) + iz log y}+ φ′{ϑ(y)− iz log y}

e2πz − 1
dz.

Since the two sides vanish when x = 1, no constant is required. But if the
integrals are either divergent or meaningless near the beginning, then we have
to adjust the constant after choosing suitable lower limits for the integrals.

11.8 Section 2, Second Paper

It is easy to see that

R(x) = O
[
|φ′{ϑ(x)}|(log x)2

]
. (11.8.1)

From this and (11.7.2) it follows that

∑

p≤x

φ{ϑ(p)} log p = C +

∫ ϑ(x)+
1
2 log x

φ(z)dz − 1

2

∫ x 1

z
φ{ϑ(z)}dz

+O
[
|φ′{ϑ(x)}|(log x)2

]
. (11.8.2)
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For example when φ(x) = xs, we have

∑

p≤x

{ϑ(p)}s log p = C +
1

s+ 1
{ϑs+1(x)− 1}+ 1

2
ϑs(x) log x

− 1

2

∫ x 1

z
ϑs(z)dz +O{xs−1(log x)2}

= C +
1

s+ 1
{ϑs+1(x)− 1}+ 1

2
ϑs(x) log x+O(xs) (11.8.3)

for all values of s except 0. Here we have not assumed the prime number
theorem. If we assume the Riemann Hypothesis we can easily show that the
result is

C +
1

s+ 1
{ϑs+1(x) − 1}+ 1

2
ϑs(x) log x− x

s − 1

2s
+O(xs−1/2) (11.8.4)

for all values of s. (C depends on s only.)

11.9 Section 3, Second Paper

Another very interesting case is when φ = e−sx. From (11.7.2) we have

∑

p≤x

e−sϑ(p) log p =

∫ ϑ(x)

0

e−szdz +
1

2
e−sϑ(x) log x

− 1

2

∫ x

1

e−sϑ(z) dz

z
+R(x) (11.9.1)

where

R(x) = −2 logx e−sϑ(x)

∫ ∞

0

sin(zs logx)

e2πz − 1
dz

+ 2

∫ x

1

1

y
e−sϑ(y)dy

∫ ∞

0

sin(zs log y)

e2πz − 1
dz

+ 2s

∫ x

1

1

y
log ye−sϑ(y)dy

∫ ∞

0

z cos(zs log y)

e2πz − 1
dz. (11.9.2)

It follows that

∑

p≤x

e−sϑ(p) log p =
1

s
− log x

xs − 1
e−sϑ(x) −

∫ x

1

1− zs + szs log z
z(zs − 1)2

e−sϑ(z)dz.

(11.9.3)
This suggests a more general case viz.
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∑

p≤x

e−sϑ(p)f(p) =
f(2)

2s − 1
+ e−sϑ(2)

{
f(3)

3s − 1
− f(2)

2s − 1

}

+ e−sϑ(3)

{
f(5)

5s − 1
− f(3)

3s − 1

}
+ e−sϑ(5)

{
f(7)

7s − 1
− f(5)

5s − 1

}

+ · · ·+ e−sϑ(p′)
{
f(p)

ps − 1
− f(p′)
p′s − 1

}

+ e−sϑ(p)

{
f(x)

xs − 1
− f(p)

ps − 1

}
− f(x)

xs − 1
e−sϑ(x)

where p′ is the prime next below p. In other words

∑

p≤x

e−sϑ(p)f(p) =
f(2)

2s − 1
− f(x)

xs − 1
e−sϑ(x) +

∫ x

2

e−sϑ(z)

(
d

dz

f(z)

zs − 1

)
dz

=
f(2)

2s − 1
− f(x)

xs − 1
e−sϑ(x) +

∫ x

2

e−sϑ(z)

{
f ′(z)
zs − 1

− sz
s−1f(z)

(zs − 1)2

}
dz.

(11.9.4)

If we suppose that f(x) = 1 in (11.9.4), then

∑

p≤x

e−sϑ(p) =
1

2s − 1
− e

−sϑ(x)

xs − 1
− s

∫ x

2

zs−1e−sϑ(z)

(zs − 1)2
dz. (11.9.5)

11.10 Section 4, Second Paper

Making x tend to ∞ in (11.7.2) and (11.9.4), we obtain

φ{ϑ(2)} log 2 + φ{ϑ(3)} log 3 + φ{ϑ(5)} log 5 + φ{ϑ(7)} log 7 + · · ·

=

∫ ∞

0

φ(x)dx − 1

2

∫ ∞

1

1

x
φ (ϑ(x)) dx

−
∫ ∞

1

dx

x

∫ ∞

0

φ(ϑ(x) + iz log x)− φ(ϑ(x) − iz log x)
i(e2πz − 1)

dz

−
∫ ∞

1

log x

x
dx

∫ ∞

0

z
φ′(ϑ(x) + iz log x) + φ′(ϑ(x) − iz log x)

e2πz − 1
dz,

(11.10.1)

2−sf(2) + 6−sf(3) + 30−sf(5) + 210−sf(7) + · · ·

=
f(2)

2s − 1
+

∫ ∞

2

e−sϑ(x)

{
f ′(x)
xs − 1

− sx
s−1f(x)

(xs − 1)2

}
dx. (11.10.2)
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As particular cases of (11.10.2) we have

2−s + 6−s + 30−s + 210−s + · · · = 1

2s − 1
− s

∫ ∞

2

xs−1e−sϑ(x)

(xs − 1)2
dx, (11.10.3)

2−s log 2 + 6−s log 3 + 30−s log 5 + 210−s log 7 + · · ·

=
1

s
−
∫ ∞

1

e−sϑ(x) 1− xs + sxs log x
x(1 − xs)2 dx. (11.10.4)

11.11 Section 5, Second Paper

Let us consider the behaviour of (11.10.4) and (11.10.3) as s→ 0.

2−s log 2 + 6−s log 3 + 30−s log 5 + · · ·

=
1

s
−
∫ ∞

1

e−sϑ(x)

{
1

2
− s log x

6
+
s3(log x)3

180
− · · ·

}
dx

x

=
1

s
− 1

2

∫ ∞

1

e−sϑ(x) dx

x
+O{s(log s)2}

=
1

s
+

1

2
log s+ C +O(

√
s) (Riemann’s Hypothesis)

=
1

s
+

1

2
log s+ C +O{e−a

√
log(1/s)} (Prime number theorem)

=
1

s
+

1

2
log s+O(1) (Elementary reasoning). (11.11.1)

Again,

2−s + 6−s + 30−s + 210−s + · · ·

=
1

2s − 1
−
∫ ∞

2

e−sϑ(x)

{
1

s(log x)2
− s

12
+
s3(log x)2

240
− · · ·

}
dx

x

=
1

2s − 1
− 1

s

∫ ∞

2

e−sϑ(x)

x(log x)2
dx+O(s log s)

=
1

2s − 1
− 1

s

∫ ∞

2

e−sx

x(log x)2
dx+O

(
e−a

√
log(1/s)

s

)

=
1

2s − 1
− e−2s

s log 2
+

∫ ∞

2

e−sx

log x
dx+O

{
e−a

√
log(1/s)

s

}

= − 1

s log s
+

γ1
s(log s)2

− γ2
s(log s)3

+
γ3

s(log s)4
− · · ·+O

{
1

s(log(1/s))k

}
;

(11.11.2)
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where

Γ (1 + z) = 1− γ1z
1!

+
γ2z

2

2!
− γ3z

3

3!
+ · · · ,

so that γ1 is Euler’s constant. Without assuming the prime number theorem
we can prove that (11.11.2) is of the form

− 1

s log s
+O

{
1

s(log s)2

}
. (11.11.3)

Hence

(1−2−s)(1−6−s)(1−30−s)(1−210−s) · · · = exp

(
π2

6s log s

)
+O

{
1

s(log s)2

}
.

(11.11.4)

11.12 Commentary on the Second Paper

Ramanujan tacitly assumes that ε > 0 throughout his paper.
The “well known” identity (11.7.1) is a special case of Plana’s summation

formula [315, p. 145, Exercise 7].
The Eq. (11.8.2) is inexplicably wrong. Evidently, Ramanujan had intended

to write another version of (11.7.2) in terms of indefinite integrals, and so why
he wrote (11.8.2) is a mystery. Fortunately, it is not used in the sequel.

We briefly sketch a proof of (11.9.3). We use the evaluations [126, p. 516,
formula 3.911, no. 2; p. 527, formula 3.951, no. 5]

∫ ∞

0

sin(ax)

ebx − 1
dx =

π

2b
coth

(πa
b

)
− 1

2a
, a, b > 0,

∫ ∞

0

x cos(ax)

ebx − 1
dx =

1

2a2
− π2

2b2
csch2

(πa
b

)
, b > 0.

Thus,

∫ ∞

0

sin(zs log x)

e2πz − 1
dz =

1

4
coth

(
s log x

2

)
− 1

2s log x

=
1

4

xs + 1

xs − 1
− 1

2s log x
(11.12.1)

and
∫ ∞

0

z cos(zs log y)

e2πz − 1
dz =

1

2s2 log2 y
− 1

8
csch2

(
s log y

2

)

=
1

2s2 log2 y
− ys

2(ys − 1)2
. (11.12.2)
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Hence, by (11.12.1) and (11.12.2),

− 2 logx

∫ ∞

0

sin(zs log x)

e2πz − 1
dz =

1

s
− log x

2

xs + 1

xs − 1
,

2

∫ x

1

1

y
e−sϑ(y)dy

∫ ∞

0

sin(zs logx)

e2πz − 1
dz

=

∫ x

1

e−sϑ(y)

(
− 1

ys log y
+

1

2y

ys + 1

ys − 1

)
dy,

2s

∫ x

1

log y

y
e−sϑ(y)dy

∫ ∞

0

z cos(zs log y)

e2πz − 1
dz

=

∫ x

1

e−sϑ(y)

(
1

ys log y
− sys log y

(ys − 1)2

)
dy.

Using the three calculations above in (11.9.2), then putting the resulting for-
mula for R(x) in (11.9.1), evaluating the elementary integral on the right-hand
side of (11.9.1), and considerably simplifying, we arrive at (11.9.3).

We explain how (11.10.4) was obtained. Note that Ramanujan added and
subtracted a certain integral with limits 1 and 2. Using (11.9.4), we observe
that

∫ 2

1

1− xs + sxs log x
x(1− xs)2 dx = −

∫ 2

1

d

dx

(
log x

xs − 1

)
dx

= − log 2

2s − 1
+ lim

x→1

log x

xs − 1
= − log 2

2s − 1
+

1

s
.

Using the calculation above in (11.10.2) with f(x) = log x, we deduce (11.10.4)
at once.

On the right-hand side of the third equality in (11.11.1), on the Riemann
Hypothesis, it would seem that the error term should be O(log2 s

√
s). For the

fourth equality, Ramanujan invoked the classical error term of de la Valleé
Poussin [101, p. 113].

Details will now be provided for the last line of (11.11.2). First observe
that

lim
s→0

(
1

2s − 1
− e−2s

s log 2

)
= 1.

Second, write
∫ ∞

2

e−sx

log x
dx =

∫ ∞

0

e−sx

log x
dx +O(1),

as s→ 0, provided the integral on the right-hand side above is interpreted as
a principal value. Write
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∫ ∞

0

e−sx

log x
dx = − 1

s log s

∫ ∞

0

e−u

1− log u/ log s
du

= − 1

s log s

∫ ∞

0

e−u

⎛

⎝
k−1∑

j=0

(
log u

log s

)j

+

(
log u

log s

)k
1

1− log u/ log s

⎞

⎠ du

= − 1

s log s

k−1∑

j=0

1

logj s

∫ ∞

0

e−u logj u du+O

(
1

s logk+1(1/s)

)

= − 1

s log s

k−1∑

j=0

Γ (j)(1)

logj s
+O

(
1

s logk+1(1/s)

)
,

from which Ramanujan’s claim in (11.11.2) follows. It is not clear why
Ramanujan did not define γj = Γ

(j)(1) instead of γj = (−1)jΓ (j)(1).
We do not think that Ramanujan’s claim in (11.11.3) is justified, i.e., some

form of the prime number theorem seems necessary to achieve (11.11.3).
We now prove (11.11.4). Using (11.11.3), we find that

log
∞∏

j=1

(1− (p1p2 · · · pj)−s) =
∞∑

j=1

log(1− (p1p2 · · · pj)−s)

= −
∞∑

j=1

∞∑

n=1

1

n
(p1p2 · · · pj)−ns

=

∞∑

n=1

(
1

n · ns log(ns) +O
(

1

n · ns log2(ns)

))

=
π2

6s log s
+O

(
1

s log2 s

)
.

Exponentiating both sides above, we deduce (11.11.4).
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An Unpublished Manuscript of Ramanujan

on Infinite Series Identities

12.1 Introduction

Published with Ramanujan’s lost notebook [269, pp. 318–321] is a four-page,
handwritten fragment on infinite series. Partial fraction expansions, the Rie-
mann zeta function ζ(s), alternating sums over the odd integers, divisor sums
σk(n), Bernoulli numbers, and Euler numbers are featured in the formulas in
this manuscript. The first result has the equation number (18) attached to
it. Thus, the manuscript was likely intended to be the completion of either a
published paper or another unpublished manuscript. We conjecture that this
fragment was originally intended to be a part of Ramanujan’s paper Some
formulae in the analytic theory of numbers, [263], [267, pp. 133–135]. This
paper contains several theorems featuring ζ(s) and σk(n), and so the topics
in the unpublished manuscript mesh well with those in the published paper.
However, the last tagged equation in [263] is (22), whereas we would expect
it to be (17) if our conjecture is correct. Often Ramanujan would think of
additional results and add them to the paper as he was writing it, and so
this could easily account for the discrepancy in equation numbers. We remark
here that the manuscript does not provide any proofs, but Ramanujan usually
gives an indication (in one line) how a particular formula may be deduced.

Why did Ramanujan not include this discarded piece in his paper [263], for
the published paper is rather short, and the unpublished manuscript would
add at most four pages to the length of the paper? We think that Ramanujan
discovered that one of his claims, namely (21), was incorrect and that two
of his deductions were not corollaries of his (incorrect) formula, as he had
previously thought. Moreover, we suspect that he realized that some of his
arguments were not rigorous. Since he had abandoned his intention to publish
this portion, he did not bother to indicate that changes or corrections needed
to be made in the fragment. He probably failed to discard it because he
had wanted to return to it sometime in the future to attempt to correct his
arguments.

G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook:
Part IV, DOI 10.1007/978-1-4614-4081-9 12,
© Springer Science+Business Media New York 2013

265
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Ramanujan loved partial fraction expansions. Chapter 14 in his second
notebook [38, 268], in particular, contains several such expansions, and others
are scattered throughout all three earlier notebooks. See [40, Chap. 30] for
some of these scattered partial fraction decompositions. However, Ramanu-
jan’s arguments were not always rigorous. Because of his apparent weakness
in complex analysis, he evidently did not have a firm grasp of the Mittag–
Leffler theorem, for claim (21) in his unpublished manuscript arises from an
incorrect application of the Mittag–Leffler theorem, as we detail below. After
claim (21), he then asserted several corollaries arising from this (incorrect)
partial fraction decomposition. All of the corollaries are indeed correct, but
two of them do not follow from this partial fraction expansion. Ramanujan
undoubtedly had previously been familiar with all of these corollaries and al-
most certainly had derived them by other methods. Certain correct results
were easily deduced from his expansion, and he must have been puzzled why
two further known results could not be similarly deduced. It is interesting
that the same incorrect partial fraction expansion occurs in Entry 19(i) of
Chap. 14 of his second notebook [268], [38, p. 271], where it was derived by a
different method, namely a general elementary theorem, Entry 18 of Chap. 14
[268], [38, pp. 267–268]. R. Sitaramachandrarao [289], [38, pp. 271–272] found
an alternative version of Ramanujan’s partial fraction expansion. After we
provide Ramanujan’s argument, we show that we can actually use Sitara-
machandrarao’s result to derive a corrected version of Ramanujan’s partial
fraction expansion. We shall see that Ramanujan’s defective argument missed
one expression; all other portions of Ramanujan’s formula are correct. One
of the two claims that did not follow from Ramanujan’s expansion now is a
corollary of the corrected version. However, this corrected version still does
not allow us to rigorously deduce the other result.

The most celebrated result in this manuscript is probably claim (28), which
is a famous formula for ζ(2n+1), where n is a positive integer. There is a large
number of proofs of this result and many generalizations as well. References are
given after we provide Ramanujan’s proof of (28). Ramanujan’s argument is
rigorous and ironically is independent of whether his formula or the corrected
version is used.

In (22), Ramanujan gives another partial fraction expansion, but this one
is correct. All of its corollaries claimed by Ramanujan are correct, but not all
the deductions can be rigorously established by Ramanujan’s methods. These
corollaries, like those arising from (19), are all well known, with some having
been proved in the literature several times.

In the remainder of the chapter, we record all of Ramanujan’s formulas,
prove them rigorously in some cases, and “prove” them nonrigorously in other
cases, i.e., we argue as Ramanujan most likely did. Most of the results appear
in Ramanujan’s notebooks, and for all theorems we provide references where
proofs can be found. In providing references, we have adhered to the follow-
ing rules. For each principal theorem, we locate it in Ramanujan’s notebooks,
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indicate who gave the first proof, and lastly refer to the pages in the second
author’s books, primarily [38], where references to further proofs can be found.
Since the publication of [38], additional proofs have been found in some in-
stances, and so we provide references to those recent proofs of which we are
aware.

The residue of a meromorphic function f(z) at a pole z0 will be denoted
by R(f, z0) = R(z0).

12.2 Three Formulas Containing Divisor Sums

Entry 12.2.1 (p. 318, formula (18)). Let χ(n) denote the nonprincipal
primitive character of modulus 4, i.e., χ(2n) = 0 and χ(2n+ 1) = (−1)n, for
each nonnegative integer n. Let d(n) denote the number of positive divisors of
the positive integer n. Then, if x �= in, for each integer n,

∞∑

n=1

χ(n)d(n)n

n2 + x2
=
π

4

∞∑

n=1

χ(n)

n
sech

(πx
2n

)
. (12.2.1)

Proof. Recall the partial fraction expansion [126, p. 44, formula 1.422, no. 1]

sech
(πx

2

)
=

4

π

∞∑

k=1

(−1)k−1 2k − 1

(2k − 1)2 + x2
.

Thus,

π

4

∞∑

n=1

χ(n)

n
sech

(πx
2n

)
=

∞∑

n=1

χ(n)

n

∞∑

k=1

χ(k)k

k2 + x2/n2

=

∞∑

n=1

∞∑

k=1

χ(nk)nk

n2k2 + x2

=

∞∑

r=1

χ(r)d(r)r

r2 + x2
.

This formally completes our argument. However, observe that in the penulti-
mate line we rearranged the order of summation in the double sum, and this
needs to be justified. The following argument was kindly supplied by Johann
Thiel.

Proposition 12.2.1. Let χ(n) denote the nonprincipal primitive character of
modulus 4. Let d(n) denote the number of divisors of the positive integer n.
Then if x �= ın, for each integer n,
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∞∑

n=1

∞∑

k=1

χ(nk)nk

n2k2 + x2
=

∞∑

r=1

χ(r)d(r)r

r2 + x2
. (12.2.2)

Proof. By the identity theorem, it suffices to show that (12.2.2) holds for
x ∈ [0, 14 ].

We first examine the right-hand side of (12.2.2). If N is a positive inte-
ger, write

∞∑

r=1

χ(r)d(r)r

r2 + x2
=

4N2∑

r=1

χ(r)d(r)r

r2 + x2
+

∞∑

r=4N2+1

χ(r)d(r)r

r2 + x2
. (12.2.3)

We want to show that as N → ∞,

∞∑

r=4N2+1

χ(r)d(r)r

r2 + x2
= O

(
1

N

)
. (12.2.4)

To achieve this, we use the Dirichlet hyperbola method. Write

∑

n≤y

χ(n)d(n) =
∑

n≤y

χ(n)
∑

d|n
1 =

∑

d≤y

∑

n≤y
d|n

χ(n)

=
∑

d≤y

∑

m≤y/d

χ(md) =
∑

a,b≤y
ab≤y

χ(ab)

=
∑

a≤√
y

∑

b≤y/a

χ(a)χ(b) +
∑

b≤√
y

∑

a≤y/b

χ(a)χ(b)−
∑

a≤√
y

∑

b≤√
y

χ(a)χ(b)

= 2
∑

a≤√
y

χ(a)
∑

b≤y/a

χ(b)−
∑

a≤√
y

∑

b≤√
y

χ(a)χ(b)

= O(
√
y), (12.2.5)

as y → ∞, where we used the fact that each of the inner sums in the penul-
timate line is O(1). If we now apply partial summation in a straightforward
fashion with the use of (12.2.5), we easily deduce (12.2.4). Using then (12.2.4)
back in (12.2.3), we conclude that

∞∑

r=1

χ(r)d(r)r

r2 + x2
=

4N2∑

r=1

χ(r)d(r)r

r2 + x2
+O

(
1

N

)
. (12.2.6)

Next, we examine the first sum on the right-hand side of (12.2.3), or the
sum on the right-hand side in (12.2.6). Hence,
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4N2∑

r=1

χ(r)d(r)r

r2 + x2
=

∑

nk≤4N2

χ(nk)nk

n2k2 + x2

=

2N∑

n=1

2N∑

k=1

χ(nk)nk

n2k2 + x2
+ 2

2N−1∑

n=1

⌊
4N2

n

⌋
∑

k=2N+1

χ(nk)nk

n2k2 + x2

=
2N∑

n=1

2N∑

k=1

χ(nk)nk

n2k2 + x2
+ 2

2N−1∑

n=1

χ(n)

n

⌊
4N2

n

⌋
∑

k=2N+1

χ(k)k

k2 + (x/n)2
.

(12.2.7)

Observe that the inner sum in the second series on the far right side of (12.2.7)
is an alternating series and is consequently O(1/N), as N → ∞. Using this
bound in (12.2.7) and then (12.2.7) in (12.2.6) gives

∞∑

r=1

χ(r)d(r)r

r2 + x2
=

2N∑

n=1

2N∑

k=1

χ(nk)nk

n2k2 + x2
+O

(
logN

N

)
. (12.2.8)

We now examine the left-hand side of (12.2.2) and readily find that

∞∑

n=1

∞∑

k=1

χ(nk)nk

n2k2 + x2
=

2N∑

n=1

∞∑

k=1

χ(nk)nk

n2k2 + x2
+

∞∑

n=2N+1

∞∑

k=1

χ(nk)nk

n2k2 + x2

=

2N∑

n=1

∞∑

k=1

χ(nk)nk

n2k2 + x2
+

∞∑

n=2N+1

χ(n)

n

∞∑

k=1

χ(k)k

k2 + (x/n)2
.

(12.2.9)

If we set

f(y) :=
1

y

∞∑

k=1

χ(k)k

k2 + (x/y)2
,

for y ∈ [1,∞), by a straightforward calculation we see that f ′(y) < 0 and
consequently limy→∞ f(y) = 0. Therefore, we can apply the alternating series
test to conclude that the inner sum of the second sum on the far right side of
(12.2.9) is an alternating series that is O(1/N), as N → ∞. Therefore,

∞∑

n=1

∞∑

k=1

χ(nk)nk

n2k2 + x2
=

2N∑

n=1

∞∑

k=1

χ(nk)nk

n2k2 + x2
+O

(
1

N

)

=

2N∑

n=1

2N∑

k=1

χ(nk)nk

n2k2 + x2
+

2N∑

n=1

∞∑

k=2N+1

χ(nk)nk

n2k2 + x2
+O

(
1

N

)

=

2N∑

n=1

2N∑

k=1

χ(nk)nk

n2k2 + x2
+O

(
logN

N

)
, (12.2.10)
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where the last equality follows by an argument similar to the one used to
deduce (12.2.8).

Taking the difference of (12.2.10) and (12.2.8), we complete the proof of
(12.2.2). ��
This then completes a rigorous proof of Entry 12.2.1. ��

Entry 12.2.1 is a simple example of a large class of formulas involv-
ing the sech function and arithmetic functions. See papers by Berndt [34,
Example 3] and P.V. Krishnaiah and R. Sita Rama Chandra Rao [201] for
further examples.

Entry 12.2.2 (p. 318, formula (19)). Let σk(n) =
∑

d|n d
k. Then, for

Re s > 1 and Re(s− r) > 1,

ζ(s)ζ(s − r) =
∞∑

n=1

σr(n)

ns
. (12.2.11)

The formula (12.2.11) is classical and simple to prove. Ramanujan [263],
[267, pp. 133–135] found beautiful extensions of it. See also Titchmarsh’s text
[306, p. 8].

Entry 12.2.3 (p. 318, formula (20)). Let χ be defined as in Entry 12.2.1,
and let σk(n) be as in Entry 12.2.2. Then, for Re s > 1 and Re(s− r) > 1,

∞∑

m=1

χ(m)

ms

∞∑

n=1

χ(n)

ns−r
=

∞∑

n=1

χ(n)σr(n)

ns
.

Proof. For Re s > 1 and Re(s− r) > 1,

∞∑

m=1

χ(m)

ms

∞∑

n=1

χ(n)

ns−r
=

∞∑

m,n=1

χ(mn)nr

(mn)s
=

∞∑

k=1

χ(k)σr(k)

ks
,

which completes the proof for Re s > 1 and Re(s− r) > 1. We expect that the
domain of validity can be extended to Re s > sup{0,Re r}, but we are unable
to prove this. ��

There are many results in the literature generalizing or extending the last
two results. The two most extensive papers in this direction are perhaps those
by S. Chowla [91, 92], [95, pp. 92–115, 120–130].

12.3 Ramanujan’s Incorrect Partial Fraction Expansion
and Ramanujan’s Celebrated Formula for ζ(2n+ 1)

Prior to this next claim, Ramanujan writes, “By the theory of residues it can
be shown that”. Evidently, Ramanujan implied that he used the residue the-
orem to calculate the partial fraction decomposition that followed. His formal
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calculations should depend upon an application of the Mittag–Leffler theorem,
which cannot be applied in this situation. We first state the incorrect expan-
sion, indicate Ramanujan’s probable approach, and then offer a correct ver-
sion. Ramanujan used n to denote a complex variable; we replace it with the
more natural notation w = z2.

Entry 12.3.1 (p. 318, formula (21)). If α and β are positive numbers such
that αβ = π2, then

1

2w
+

∞∑

m=1

{
mα coth(mα)

w +m2α
+
mβ coth(mβ)

w −m2β

}
=
π

2
cot(

√
wα) coth(

√
wβ).

(12.3.1)

Proof. (We emphasize that the following argument is not rigorous.) Consider

f(z) :=
π

2
cot(z

√
α) coth(z

√
β),

which has simple poles at z = mπ/
√
α, −∞ < m <∞, m �= 0, with residues

R(mπ/
√
α) =

π

2
√
α
coth(mβ), (12.3.2)

and simple poles at z = mπi/
√
β,−∞ < m <∞,m �= 0, with residues

R(mπi/
√
β) = − πi

2
√
β
coth(mα), (12.3.3)

where we used the fact αβ = π2 in our calculations. Clearly f(z) also has a
double pole at z = 0. Using (12.3.2) and once again the relation αβ = π2,
we find that the contributions of the poles z = mπ/

√
α and z = −mπ/

√
α,

1 ≤ m <∞, to the partial fraction expansion of f(z) are

π

2
√
α

(
coth(mβ)

z −mπ/
√
α
+

coth(−mβ)
z +mπ/

√
α

)
=
mβ coth(mβ)

z2 −m2β
. (12.3.4)

Using (12.3.3) and once again the relation αβ = π2, we find that the sum of
the contributions of the poles z = mπi/

√
β and z = −mπi/

√
β, 1 ≤ m <∞,

to the partial fraction decomposition of f(z) equals

− πi

2
√
β

(
coth(mα)

z −mπi/
√
β
− coth(mα)

z +mπi/
√
β

)
=
mα coth(mα)

z2 +m2α
. (12.3.5)

That part of the partial fraction decomposition arising from the double pole
at z = 0 clearly equals

π

2
√
αβz2

=
1

2z2
, (12.3.6)
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upon again using the relation αβ = π2. Employing (12.3.4)–(12.3.6) and ap-
plying the Mittag–Leffler theorem, we find that there exists an entire function
g(z) such that

π

2
cot(z

√
α) coth(z

√
β) =

1

2z2
+

∞∑

m=1

{
mα coth(mα)

z2 +m2α
+
mβ coth(mβ)

z2 −m2β

}
+ g(z).

(12.3.7)

Here Ramanujan probably assumed that g(z) ≡ 0 and so completed his
“proof” of (12.3.1). ��

Normally, in applications of the Mittag–Leffler theorem, one lets z → ∞
to conclude that g(z) ≡ 0. However, such an argument is invalid here, because
cot(z

√
α) coth(z

√
β) oscillates and does not have a limit as z → ∞. Moreover,

one cannot justify taking the limit as z → ∞ under the summation sign in
(12.3.7).

In attempting to find a corrected version of (12.3.1), Sitaramachandrarao
[289], [38, pp. 271–272] proved that

π2xy cot(πx) coth(πy) = 1 +
π2

3
(y2 − x2)

− 2πxy

∞∑

m=1

(
y2 coth(πmx/y)

m(m2 + y2)
+
x2 coth(πmy/x)

m(m2 − x2)

)
.

(12.3.8)

Using the elementary identities

y2

m(m2 + y2)
= − m

m2 + y2
+

1

m

and

x2

m(m2 − x2) =
m

m2 − x2 − 1

m
,

we find that (12.3.8) can be rewritten in the form

π2xy cot(πx) coth(πy) = 1 +
π2

3
(y2 − x2)

+ 2πxy

∞∑

m=1

(
m coth(πmx/y)

m2 + y2
− m coth(πmy/x)

m2 − x2

)

− 2πxy
∞∑

m=1

1

m
(coth(πmx/y)− coth(πmy/x))

= 1 +
π2

3
(y2 − x2)
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+ 2πxy

∞∑

m=1

(
m coth(πmx/y)

m2 + y2
− m coth(πmy/x)

m2 − x2

)

− 4πxy

∞∑

m=1

1

m

(
1

e2πmx/y − 1
− 1

e2πmy/x − 1

)
,

(12.3.9)

where we used the elementary identity

cothx = 1 +
2

e2x − 1
. (12.3.10)

We are now in a position to make simple changes of variables in (12.3.9)
to derive a corrected version of (12.3.1).

Entry 12.3.2 (Corrected Version of (21)). Under the hypotheses of
Entry 12.3.1,

π

2
cot(

√
wα) coth(

√
wβ) =

1

2w
+

1

2
log
β

α

+

∞∑

m=1

{
mα coth(mα)

w +m2α
+
mβ coth(mβ)

w −m2β

}
.

(12.3.11)

Proof. Let πx =
√
wα and πy =

√
wβ in (12.3.9) to deduce that

π

2
cot(

√
wα) coth(

√
wβ)

=
1

2w
+

1

6
(β − α) +

∞∑

m=1

(
mα coth(mα)

m2α+ w
− mβ coth(mβ)

βm2 − w

)

− 2
∞∑

m=1

1

m

(
1

e2mα − 1
− 1

e2mβ − 1

)

=
1

2w
+

1

6
(β − α) +

∞∑

m=1

(
mα coth(mα)

m2α+ w
− mβ coth(mβ)

βm2 − w

)

− 2

(
1

4
logα− α

12
− 1

4
log β +

β

12

)

=
1

2w
+

1

2
log
β

α
+

∞∑

m=1

{
mα coth(mα)

w +m2α
+
mβ coth(mβ)

w −m2β

}
,

where we have used an equivalent formulation for the transformation of the
Dedekind eta function, namely [68],



274 12 An Unpublished Manuscript of Ramanujan on Infinite Series Identities

∞∑

m=1

1

m(e2mα − 1)
−1

4
logα+

α

12
=

∞∑

m=1

1

m(e2mβ − 1)
−1

4
log β+

β

12
, (12.3.12)

under the condition αβ = π2. This completes the proof of (12.3.11). ��

Thus, Ramanujan’s claim (21) was correct except for the missing term
1
2 log

β
α .

We now proceed to examine the four deductions Ramanujan made from
(12.3.1). We first examine the claim that cannot be formally deduced from
either (12.3.1) or the corrected version (12.3.11), and provide Ramanujan’s
argument. Ramanujan asserts that “Equating the coefficients of 1/n (1/w in
our notation) in both sides in (21) we have . . . .”

Entry 12.3.3 (p. 318, formula (23)). If α and β are positive numbers such
that αβ = π2, then

α

∞∑

m=1

m

e2mα − 1
+ β

∞∑

m=1

m

e2mβ − 1
=
α+ β

24
− 1

4
. (12.3.13)

Proof. (incorrect) Following Ramanujan, we equate coefficients of 1/w on
both sides of (12.3.11). Observe from the Laurent expansion of cot(

√
wα)

coth(
√
wβ) about w = 0 that the coefficient of 1/w equals 1

2 on the left side
of (12.3.11). Note also the term 1/(2w) on the right side of (12.3.11). Hence,
the only contribution of 1/w that remains must come from

∞∑

m=1

{
mα

w +m2α

(
1 +

2

e2mα − 1

)
+

mβ

w −m2β

(
1 +

2

e2mβ − 1

)}
, (12.3.14)

upon the use of (12.3.10), and this contribution must equal 0.
Proceeding formally, we have

mα

w +m2α
=
mα

w

∞∑

r=0

(
−m

2α

w

)r

and
mβ

w −m2β
=
mβ

w

∞∑

r=0

(
m2β

w

)r

.

Thus, from (12.3.14) we find that a contribution to the coefficient of 1/w
equals

2α

∞∑

m=1

m

e2mα − 1
+ 2β

∞∑

m=1

m

e2mβ − 1
. (12.3.15)

The remaining contribution to the coefficient of 1/w in (12.3.14) is given by

(α+ β)
∞∑

m=1

m = (α+ β)ζ(−1) = −α+ β

12
. (12.3.16)

Of course, this agrument is not rigorous. The value ζ(−1) = − 1
12 can be found

in Titchmarsh’s book [306, p. 19, Eq. (2.4.3)], for example. Alternatively, the
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“constant” for the series
∑∞

m=1m in Ramanujan’s terminology is equal to − 1
12

[37, p. 135, Example 2]. Recalling that the contributions of the coefficients of
1/w in (12.3.14) must equal 0, we find from (12.3.15) and (12.3.16) that

α

∞∑

m=1

m

e2mα − 1
+ β

∞∑

m=1

m

e2mβ − 1
=
α+ β

24
. (12.3.17)

In comparing (12.3.17) with (12.3.13), we find that the term − 1
4 in (12.3.13)

does not appear in (12.3.17). This concludes what we think must have been
Ramanujan’s argument. ��

Entry 12.3.4 (pp. 318–319, formula (24)). If α and β are positive num-
bers such that αβ = π2, and if σ(m) =

∑
d|m d, then

α

∞∑

m=1

σ(m)e−2mα + β

∞∑

m=1

σ(m)e−2mβ =
α+ β

24
− 1

4
. (12.3.18)

Proof. Entry 12.3.4 is simply another version of Entry 12.3.3. To that end,
expand the summands of (12.3.13) into geometric series and collect the coef-
ficients of e−2mα and e−2mβ to complete the proof. ��

Ramanujan offered Entry 12.3.3 as Corollary (i) in Sect. 8 of Chap. 14 in his
second notebook [268], [38, p. 255]. To the best of our knowledge, Entry 12.3.3
was first proved by O. Schlömilch [279, 280] in 1877. There now exist many
proofs; see [38, p. 256] for references to several proofs. One of the most common
proofs of the special case α = β = π of both Entries 12.3.3 and 12.3.6 was
recently rediscovered by O. Ogievetsky and V. Schechtman [236]. Entry 12.3.3
is equivalent to the transformation formula for Ramanujan’s Eisenstein series
P (q).

Entry 12.3.5 (p. 320, formula (29)). If α and β are positive numbers such
that αβ = π2, and if σk(m) =

∑
d|m d

k, then

∞∑

m=1

1

m(e2mα − 1)
−

∞∑

m=1

1

m(e2mβ − 1)

=
∞∑

m=1

σ−1(m)e−2mα −
∞∑

m=1

σ−1(m)e−2mβ =
1

4
log
α

β
− α− β

12
. (12.3.19)

Proof. Following but altering Ramanujan’s directions, we equate the terms
independent of w in (12.3.11) (not (12.3.1)) and use (12.3.10) to deduce that

π

2

(
−

√
α

3
√
β
+

√
β

3
√
α

)
=

1

2
log
β

α

+
∞∑

m=1

{
1

m

(
1 +

2

e2mα − 1

)
− 1

m

(
1 +

2

e2mβ − 1

)}
.
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The desired result (12.3.19) now follows upon simplification, with the use of
the identity αβ = π2. ��

Entry 12.3.5 is stated by Ramanujan as Corollary (ii) in Sect. 8 of Chap. 14
in his second notebook [268], [38, p. 256] and as Entry 27(iii) in Chap. 16 of
his second notebook [268], [39, p. 43]. It is equivalent to the transformation
formula for the Dedekind eta function. Note that we already used (12.3.19)
in the equivalent form (12.3.12) in order to obtain a corrected version of
Entry 12.3.1.

The Bernoulli numbers Bm, m ≥ 0, are defined by

z

ez − 1
=

∞∑

m=0

Bm

m!
zm, |z| < 2π.

This convention for Bernoulli numbers is not the same as that used by Ra-
manujan in his unpublished manuscript.

Entry 12.3.6 (p. 319, formula (25)). Let α and β be positive numbers such
that αβ = π2, and let Bm, m ≥ 0, denote the mth Bernoulli number. Then,
if r is a positive integer with r ≥ 2,

αr

( ∞∑

m=1

m2r−1

e2mα − 1
− B2r

4r

)
= (−β)r

( ∞∑

m=1

m2r−1

e2mβ − 1
− B2r

4r

)
. (12.3.20)

Proof. (nonrigorous) Return to (12.3.11), use (12.3.10), and formally expand
the summands into geometric series to arrive at

π

2
cot(

√
wα) coth(

√
wβ) =

1

2w
+

1

2
log
β

α

+

∞∑

m=1

{
mα

w

∞∑

k=0

(
−m

2α

w

)k (
1 +

2

e2mα − 1

)

+
mβ

w

∞∑

k=0

(
m2β

w

)k (
1 +

2

e2mβ − 1

)}
. (12.3.21)

Following Ramanujan’s directions, we equate coefficients of 1/wr, r ≥ 2, on
both sides of (12.3.21) to formally deduce that

0 = (−1)r−1αrζ(1− 2r) + 2(−1)r−1αr
∞∑

m=1

m2r−1

e2mα − 1

+ βrζ(1 − 2r) + 2βr
∞∑

m=1

m2r−1

e2mβ − 1
.

Using the relation [306, p. 19, Eq. (2.4.3)]

ζ(1 − 2r) = −B2r

2r
, r ≥ 1,

dividing both sides by 2(−1)r, and simplifying, we deduce (12.3.20). ��
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Entry 12.3.6 is identical to Entry 13 in Chap. 14 of Ramanujan’s second
notebook [268], [38, p. 261]. To the best of our knowledge, the first published
proof of Entry 12.3.6 was given by M.B. Rao and M.V. Ayyar [271] in 1923.
There exist many proofs of Entry 12.3.6, and even more proofs for the special
case α = β = π; see [38, pp. 261–262] for references. N.S. Koshliakov [189, 192]
has derived interesting analogues of Entry 12.3.6 and other entries in this
section.

Expanding the summands in geometric series, we deduce, as in previous
entries, the following corollary, which is, in essence, the transformation formula
for classical Eisenstein series.

Entry 12.3.7 (p. 319, formula (26)). If α and β are positive numbers such
that αβ = π2, and if r is a positive integer with r ≥ 2, then

αr

( ∞∑

m=1

σ2r−1(m)e−2mα − B2r

4r

)
= (−β)r

( ∞∑

m=1

σ2r−1(m)e−2mβ − B2r

4r

)
.

Entry 12.3.8 (p. 319, formula (27)). We have

∞∑

m=1

σ5(m)e−2πm =
1

504
.

Proof. Entry 12.3.8 follows immediately from Entry 12.3.7 by setting r = 3
and α = β = π, and then using the fact that B6 = 1

42 . ��

Entry 12.3.9 (pp. 319–320, formula (28)). If α and β are positive num-
bers such that αβ = π2, and if r is a positive integer, then

(4α)−r

(
1

2
ζ(2r + 1) +

∞∑

m=1

1

m2r+1(e2mα − 1)

)

− (−4β)−r

(
1

2
ζ(2r + 1) +

∞∑

m=1

1

m2r+1(e2mβ − 1)

)

= (4α)−r

(
1

2
ζ(2r + 1) +

∞∑

m=1

σ−1−2r(m)e−2mα

)

− (−4β)−r

(
1

2
ζ(2r + 1) +

∞∑

m=1

σ−1−2r(m)e−2mβ

)

= −
r+1∑

k=0

(−1)kB2kB2r+2−2kα
r+1−kβk

(2k)!(2r + 2− 2k)!
. (12.3.22)

Proof. Return to (12.3.11), use (12.3.10), and expand the summands into
geometric series to arrive at
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π

2
cot(

√
wα) coth(

√
wβ) =

1

2w
+

1

2
log
β

α

+

∞∑

m=1

{
1

m

∞∑

k=0

(
− w

m2α

)k (
1 +

2

e2mα − 1

)

− 1

m

∞∑

k=0

(
w

m2β

)k (
1 +

2

e2mβ − 1

)}
. (12.3.23)

Following Ramanujan’s advice, we equate coefficients of wr, r ≥ 1, on both
sides of (12.3.23). On the right side, the coefficient of wr equals

(−α)−rζ(2r + 1) + 2(−α)−r
∞∑

m=1

1

m2r+1(e2mα − 1)

−β−rζ(2r + 1) + 2β−r
∞∑

m=1

1

m2r+1(e2mβ − 1)
. (12.3.24)

Using the Laurent expansions for cot z and coth z about z = 0, we find that
on the left side of (12.3.23),

π

2
cot(

√
wα) coth(

√
wβ) =

π

2

∞∑

k=0

(−1)k22kB2k

(2k)!
(wα)k−1/2

×
∞∑

j=0

22jB2j

(2j)!
(wβ)j−1/2 . (12.3.25)

The coefficient of wr in (12.3.25) is easily seen to be equal to

22r+1
r+1∑

k=0

(−1)kB2kB2r+2−2k

(2k)!(2r + 2− 2k)!
αkβr+1−k, (12.3.26)

where we used the equality αβ = π2. Now equate the expressions in (12.3.24)
and (12.3.26), then multiply both sides by (−1)r2−2r−1, and lastly replace k
by r + 1 − k in the finite sum. We then have shown the equality of the first
and third expressions in (12.3.22). The first equality of (12.3.22) follows as
before by expanding the summands on the left side into geometric series. ��

Entry 12.3.9 is the same as Entry 21(i) in Chap. 14 of Ramanujan’s second
notebook [268], [38, pp. 275–276]. An extensive generalization of Entry 12.3.9
can be found in Entry 20 of Chap. 16 in Ramanujan’s first notebook [268], [40,
pp. 429–432]. The special case α = β = π of Entry 12.3.9 was first established
by M. Lerch [215] in 1901, but the general theorem was not proved in print
until S.L. Malurkar [220] did so in 1925. Inspired by two papers by E. Gross-
wald [130, 131], the second author established a proof of Entry 12.3.9, the first
claim in Ramanujan’s notebooks that the second author had ever examined;
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his first paper on Ramanujan’s work was the survey paper [30] on Ramanu-
jan’s formula for ζ(2n + 1). However, at about the same time, the second
author had established another proof of Ramanujan’s formula for ζ(2n + 1)
as well as a far-ranging generalization [33, Theorem 5.2]. The former paper
and the second author’s book [38, p. 276] contain a multitude of references
for the many proofs and generalizations of Entry 12.3.9. Sitaramachandrarao
[289] gave a proof of Entry 12.3.9 based on his partial fraction decomposition
(12.3.8), and so his proof is similar to that of Ramanujan. Further proofs
and generalizations have been given by D. Bradley [74], L. Veps̆tas [308],
and S. Kanemitsu, Y. Tanigawa, and M. Yoshimoto [171, 172]. A very en-
gaging proof, in fact of a significant generalization, via Barnes’s multiple zeta
functions, was devised by Y. Komori, K. Matsumoto, and H. Tsumura [186].
An especially interesting proof, arising out of a very general asymptotic for-
mula, has been devised by M. Katsurada [179]; see also interesting remarks
in his paper [180]. A discussion of Ramanujan’s formula in conjunction with
numerical calculations has been made by B. Ghusayni [122].

The two infinite series on the far left side of (12.3.22) converge very rapidly.
If we “ignore” these two series and let r be odd, then we see that ζ(2r+ 1) is
“almost” a rational multiple of π2r+1. Continuing this line of thought, suppose
that we set α = πz and β = πz, and now require that z be a root of

∞∑

m=1

1

m2r+1(e2mπz − 1)
+

∞∑

m=1

1

m2r+1(e2mπ/z − 1)
= 0.

Next, multiply both sides of (12.3.22) by (−1)r22r+1πrzr+1 and replace k by
r + 1− k in the finite sum on the far right-hand side. Hence, for such values
of z, we deduce that

Pk(z) :=
(2π)2k−1

(2k)!

r+1∑

k=0

(−1)k
B2kB2r+2−2k

(2k)!(2r + 2− 2k)!
z2k = 0. (12.3.27)

Accordingly, S. Gun, M.R. Murty, and P. Rath [138] defined the related
polynomials

R2k+1(z) :=

k+1∑

j=0

B2jB2k+2−2j

(2j)!(2k + 2− 2j)!
z2j

and showed that all of their nonreal roots lie on the unit circle. Murty,
C.J. Smyth, and R.J. Wang [230] discovered further properties of these poly-
nomials. In particular, they discovered bounds for their real zeros, and they
proved that the largest real zero approaches 2 from above, as k → ∞. M. Laĺın
and M.D. Rogers [205] studied polynomials that are similar to R2k+1(z) and
that are also related to further identities of Ramanujan, and showed that their
zeros lie on the unit circle. The study of the polynomials Pk(z) turns out to be
more difficult, and in [205], only partial results were obtained. In particular,
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for 2 ≤ k ≤ 1,000, the aforementioned authors showed that all of the roots
of Pk(z) lie on the unit circle. Finally, Laĺın and Smyth [206] proved that all
zeros of Pk(z) are indeed located on |z| = 1.

12.4 A Correct Partial Fraction Decomposition
and Hyperbolic Secant Sums

As in the previous section, we alter Ramanujan’s notation by setting
n = w = z2.

Entry 12.4.1 (p. 318, formula (22)). If α and β are positive numbers such
that αβ = π2/4, and if w �= −(2m+ 1)2α, (2m+ 1)2β, 0 ≤ m <∞, then

π

4
sec(

√
wα)sech(

√
wβ) =

∞∑

m=0

(−1)m
{
(2m+ 1)α sech(2m+ 1)α

w + (2m+ 1)2α

− (2m+ 1)β sech(2m+ 1)β

w − (2m+ 1)2β

}
. (12.4.1)

Proof. We apply the Mittag–Leffler theorem to

f(z) :=
π

4
sec(z

√
α)sech(z

√
β),

which has simple poles at z = (2m+ 1)π/(2
√
α) and z = (2m+ 1)πi/(2

√
β),

for each integer m. The residues are easily calculated to be

R((2m+ 1)π/(2
√
α)) = − (−1)mπ

4
√
α

sech(2m+ 1)β (12.4.2)

and

R((2m+ 1)πi/(2
√
β)) =

(−1)mπ

4i
√
β

sech(2m+ 1)α, (12.4.3)

where we used the relation αβ = π2/4. By (12.4.2), the contributions from
the poles z = (2m + 1)π/(2

√
α) and z = −(2m+ 1)π/(2

√
α), m ≥ 0, to the

partial fraction decomposition of f(z) are

(−1)mπ

4
√
α

(
− sech(2m+ 1)β

z − (2m+ 1)π/(2
√
α)

+
sech(2m+ 1)β

z + (2m+ 1)π/(2
√
α)

)

= − (−1)m(2m+ 1)β sech(2m+ 1)β

z2 − (2m+ 1)2β
,

(12.4.4)

where we used the equality αβ = π2/4. Next, by (12.4.3), the contributions
of the poles z = (2m+ 1)πi/(2

√
β) and z = −(2m+ 1)πi/(2

√
β), m ≥ 0, to

the partial fraction decomposition of f(z) are
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(−1)mπ

4i
√
β

(
sech(2m+ 1)α

z − (2m+ 1)πi/(2
√
β)

− sech(2m+ 1)α

z + (2m+ 1)πi/(2
√
β)

)

=
(−1)m(2m+ 1)α sech(2m+ 1)α

z2 + (2m+ 1)2α
,

(12.4.5)

upon using the equality αβ = π2/4. Thus, applying the Mittag–Leffler theo-
rem and using (12.4.4) and (12.4.5), we find that there exists an entire function
g(z) such that

π

4
sec(z

√
α)sech(z

√
β) =

∞∑

m=0

(−1)m
{
(2m+ 1)α sech(2m+ 1)α

z2 + (2m+ 1)2α

− (2m+ 1)β sech(2m+ 1)β

z2 − (2m+ 1)2β

}
+ g(z). (12.4.6)

Letting z → ∞, we find that limz→∞ g(z) = 0. Hence, g(z) ≡ 0, and thus
(12.4.1) follows to complete the proof. ��

An equivalent formulation of Entry 12.4.1 is found as Entry 19(iv) in
Chap. 14 of Ramanujan’s second notebook [268], [38, p. 273], where a different
kind of proof was indicated by Ramanujan.

Entry 12.4.2 (p. 320, formula (30)). If αβ = π2/4, where α and β are
positive numbers, and if r is any positive integer, then

αr
∞∑

m=0

(−1)m(2m+ 1)2r−1

cosh(2m+ 1)α
+ (−β)r

∞∑

m=0

(−1)m(2m+ 1)2r−1

cosh(2m+ 1)β
= 0. (12.4.7)

Proof. (nonrigorous) Return to (12.4.1) and formally expand the summands
on the right side into geometric series to deduce that

π

4
sec(

√
wα)sech(

√
wβ)

=

∞∑

m=0

(−1)m

{
(2m+ 1)α

w
sech(2m+ 1)α

∞∑

k=0

(
− (2m+ 1)2α

w

)k

− (2m+ 1)β

w
sech(2m+ 1)β

∞∑

k=0

(
(2m+ 1)2β

w

)k
}
.

(12.4.8)

Equating coefficients of 1/wr, r ≥ 1, on both sides of (12.4.8), we find that

0 =

∞∑

m=0

(−1)m+r−1(2m+ 1)2r−1αrsech(2m+ 1)α

−
∞∑

m=0

(−1)m(2m+ 1)2r−1βrsech(2m+ 1)β,

which is easily seen to be equivalent to (12.4.7). ��
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Entry 12.4.2 is Entry 14 of Chap. 14 in Ramanujan’s second notebook
[268], [38, p. 262], and the first proof known to us was given by Malurkar
[220]. See [38, p. 262] for further references and comments.

As with previous theorems, Ramanujan provides an alternative version of
Entry 12.4.2 in terms of divisor sums. The details are similar to those above,
and so we do not give them, but we remark that careful attention to the signs
of the summands should be taken.

Entry 12.4.3 (p. 321, formula (31)). If α and β are positive numbers such
that αβ = π2/4, and if r is any positive integer, then

αr
∞∑

m=0

(−1)mσ2r−1(m)e−(2m+1)α + (−β)r
∞∑

m=0

(−1)mσ2r−1(m)e−(2m+1)β = 0.

Recall that the Euler numbers E2k, k ≥ 0, are defined by [126, p. 42,
formula 1.411, no. 10]

sechz =

∞∑

k=0

E2k

(2k)!
z2k, |z| < π/2. (12.4.9)

Entry 12.4.4 (p. 321, formula (32)). If α and β are positive numbers such
that αβ = π2/4, if r is any positive integer, and if χ denotes the nonprincipal
primitive character of modulus 4, as in Sect. 12.2, then

2α1−r
∞∑

m=1

χ(m)m1−2r

cosh(mα)
+ 2(−β)1−r

∞∑

m=1

χ(m)m1−2r

cosh(mβ)

= 4α1−r
∞∑

m=1

χ(m)σ1−2r(m)e−mα + 2(−β)1−r
∞∑

m=1

χ(m)σ1−2r(m)e−mβ

=
π

2

r−1∑

k=0

(−1)k
E2kE2r−2−2k

(2k)!(2r − 2− 2k)!
αr−1−kβk. (12.4.10)

Proof. Return to (12.4.1) and expand both sides in Taylor series about 0.
Using (12.4.9), we find that

π

4

∞∑

j=0

(−1)j
E2j

(2j)!
(wα)j ·

∞∑

k=0

E2k

(2k)!
(wβ)k

=
∞∑

m=0

(−1)m

2m+ 1
sech(2m+ 1)α

∞∑

r=0

(−1)r
(

w

(2m+ 1)2α

)r

+

∞∑

m=0

(−1)m

2m+ 1
sech(2m+ 1)β

∞∑

r=0

(−1)r
(

w

(2m+ 1)2β

)r

. (12.4.11)

In (12.4.11) we equate coefficients of wr−1, r ≥ 1, on both sides to deduce
that
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π

4

r−1∑

j=0

(−1)j
E2jE2r−2j−2

(2j)!(2r − 2j − 2)!
αjβr−j−1

= α1−r
∞∑

m=0

(−1)m+1−rsech(2m+ 1)α

(2m+ 1)2r−1
+ β1−r

∞∑

m=0

(−1)msech(2m+ 1)β

(2m+ 1)2r−1
.

(12.4.12)

Now set j = r−1−k in the sum on the left side of (12.4.12) and multiply both
sides of (12.4.12) by 2(−1)r−1. We then readily deduce the equality of the first
and third expressions in (12.4.10). The first equality of (12.4.10) follows as
usual from expanding the summands on the left side into geometric series. ��

Entry 12.4.4 appears in two formulations, Entries 21(ii), (iii), in Chap. 14
of Ramanujan’s second notebook [268], [38, pp. 276–277]. The first proofs of
Entry 12.4.4 were found by Malurkar [220] and Chowla [93], [95, pp. 143–170],
and further references can be found in [38, p. 277].

Entry 12.4.5 (p. 321, formula (33)). We have

4

∞∑

m=0

(−1)mσ−1(m)e−(2m+1)α + 4

∞∑

m=0

(−1)mσ−1(m)e−(2m+1)β =
π

2
.

Proof. Set r = 1 in Entry 12.4.4. ��

S.-G. Lim [216] has generalized many of Ramanujan’s theorems on infi-
nite series identities from Ramanujan’s notebooks [268], in particular from
Chap. 14 in his second notebook, [38, Chap. 14]. For Example, Lim [216,
Corollaries 3.33, 3.35] has proved the following two results that generalize
Entries 12.3.3 and 12.3.5, respectively. Let α and β be positive numbers such
that αβ = π2. Suppose that c is any positive integer. Then

α

∞∑

m=1

m

e2m(α−iπ)/c − 1
+ β

∞∑

m=1

m

e2m(β+iπ)/c − 1
=
α+ β

24
− c

4

and

∞∑

m=1

1

m(e2m(α−iπ)/c − 1)
−

∞∑

m=1

1

m(e2m(β+iπ)/c − 1)

=
1

4
log
α

β
− α− β

12c
+

(c− 1)(c− 2)πi

12c
.

When c = 1 in the identities above, we deduce Entries 12.3.3 and 12.3.5,
respectively.

In another paper [217], Lim has found generalizations of the results in
Sect. 12.4. We state one of his general theorems.
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Theorem 12.4.1. Let α and β be positive numbers such that αβ = π2. Let r
be any real number such that 0 < r < 1. Then, for any integer n,

α−n
∞∑

k=1

(−1)k sinh((1− 2r)αk) sin((1 − 2r)πk)

k2n+1 sinh(αk)

= −(−β)−n
∞∑

k=1

(−1)k sinh((1 − 2r)βk) sin((1− 2r)πk)

k2n+1 sinh(βk)

− 22n+1π

n∑

k=0

B2k+1(r)B2n+1−2k(r)

(2k + 1)!(2n+ 1− 2k)!
αn−k(−β)k, (12.4.13)

where Bj(r), j ≥ 0, denotes the jth Bernoulli polynomial.

Although we avoid providing details, setting r = 1
4 in (12.4.13) yields

Entries 12.4.2 and 12.4.4 [217, Corollary 3.23, Proposition 3.21].



13

A Partial Manuscript on Fourier and Laplace

Transforms

13.1 Introduction

Pages 219–227 in the volume [269] containing Ramanujan’s lost notebook are
devoted to material “Copied from the Loose Papers.” These “loose papers,” in
the handwriting of G.N. Watson, are housed in the Oxford University Library,
while the original pages in Ramanujan’s handwriting, from which the copy
was made, are in the library at Trinity College, Cambridge. The three partial
manuscripts on these nine pages are in rough form, with two perhaps being
drafts of papers being prepared for publication. Most of these nine pages are
connected with material in Ramanujan’s published papers.

The first manuscript on pages 219–220 is the subject of this chapter. Most
of the manuscript is discussed in the next section. Section 13.3 is reserved
for the most interesting theorem in the manuscript, namely, a beautiful series
transformation involving the logarithmic derivative of the gamma function,
which in a second formula, is related to the Riemann zeta function. Our two
proofs of this elegant transformation formula are taken from a paper by Berndt
and A. Dixit [51]. These two formulas have an interesting history that we relate
at the beginning of Sect. 13.3. Since all entries in this chapter can be found on
either page 219 or 220 in [269], we refrain from giving page numbers beside
entries in the sequel.

13.2 Fourier and Laplace Transforms

Following Ramanujan, we proceed formally without giving attention to such
matters as inverting the order of integration in double integrals. It is clear
that hypotheses are easily added to make any procedure rigorous.

G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook:
Part IV, DOI 10.1007/978-1-4614-4081-9 13,
© Springer Science+Business Media New York 2013

285
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Entry 13.2.1. If
∫ ∞

0

f(x) sin(nx)dx =: φ(n) (13.2.1)

and ∫ ∞

0

f(x)e−nxdx =: ψ(n), (13.2.2)

then ∫ ∞

0

φ(x)e−nxdx =

∫ ∞

0

ψ(x) cos(nx)dx (13.2.3)

and ∫ ∞

0

φ

(
1

x

)
e−nxdx = −

∫ ∞

0

ψ

(
1

x

)
cos(nx)dx. (13.2.4)

Proof. We employ the elementary integral evaluations [126, p. 512, Eqs.
(3.893), no. 1, no. 2]

∫ ∞

0

e−nx sin(xt)dx =
t

n2 + t2
, n > 0, (13.2.5)

and ∫ ∞

0

e−nx cos(xt)dx =
n

n2 + t2
, n > 0. (13.2.6)

To prove (13.2.3), we use (13.2.1), (13.2.5), (13.2.6), and (13.2.2) to
deduce that

∫ ∞

0

φ(x)e−nxdx =

∫ ∞

0

∫ ∞

0

f(t)e−nx sin(xt) dt dx

=

∫ ∞

0

f(t)

∫ ∞

0

e−nx sin(xt) dx dt

=

∫ ∞

0

f(t)

∫ ∞

0

e−tx cos(nx) dx dt

=

∫ ∞

0

ψ(x) cos(nx)dx,

which completes the proof of the first claim.
Using (13.2.1) and making the substitution t = ux, we find that
∫ ∞

0

φ

(
1

x

)
e−nxdx =

∫ ∞

0

∫ ∞

0

f(t)e−nx sin(t/x) dt dx

=

∫ ∞

0

∫ ∞

0

xf(ux)e−nx sinu du dx

= − d

dn

∫ ∞

0

∫ ∞

0

f(ux)e−nx sinu dx du. (13.2.7)
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Note that upon the replacement of n by n/t and x by tu in (13.2.2),

ψ
(n
t

)
= t

∫ ∞

0

f(tu)e−nudu. (13.2.8)

Thus, from (13.2.7) and (13.2.8),

∫ ∞

0

φ

(
1

x

)
e−nxdx = − d

dn

∫ ∞

0

ψ
(n
u

) sinu

u
du

= − d

dn

∫ ∞

0

ψ

(
1

x

)
sin(nx)

x
dx

= −
∫ ∞

0

ψ

(
1

x

)
cos(nx)dx,

which completes the proof of (13.2.4). ��

Entry 13.2.2. If
∫ ∞

0

f(x) cos(nx)dx =: φ(n) (13.2.9)

and ∫ ∞

0

f(x)e−nxdx =: ψ(n), (13.2.10)

then ∫ ∞

0

φ(x)e−nxdx =

∫ ∞

0

ψ(x) sin(nx)dx (13.2.11)

and ∫ ∞

0

φ

(
1

x

)
e−nxdx =

∫ ∞

0

ψ

(
1

x

)
sin(nx)dx. (13.2.12)

Proof. The details of the proof of Entry 13.2.2 are completely analogous to
those for the proof of Entry 13.2.1, and so there is no need to give them here.

��

Suppose now that f(x) is self-reciprocal in Entries 13.2.1 and 13.2.2, that
is to say,

f(x) =

√
2

π
φ(x).

Hence, from (13.2.2),
∫ ∞

0

φ(x)e−nxdx =

√
π

2

∫ ∞

0

f(x)e−nxdx =

√
π

2
ψ(n).

Then we see that (13.2.3) and (13.2.11) easily yield the next theorem.



288 13 A Partial Manuscript on Fourier and Laplace Transforms

Entry 13.2.3. If
∫ ∞

0

φ(x) sin(nx)dx =

√
π

2
φ(n)

and ∫ ∞

0

φ(x)e−nxdx =: ψ(n),

then ∫ ∞

0

ψ(x) cos(nx)dx =

√
π

2
ψ(n). (13.2.13)

If
∫ ∞

0

φ(x) cos(nx)dx =

√
π

2
φ(n)

and ∫ ∞

0

φ(x)e−nxdx =: ψ(n),

then ∫ ∞

0

ψ(x) sin(nx)dx =

√
π

2
ψ(n). (13.2.14)

Ramanujan then writes that (13.2.13) and (13.2.14) “enable us to find a
number of reciprocal functions of the first and second kind out of one reciprocal
function.” He does not define what he means by “the first and second kind.”
Some examples of self-reciprocal functions are next recorded.

Entry 13.2.4. For n > 0,

∫ ∞

0

(
1

e2πx − 1
− 1

2πx

)
sin(2πnx)dx =

1

2

(
1

e2πn − 1
− 1

2πn

)
. (13.2.15)

Proof. This result is well known, and we shall be content with quoting from
Titchmarsh’s Theory of Fourier Integrals [305, p. 245]:

1

e
√
2π x − 1

− 1√
2π x

=

√
2

π

∫ ∞

0

(
1

e
√
2π y − 1

− 1√
2π y

)
sin(xy)dy

= 2

∫ ∞

0

(
1

e2πu − 1
− 1

2πu

)
sin(

√
2π xu)du.

Replacing x by
√
2π n, we immediately verify Ramanujan’s claim. ��

It will be convenient to use the familiar notation [126, p. 952, formu-
las 8.360, 8.362, no. 1]
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ψ(x) :=
Γ ′(x)
Γ (x)

= −γ −
∞∑

k=0

(
1

k + x
− 1

k + 1

)
, (13.2.16)

where γ denotes Euler’s constant. The notation ψ(x) conflicts with the generic
notation that we have utilized in Entries 13.2.1 and 13.2.2, but no confusion
should arise in the sequel.

Entry 13.2.5. For n > 0,
∫ ∞

0

(
1

e2πx − 1
− 1

2πx

)
e−2πnxdx =

1

2π
(logn− ψ(1 + n)) . (13.2.17)

In the manuscript in [269], a factor of −1/(2π) is missing on the right-hand
side of (13.2.17).

Proof. We begin with the evaluation [126, p. 377, formula 3.427, no. 7]
∫ ∞

0

(
e−νx

1− e−x
− e

−μx

x

)
dx = logμ− ψ(ν),

where μ, ν > 0. Set ν = n+ 1 and μ = n to deduce, after simplification, that

logn− ψ(n+ 1) =

∫ ∞

0

(
1

ex − 1
− 1

x

)
e−nxdx

= 2π

∫ ∞

0

(
1

e2πu − 1
− 1

2πu

)
e−2πnudu.

Thus, (13.2.17) is apparent. ��

Entry 13.2.6. If n > 0,
∫ ∞

0

(ψ(1 + x) − log x) cos(2πnx)dx =
1

2
(ψ(1 + n)− logn) . (13.2.18)

Proof. Setting u = 2πx in (13.2.15), we record that
∫ ∞

0

(
1

eu − 1
− 1

u

)
sin(nu)du = π

(
1

e2πn − 1
− 1

2πn

)
. (13.2.19)

Thus, in the notation of Entry 13.2.1,

f(x) =
1

ex − 1
− 1

x
and φ(n) = π

(
1

e2πn − 1
− 1

2πn

)
.

By (13.2.17),
∫ ∞

0

f(x)e−nxdx =

∫ ∞

0

(
1

ex − 1
− 1

x

)
e−nxdx

= 2π

∫ ∞

0

(
1

e2πu − 1
− 1

2πu

)
e−2πnudu

= logn− ψ(1 + n). (13.2.20)
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Thus, in the notation of Entry 13.2.1,

∫ ∞

0

φ(x)e−nxdx = π

∫ ∞

0

(
1

e2πx − 1
− 1

2πx

)
e−nxdx

=

∫ ∞

0

(log x− ψ(1 + x)) cos(nx)dx.

Replacing n by 2πn above, we find that

π

∫ ∞

0

(
1

e2πx − 1
− 1

2πx

)
e−2πnxdx =

∫ ∞

0

(log x− ψ(1 + x)) cos(2πnx)dx,

or, by (13.2.20),

1

2
(logn− ψ(1 + n)) =

∫ ∞

0

(log x− ψ(1 + x)) cos(2πnx)dx,

as claimed. ��

Ramanujan next quotes the following self-reciprocal Fourier cosine trans-
form [126, p. 537, formula 3.981, no. 3].

Entry 13.2.7. For real n,

∫ ∞

0

cos(12πnx)

cosh(12πx)
dx =

1

cosh(12πn)
. (13.2.21)

Then he records the following entry.

Entry 13.2.8. For n > 0,

∫ ∞

0

e−
1
2πnx

cosh(12πx)
dx =

4

π

∞∑

k=0

(−1)k

n+ 2k + 1
. (13.2.22)

This follows from the evaluation [126, p. 399, formula 3.541, no. 6]

∫ ∞

0

e−
1
2πnx

cosh(12πx)
dx =

1

π

{
ψ

(
n+ 3

4

)
− ψ

(
n+ 1

4

)}

=
4

π

∞∑

k=0

(
− 1

4k + n+ 3
+

1

4k + n+ 1

)

=
4

π

∞∑

k=0

(−1)k

2k + n+ 1
,

where we utilized (13.2.16).
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Entry 13.2.9. For n > 0,

∫ ∞

0

∞∑

k=0

(−1)k

x+ 2k + 1
sin(12πnx)dx =

∞∑

k=0

(−1)k

n+ 2k + 1
. (13.2.23)

Proof. Rewrite (13.2.21) as

∫ ∞

0

cos(nu)

coshu
du =

π

2 cosh(12πn)
.

We are thus going to apply Entry 13.2.2 with

f(x) =
1

coshx
and φ(x) =

π

2 cosh(12πx)
.

From (13.2.22),

∫ ∞

0

f(x)e−nxdx =

∫ ∞

0

e−nx

coshx
dx =

π

2

∫ ∞

0

e−
1
2πnu

cosh(12πu)
du

= 2

∞∑

k=0

(−1)k

n+ 2k + 1
:= ψ(n).

Hence, by Entry 13.2.2,

π

2

∫ ∞

0

e−nx

cosh(12πx)
dx = 2

∫ ∞

0

∞∑

k=0

(−1)k

x+ 2k + 1
sin(nx)dx, (13.2.24)

or, if we replace n by 1
2πn,

π

4

∫ ∞

0

e−
1
2πnx

cosh(12πx)
dx =

∫ ∞

0

∞∑

k=0

(−1)k

x+ 2k + 1
sin(12πnx)dx.

Lastly, if we employ (13.2.22) in the foregoing equality, we conclude that

∞∑

k=0

(−1)k

n+ 2k + 1
=

∫ ∞

0

∞∑

k=0

(−1)k

x+ 2k + 1
sin(12πnx)dx, (13.2.25)

which is what we wanted to prove. ��

Next Ramanujan restates Entries 13.2.1 and 13.2.2 under the assumption

f(x) =

√
2

π
φ(x),

that is to say, φ(x) is self-reciprocal. Since his claims are identical to those in
Entry 13.2.3, we forego restating them here.
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Ramanujan then provides some examples, which are essentially ones that
he gave above. First,

∫ ∞

0

cos(nx)

cosh

(
x

√
π

2

)dx =

√
π

2

1

cosh

(
n

√
π

2

) ,

which is an easy consequence of (13.2.21). Second,

∫ ∞

0

e−nx

cosh

(
x

√
π

2

)dx = 2

∞∑

k=0

(−1)k

n+

√
π

2
(2k + 1)

.

To establish this identity, replace x by
√
2/π x and n by

√
2/π n in (13.2.22).

Third,
∫ ∞

0

∞∑

k=0

(−1)k

x+ 2k + 1
sin(12πnx)dx =

∞∑

k=0

(−1)k

n+ 2k + 1
,

which is the same as (13.2.25). Fourth,

∫ ∞

0

(
1

e
√
2π x − 1

− 1√
2π x

)
sin(nx)dx =

√
π

2

(
1

e
√
2π n − 1

− 1√
2π n

)
.

This last identity follows easily from (13.2.15) upon replacing x by x/
√
2π

and n by n/
√
2π.

The next two examples contain errors. Ramanujan’s fifth example asserts
that
∫ ∞

0

(
1

e
√
2π x − 1

− 1√
2π x

)
e−nxdx =

√
2π

{
γ + log

n√
2π

− ψ
(
1 +

n√
2π

)}
,

(13.2.26)

where γ denotes Euler’s constant and ψ(x) is defined in (13.2.16). Return to
(13.2.17) and replace x by x/

√
2π and n by n/

√
2π. Because, as we previously

noted, Ramanujan missed a factor of −1/(2π) in (13.2.17), we see that the
factor

√
2π on the right-hand side above should be replaced by −1/

√
2π. How-

ever, there is another error in (13.2.26), because of the spurious appearance
of γ on the right-hand side of (13.2.26). Lastly, Ramanujan asserts that

∫ ∞

0

{γ + log x− ψ(1 + x)} cos(2πnx)dx =
1

2
{γ + logn− ψ(1 + n)} .

(13.2.27)

To see that the claim (13.2.27) is false, we recall that [1, p. 259], as x→ ∞,
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ψ(x + 1) ∼ log x+
1

2x
+O

(
1

x2

)
. (13.2.28)

Thus, we see that the integral in (13.2.27) diverges.

13.3 A Transformation Formula

The most interesting claim made by Ramanujan in the fragment on pages 219
and 220 of [269] is the next entry. To state this claim, we need to recall the
following functions associated with Riemann’s zeta function ζ(s). Let

ξ(s) := (s− 1)π−
1
2 sΓ (1 + 1

2s)ζ(s).

Then Riemann’s Ξ-function is defined by

Ξ(t) := ξ(12 + it). (13.3.1)

Entry 13.3.1. Define

φ(x) := ψ(x) +
1

2x
− log x. (13.3.2)

If α and β are positive numbers such that αβ = 1, then

√
α

{
γ − log(2πα)

2α
+

∞∑

n=1

φ(nα)

}
=
√
β

{
γ − log(2πβ)

2β
+

∞∑

n=1

φ(nβ)

}

= − 1

π3/2

∫ ∞

0

∣∣∣∣Ξ
(
1

2
t

)
Γ

(
−1 + it

4

)∣∣∣∣
2 cos

(
1
2 t logα

)

1 + t2
dt, (13.3.3)

where γ denotes Euler’s constant and Ξ(x) denotes Riemann’s Ξ-function.

Although Ramanujan does not provide a proof of (13.3.3), he does indicate
that (13.3.3) “can be deduced from” Entry 13.2.6, or (13.2.18). This remark
might lead one to believe that his proof of (13.3.3) rests upon the Poisson
summation formula. We provide below a proof of the first equality in (13.3.3)
that naturally establishes the second equality as well. Then we give a proof
of the first equality in (13.3.3) by means of the Poisson summation formula,
but, as we indicated, no connection with ζ(s) and the integral in the second
equality is obtained in this way. In both proofs, the self-reciprocal Fourier
cosine transform in (13.2.18) is an essential ingredient.

The self-reciprocal property of ψ(1 + x) − log x was rediscovered by
A.P. Guinand [133] in 1947, and he later found a simpler proof of this result
in [135]. In a footnote at the end of his paper [135], Guinand remarks that
T.A. Brown had told him that he himself had proved the self-reciprocality
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of ψ(1 + x) − log x some years ago, and that when he (Brown) communi-
cated the result to G.H. Hardy, Hardy told him that the result was also
given by Ramanujan in a progress report to the University of Madras, but
was not published elsewhere. However, we cannot find this result in any of
the three Quarterly Reports that Ramanujan submitted to the University of
Madras [35–37]. In contrast to what Hardy recalled, it would appear that he
saw (13.2.18) in the aforementioned manuscript that Watson had copied. We
surmise that Hardy once possessed the original copies of both the Quarterly
Reports and the present manuscript on pages 219–220 of [269], both of which
were most likely mailed to him on August 30, 1923, by Francis Dewsbury,
registrar at the University of Madras [64, p. 266]. It could be that the two
documents were kept together, and so it is understandable that Hardy con-
cluded that the manuscript was part of the Quarterly Reports. Unfortunately,
the only copy of Ramanujan’s Quarterly Reports that now exists is in Watson’s
handwriting.

The first equality in (13.3.3) was rediscovered by Guinand in [133] and
appears in a footnote on the last page of his paper [133, p. 18]. It is interesting
that Guinand remarks, “This formula also seems to have been overlooked.”
Here then is one more instance in which a mathematician thought that his
or her theorem was new, but unbeknownst to the claimant, Ramanujan had
beaten her/him to the punch! We now give Guinand’s version of (13.3.3).

Theorem 13.3.1. For any complex z such that | arg z| < π, we have

∞∑

n=1

(
ψ(nz)− lognz +

1

2nz

)
+

1

2z
(γ − log 2πz)

=
1

z

∞∑

n=1

(
ψ
(n
z

)
− log

n

z
+
z

2n

)
+

1

2

(
γ − log

2π

z

)
. (13.3.4)

The first equality in (13.3.3) can be easily obtained from Guinand’s version by
multiplying both sides of (13.3.4) by

√
z and then letting z = α and 1/z = β.

Although not offering a proof of (13.3.4) in [133], Guinand did remark that it
can be obtained by using an appropriate form of Poisson’s summation formula,
namely the form given in Theorem 1 in [132]. Later Guinand gave another
proof of Theorem 13.3.1 in [135], while also giving extensions of (13.3.4) involv-
ing derivatives of the ψ-function. He also established a finite version of (13.3.4)
in [137]. However, Guinand apparently did not discover the connection of his
work with Ramanujan’s integral involving Riemann’s Ξ-function.

We first provide a proof of both identities in Entry 13.3.1. Then we con-
struct a second proof of the first equality in (13.3.3), or, more precisely,
of (13.3.4), along the lines suggested by Guinand in [133]. We could have also
provided another proof of (13.3.3) employing both (13.2.18) and (13.2.17), but
this proof is similar but slightly more complicated than the first proof that we
provide below. The two proofs of Entry 13.3.1 given here are from a paper by
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A. Dixit and the second author [51]. In two further papers [107, 108], Dixit
has found further proofs of Entry 13.3.1.

Although the Riemann zeta function appears at various instances through-
out Ramanujan’s notebooks [268] and lost notebook [269], he wrote only one
paper in which the zeta function plays the leading role [257], [267, pp. 72–77].
In fact, a result proved by Ramanujan in [257], namely Eq. (13.3.18) below, is
a key to proving (13.3.3). About the integral involving Riemann’s Ξ-function
in this result, Hardy [143] comments that “the properties of this integral re-
semble those of one which Mr. Littlewood and I have used, in a paper to be
published shortly in the Acta Mathematica, to prove that

∫ T

−T

∣∣∣∣ζ
(
1

2
+ ti

)∣∣∣∣
2

dt ∼ 2T logT.” (13.3.5)

(We have corrected a misprint in Hardy’s version of (13.3.5).)
In a paper immediately following Ramanujan’s paper [257], Hardy [143]

remarks that the integral on the right-hand side in Ramanujan’s formula [257,
p. 75, Eq. (13)] can be used to prove that there are infinitely many zeros of
ζ(s) on the critical line Re s = 1

2 , and then he concludes his note by stat-
ing (13.3.6) below, which he says is not unlike the aforementioned formula of
Ramanujan. However, Hardy does not give a proof of his formula. Proofs were
independently supplied by N.S. Koshliakov [190],[193, Eq. (20)], [194, Chap. 9,
Sect. 36], [196, Eq. (34.10)] and Dixit [107]. In Hardy’s formulation, the sign
of 1

2γ should be + and not −. The sign error was corrected in the papers
by Koshliakov and Dixit, but there is an erroneous added factor of log 2 in
Koshliakov’s formulation in [196]. Koshliakov [190, 195] and Dixit [111] also
have given generalizations of Hardy’s result.

Theorem 13.3.2 (Correct version). For real n,

∫ ∞

0

Ξ(12 t)

1 + t2
cosnt

cosh 1
2πt

dt =
1

4
e−n

(
2n+

1

2
γ +

1

2
log π + log 2

)

+
1

2
en
∫ ∞

0

ψ(x+ 1)e−πx2e4n dx. (13.3.6)

Inexplicably, this short note [143] is not reproduced in any of the seven
volumes of the Collected Papers of G.H. Hardy!

First Proof of Entry 13.3.1. We first collect several well-known theorems
that we use in our proof. First, from [99, p. 191], for t �= 0,

∞∑

n=1

1

t2 + 4n2π2
=

1

2t

(
1

et − 1
− 1

t
+

1

2

)
. (13.3.7)

Second, from [315, p. 251], we find that for Re z > 0,
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φ(z) = −2

∫ ∞

0

t dt

(t2 + z2)(e2πt − 1)
. (13.3.8)

Third, we require Binet’s integral for logΓ (z), i.e., for Re z > 0 [315, p. 249],
[126, p. 377, formula 3.427, no. 4],

logΓ (z) =

(
z − 1

2

)
log z − z + 1

2
log(2π) +

∫ ∞

0

(
1

2
− 1

t
+

1

et − 1

)
e−zt

t
dt.

(13.3.9)

Fourth, from [126, p. 377, formula 3.427, no. 2], we find that

∫ ∞

0

(
1

1− e−x − 1

x

)
e−xdx = γ, (13.3.10)

where γ denotes Euler’s constant. Fifth, by Frullani’s integral [126, p. 378,
formula 3.434, no. 2],

∫ ∞

0

e−μx − e−νx

x
dx = log

ν

μ
. (13.3.11)

Our first goal is to establish an integral representation for the far left side
of (13.3.3). Replacing z by nα in (13.3.8) and summing on n, 1 ≤ n <∞, we
find that

∞∑

n=1

φ(nα) = −2

∞∑

n=1

∫ ∞

0

t dt

(t2 + n2α2)(e2πt − 1)

= − 2

α2

∫ ∞

0

t

(e2πt − 1)

∞∑

n=1

1

(t/α)2 + n2
. (13.3.12)

Invoking (13.3.7) in (13.3.12), we see that

∞∑

n=1

φ(nα) = −2π

α

∫ ∞

0

1

(e2πt − 1)

(
1

e2πt/α − 1
− α

2πt
+

1

2

)
dt. (13.3.13)

Next, setting x = 2πt in (13.3.10), we readily find that

γ =

∫ ∞

0

(
2π

e2πt − 1
− e

−2πt

t

)
dt. (13.3.14)

By Frullani’s integral (13.3.11),

∫ ∞

0

e−t/α − e−2πt

t
dt = log

(
2π

1/α

)
= log(2πα). (13.3.15)

Combining (13.3.14) and (13.3.15), we arrive at
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γ − log (2πα) =

∫ ∞

0

(
2π

e2πt − 1
− e

−t/α

t

)
dt. (13.3.16)

Hence, from (13.3.13) and (13.3.16), we deduce that

√
α

(
γ − log(2πα)

2α
+

∞∑

n=1

φ(nα)

)
(13.3.17)

=
1

2
√
α

∫ ∞

0

(
2π

e2πt − 1
− e

−t/α

t

)
dt

− 2π√
α

∫ ∞

0

1

(e2πt − 1)

(
1

e2πt/α − 1
− α

2πt
+

1

2

)
dt

=

∫ ∞

0

( √
α

t(e2πt − 1)
− 2π

√
α(e2πt/α − 1)(e2πt − 1)

− e
−t/α

2t
√
α

)
dt.

Now from [257, p. 260, Eq. (22)] or [267, p. 77], for n real,

∫ ∞

0

Γ

(
−1 + it

4

)
Γ

(
−1− it

4

)(
Ξ

(
1

2
t

))2
cosnt

1 + t2
dt

=

∫ ∞

0

∣∣∣∣Ξ
(
1

2
t

)
Γ

(
−1 + it

4

)∣∣∣∣
2
cosnt

1 + t2
dt

= π3/2
∫ ∞

0

(
1

exe
n − 1

− 1

xen

)(
1

exe
−n − 1

− 1

xe−n

)
dx. (13.3.18)

Letting n = 1
2 logα and x = 2πt/

√
α in (13.3.18), we deduce that

− 1

π3/2

∫ ∞

0

∣∣∣∣Ξ
(
1

2
t

)
Γ

(
−1 + it

4

)∣∣∣∣
2 cos(12 t logα)

1 + t2
dt (13.3.19)

= − 2π√
α

∫ ∞

0

(
1

e2πt − 1
− 1

2πt

)(
1

e2πt/α − 1
− α

2πt

)
dt

=

∫ ∞

0

(
−2π/

√
α

(e2πt/α−1)(e2πt−1)
+

√
α

t(e2πt−1)
+

1

t
√
α(e2πt/α − 1)

−
√
α

2πt2

)
dt.

Hence, combining (13.3.17) and (13.3.19), in order to prove that the far left
side of (13.3.3) equals the far right side of (13.3.3), we see that it suffices to
show that

∫ ∞

0

(
1

t
√
α(e2πt/α − 1)

−
√
α

2πt2
+
e−t/α

2t
√
α

)
dt

=
1√
α

∫ ∞

0

(
1

u(eu − 1)
− 1

u2
+
e−u/(2π)

2u

)
du = 0, (13.3.20)
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where we made the change of variable u = 2πt/α. In fact, more generally, we
show that

∫ ∞

0

(
1

u(eu − 1)
− 1

u2
+
e−ua

2u

)
du = −1

2
log(2πa), (13.3.21)

so that if we set a = 1/(2π) in (13.3.21), we deduce (13.3.20).
Consider the integral, for t > 0,

F (a, t) : =

∫ ∞

0

{(
1

eu − 1
− 1

u
+

1

2

)
e−tu

u
+
e−ua − e−tu

2u

}
du

= logΓ (t)−
(
t− 1

2

)
log t+ t− 1

2
log(2π) +

1

2
log

t

a
, (13.3.22)

where we applied (13.3.9) and (13.3.11). Upon the integration of (13.2.16), it
is easily gleaned that as t→ 0+,

logΓ (t) ∼ − log t− γt,

where γ denotes Euler’s constant. Using this in (13.3.22), we find, upon sim-
plification, that as t→ 0+,

F (a, t) ∼ −γt− t log t+ t− 1

2
log(2π)− 1

2
log a.

Hence,

lim
t→0+

F (a, t) = −1

2
log(2πa). (13.3.23)

Letting t approach 0+ in (13.3.22), taking the limit under the integral sign on
the right-hand side using Lebesgue’s dominated convergence theorem, and em-
ploying (13.3.23), we immediately deduce (13.3.21). As previously discussed,
this is sufficient to prove the equality of the first and third expressions in
(13.3.3), namely,

√
α

{
γ − log(2πα)

2α
+

∞∑

n=1

φ(nα)

}

= − 1

π3/2

∫ ∞

0

∣∣∣∣Ξ
(
1

2
t

)
Γ

(
−1 + it

4

)∣∣∣∣
2 cos

(
1
2 t logα

)

1 + t2
dt. (13.3.24)

Lastly, using (13.3.24) with α replaced by β and employing the relation
αβ = 1, we conclude that

√
β

{
γ − log(2πβ)

2β
+

∞∑

n=1

φ(nβ)

}

= − 1

π3/2

∫ ∞

0

∣∣∣∣Ξ
(
1

2
t

)
Γ

(
−1 + it

4

)∣∣∣∣
2 cos

(
1
2 t log β

)

1 + t2
dt
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= − 1

π3/2

∫ ∞

0

∣∣∣∣Ξ
(
1

2
t

)
Γ

(
−1 + it

4

)∣∣∣∣
2 cos

(
1
2 t log(1/α)

)

1 + t2
dt

= − 1

π3/2

∫ ∞

0

∣∣∣∣Ξ
(
1

2
t

)
Γ

(
−1 + it

4

)∣∣∣∣
2 cos

(
1
2 t logα

)

1 + t2
dt.

Hence, the equality of the second and third expressions in (13.3.3) has been
demonstrated, and so the proof is complete. ��

We next give our second proof of the first identity in (13.3.3) using
Guinand’s generalization of Poisson’s summation formula in [132]. We em-
phasize that this route does not take us to the integral involving Riemann’s
Ξ-function in the second identity of (13.3.3). First, we reproduce the needed
version of the Poisson summation formula from Theorem 1 in [132].

Theorem 13.3.3. If f(x) has a Fourier integral representation, f(x) tends
to zero as x → ∞, and xf

′
(x) belongs to Lp(0,∞), for some p, 1 < p ≤ 2,

then

lim
N→∞

(
N∑

n=1

f(n)−
∫ N

0

f(t) dt

)
= lim

N→∞

(
N∑

n=1

g(n)−
∫ N

0

g(t) dt

)
,

where

g(x) = 2

∫ ∞

0

f(t) cos(2πxt) dt. (13.3.25)

We first state a lemma1 that will subsequently be used in our proof of
(13.3.3).

Lemma 13.3.1. If ψ(x) is defined by (13.2.16), then

∫ ∞

0

(
ψ(t+ 1)− 1

2(t+ 1)
− log t

)
dt =

1

2
log 2π. (13.3.26)

Proof. Let I denote the integral on the left-hand side of (13.3.26). Then,

I =

∫ ∞

0

d

dt

(
log
etΓ (t+ 1)

tt
√
t+ 1

)
dt

= lim
t→∞ log

etΓ (t+ 1)

tt
√
t+ 1

− lim
t→0

log
etΓ (t+ 1)

tt
√
t+ 1

= log lim
t→∞

etΓ (t+ 1)

tt
√
t+ 1

− log
(
lim
t→0

etΓ (t+ 1)
)
− lim

t→0
t log t− lim

t→0

1

2
log(t+ 1)

= log lim
t→∞

etΓ (t+ 1)

tt
√
t+ 1

. (13.3.27)

1 The authors are indebted to M.L. Glasser for the proof of this lemma. The authors’
original proof of this lemma was substantially longer than Glasser’s given here.
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Next, Stirling’s formula [126, p. 945, formula 8.327] tells us that

Γ (z) ∼
√
2π zz−1/2e−z, (13.3.28)

as |z| → ∞ for | arg z| ≤ π− δ, where 0 < δ < π. Hence, employing (13.3.28),
we find that

etΓ (t+ 1)

tt
√
t+ 1

∼
√
2π

e

(
1 +

1

t

)t

, (13.3.29)

so that

lim
t→∞

etΓ (t+ 1)

tt
√
t+ 1

=
√
2π. (13.3.30)

Thus, from (13.3.27) and (13.3.30), we conclude that

I =
1

2
log 2π. (13.3.31)

��

Second Proof of the first equality of (13.3.3), or of (13.3.4). We first prove
(13.3.3) for Re z > 0. Let

f(x) = ψ(xz + 1)− log xz. (13.3.32)

We show that f(x) satisfies the hypotheses of Theorem 13.3.3. From (13.2.18),
we see that f(x) has the required integral representation. Next, we need two
formulas for ψ(x). First, from [1, p. 259, formula 6.3.18], for | arg z| < π, as
z → ∞,

ψ(z) ∼ log z − 1

2z
− 1

12z2
+

1

120z4
− 1

252z6
+ · · · . (13.3.33)

Second, from [315, p. 250],

ψ
′
(z) =

∞∑

n=0

1

(z + n)2
. (13.3.34)

Using the easily verified equality

ψ(x+ 1) = ψ(x) +
1

x
, (13.3.35)

(13.3.32), and (13.3.33), we see that

f(x) ∼ 1

2xz
− 1

12x2z2
+

1

120x4z4
− 1

252x6z6
+ · · · , (13.3.36)
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so that

lim
x→∞ f(x) = 0. (13.3.37)

Next, we show that xf
′
(x) belongs to Lp(0,∞) for some p such that 1 <

p ≤ 2. Using (13.3.36), we find that as x→ ∞,

xf
′
(x) ∼ − 1

2xz
, (13.3.38)

so that |xf ′
(x)|p ∼ (2x|z|)−p. Thus, for p > 1, we see that xf

′
(x) is locally

integrable near ∞. Also, using (13.3.35) and (13.3.34), we have

lim
x→0

xf
′
(x) = lim

x→0

(
xz

∞∑

n=0

1

(xz + n)2
− 1

xz
− 1

)

= lim
x→0

(
xz

∞∑

n=1

1

(xz + n)2
− 1

)

= −1. (13.3.39)

This proves that xf
′
(x) is locally integrable near 0. Hence, we have shown

that xf
′
(x) belongs to Lp(0,∞) for some p such that 1 < p ≤ 2.

Now from (13.3.25) and (13.3.32), we find that

g(x) = 2

∫ ∞

0

(ψ(tz + 1)− log tz) cos (2πxt) dt.

Employing the change of variable y = tz and using (13.2.18), we find that

g(x) =
2

z

∫ ∞

0

(ψ(y + 1)− log y) cos (2πxy/z)dy

=
1

z

(
ψ
(x
z
+ 1
)
− log

(x
z

))
. (13.3.40)

Substituting the expressions for f(x) and g(x) from (13.3.32) and (13.3.40),
respectively, in Theorem 13.3.3, we find that

lim
N→∞

(
N∑

n=1

(ψ(nz + 1)− lognz)−
∫ N

0

(ψ(tz + 1)− log tz) dt

)
(13.3.41)

=
1

z

[
lim

N→∞

(
N∑

n=1

(
ψ
(n
z
+ 1
)
− log

n

z

)
−
∫ N

0

(
ψ

(
t

z
+ 1

)
− log

t

z

)
dt

)]
.

Thus, with the use of (13.3.35),
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lim
N→∞

(
N∑

n=1

(
Γ

′

Γ
(nz) +

1

2nz
− lognz

)

+

N∑

n=1

1

2nz
−
∫ N

0

(ψ(tz + 1)− log tz) dt

)

=
1

z

[
lim

N→∞

(
N∑

n=1

(
Γ

′

Γ

(n
z

)
+
z

2n
− log

n

z

)

+

N∑

n=1

z

2n
−
∫ N

0

(
ψ

(
t

z
+ 1

)
− log

t

z

)
dt

)]
. (13.3.42)

Now if we can show that

lim
N→∞

(
N∑

n=1

1

2nz
−
∫ N

0

(ψ(tz + 1)− log tz) dt

)
=
γ − log 2πz

2z
, (13.3.43)

then replacing z by 1/z in (13.3.43) will give us

lim
N→∞

(
N∑

n=1

z

2n
−
∫ N

0

(
ψ

(
t

z
+ 1

)
− log

t

z

)
dt

)
=
z(γ − log(2π/z))

2
.

(13.3.44)

Then substituting (13.3.43) and (13.3.44) in (13.3.42) will complete the proof
of Theorem 13.3.1. To that end,

lim
N→∞

(
N∑

n=1

1

2nz
−
∫ N

0

(ψ(tz + 1)− log tz) dt

)

= lim
N→∞

(
1

2z

(
N∑

n=1

1

n
− logN

)
+

logN

2z
−
∫ N

0

(ψ(tz + 1)− log tz) dt

)

=
γ

2z
+ lim

N→∞

(
− log z

2z
+

logNz

2z
−
∫ N

0

(ψ(tz + 1)− log tz) dt

)

=
γ

2z
− log z

2z
+ lim

N→∞

(
log(Nz + 1)

2z
− 1

z

∫ Nz

0

(ψ(t+ 1)− log t) dt

− 1

2z
log

(
1 +

1

Nz

))

=
γ

2z
− log z

2z
+

1

z
lim

N→∞

(
log(Nz + 1)

2
−
∫ Nz

0

(ψ(t+ 1)− log t) dt

)

=
γ

2z
− log z

2z
+

1

z
lim

N→∞

(
1

2

∫ Nz

0

1

t+ 1
dt−

∫ Nz

0

(ψ(t+ 1)− log t) dt

)
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=
γ

2z
− log z

2z
− 1

z
lim

N→∞

∫ NZ

0

(
ψ(t+ 1)− 1

2(t+ 1)
− log t

)
dt

=
γ

2z
− log z

2z
− 1

z

∫ ∞

0

(
ψ(t+ 1)− 1

2(t+ 1)
− log t

)
dt

=
γ

2z
− log z

2z
− log 2π

2z

=
γ − log 2πz

2z
, (13.3.45)

where in the antepenultimate line we have made use of Lemma 13.3.1. This
completes the proof of (13.3.43) and hence the proof of Theorem 13.3.1 for
Re z > 0. But both sides of (13.3.4) are analytic for | arg z| < π. Hence,
by analytic continuation, the theorem is true for all complex z such that
| arg z| < π. ��

Y. Lee [210] has also devised a proof of Entry 13.3.1.

13.4 Page 195

On page 195 in [269], Ramanujan defines

φ(x) := ψ(x) +
1

2x
− γ − log x (13.4.1)

and then concludes that

√
α

{
γ − log(2πα)

2α
+

∞∑

n=1

φ(nα)

}
=
√
β

{
γ − log(2πβ)

2β
+

∞∑

n=1

φ(nβ)

}

(13.4.2)

= −
√
α

∫ ∞

0

(
1

ex − 1
− 1

x

)(
1

exα − 1
− 1

xα

)
dx (13.4.3)

= − 1

π3/2

∫ ∞

0

∣∣∣∣Ξ
(
1

2
t

)
Γ

(
−1 + it

4

)∣∣∣∣
2 cos

(
1
2 t logα

)

1 + t2
dt. (13.4.4)

First, in view of the asymptotic expansion (13.2.28) and the definition (13.4.1),
the series in (13.4.2) do not converge. Second, the equality of the expressions
in (13.4.3) and (13.4.4) does not hold. For equality to exist, the expression in
(13.4.3) must be replaced by (see equation (22) of [257])

−
∫ ∞

0

(
1

ex
√
β − 1

− 1

x
√
β

)(
1

ex
√
α − 1

− 1

x
√
α

)
dx.
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13.5 Analogues of Entry 13.3.1

A. Dixit [108, 109] has established two beautiful analogues of Entry 13.3.1.
Previously, a finite analogue of Theorem 13.5.1 was established by L. Car-
litz [86].

Theorem 13.5.1. Let ζ(z, a) denote the Hurwitz zeta function defined for
a > 0 and Re z > 1 by

ζ(z, a) =

∞∑

n=0

1

(n+ a)z
.

If α and β are positive numbers such that αβ = 1, then for Re z > 2 and
1 < c < Re z − 1,

α−z/2
∞∑

k=1

ζ

(
z, 1 +

k

α

)
= β−z/2

∞∑

k=1

ζ

(
z, 1 +

k

β

)

=
αz/2

2πiΓ (z)

∫ c+i∞

c−i∞
Γ (s)ζ(s)Γ (z − s)ζ(z − s)α−s ds

=
8(4π)(z−4)/2

Γ (z)

∫ ∞

0
Γ

(
z − 2 + it

4

)
Γ

(
z − 2− it

4

)

× Ξ
(
t+ i(z − 1)

2

)
Ξ

(
t− i(z − 1)

2

)
cos
(
1
2 t logα

)

z2 + t2
dt,

where Ξ(t) is defined in (13.3.1).

Theorem 13.5.2. Let 0 < Re z < 2. Define ϕ(z, x) by

ϕ(z, x) = ζ(z, x)− 1

2
x−z +

x1−z

1− z ,

where ζ(z, x) denotes the Hurwitz zeta function. Then if α and β are any
positive numbers such that αβ = 1,

αz/2

( ∞∑

n=1

ϕ(z, nα)− ζ(z)
2αz

− ζ(z − 1)

α(z − 1)

)

= βz/2

( ∞∑

n=1

ϕ(z, nβ)− ζ(z)
2βz

− ζ(z − 1)

β(z − 1)

)

=
8(4π)(z−4)/2

Γ (z)

∫ ∞

0

Γ

(
z − 2 + it

4

)
Γ

(
z − 2− it

4

)

× Ξ
(
t+ i(z − 1)

2

)
Ξ

(
t− i(z − 1)

2

)
cos
(
1
2 t logα

)

z2 + t2
dt, (13.5.1)

where Ξ(t) is defined in (13.3.1).
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If we let z → 1 in (13.5.1), then we obtain Ramanujan’s transformation
(13.3.3). Thus Theorem 13.5.2 is a generalization of Entry 13.3.1. In [109],
Dixit also obtained an analogue of Theorem 13.5.2 for −3 < Re z < −1.
Another generalization of the first identity in Entry 13.3.1 has been found by
O. Oloa [237]. Another proof, employing a theorem on the double cotangent
function, has been given by H. Tanaka [299].

13.6 Added Note: Pages 193, 194, 250

On pages 193 and 194 in [269], Ramanujan offers several Fourier and Laplace
transforms, most of which are found in Entries 13.2.1 and 13.2.2. Since all
of the results are standard in the theory of Fourier transforms, there is no
need to repeat them here. On page 250 there appears some scratch work on
Laplace transforms; no identities are recorded. The third integral on the page
appears to be related to [255, Eq. (16)], [267, p. 56].
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Integral Analogues of Theta Functions

and Gauss Sums

14.1 Introduction

In this chapter we discuss a second partial manuscript of two pages
[269, pp. 221–222] as well as a related page from the original lost notebook
[269, p. 198]. As previously indicated, this manuscript does not belong to the
“official” lost notebook of Ramanujan, but instead is among the eight partial
manuscripts in G.N. Watson’s handwriting that were found in the Oxford
University library and that were published along with the lost notebook;
the original version for these two pages is in the library at Trinity College,
Cambridge. Pages 221 and 222 provide a list of theorems, with no discourse, on
integrals that are found in Ramanujan’s two papers [256, 258], [267, pp. 59–67]
and [194–199]; see also [247]. Indeed, most of the theorems can be found in
these two papers, especially [258]. Since Ramanujan did not give many details
in these two papers, we shall provide proofs for each claim, whether it is found
in these two papers or not.

The objective in the two papers cited above and in the two page fragment
is the study of the functions

φw(t) :=

∫ ∞

0

cos(πtx)

cosh(πx)
e−πwx2

dx, (14.1.1)

ψw(t) :=

∫ ∞

0

sin(πtx)

sinh(πx)
e−πwx2

dx. (14.1.2)

It is clear from the definitions (14.1.1) and (14.1.2) that, respectively,

φw(t) = φw(−t) and ψw(t) = −ψw(−t). (14.1.3)

Page 198 of [269] is an isolated page that is actually part of the original
lost notebook, and its contents are related to pages 221–222. On this page,

G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook:
Part IV, DOI 10.1007/978-1-4614-4081-9 14,
© Springer Science+Business Media New York 2013

307
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Ramanujan records theorems, much in the spirit of those for φw(t) and ψw(t),
for the function

Fw(t) :=

∫ ∞

0

sin(πtx)

tanh(πx)
e−πwx2

dx.

The theorems on page 198 are new and were first proved in a paper by Berndt
and P. Xu [69].

The functions φw(t), ψw(t), and Fw(t) examined in this chapter and
(for the former two functions) in [256, 258], [267, pp. 59–67, 202–207] can
be regarded as continuous analogues of theta functions, because they each
possess a transformation formula like that for the classical theta functions.
For example, recall that the classical theta function

θ3(τ) :=

∞∑

n=−∞
eπin

2τ , Im τ > 0,

satisfies the transformation formula [306, p. 22]

θ3(−1/τ) =
√
τ/i θ3(τ). (14.1.4)

On the other hand, because of the appearance of certain sums, which are
reminiscent of Gauss sums, in the quasiperiodic relations, for example, in
Entries 14.4.2 and 14.4.3, where the quasiperiods are 2i and 2w, respectively,
Ramanujan perhaps preferred the analogy with Gauss sums. Recall that the
generalized Gauss sum S(a, b, c), where a, b, and c are integers with ac �= 0,
is defined by

S(a, b, c) :=

|c|−1∑

n=0

eπi(an
2+bn)/c.

These sums satisfy a reciprocity theorem; namely, if ac + b is even, then
[54, p. 13]

S(a, b, c) =
√
|c/a|eπi{sgn(ac)−b2/(ac)}/4S(−c,−b, a).

Note that on comparing the two sides of this identity, the roles of a and c
are reversed. Moreover,

√
|c/a| takes the place of

√
τ in (14.1.4) or

√
w in the

transformation formulas for φw(t), ψw(t), and Fw(t).
Because these functions possess quasiperiods 2i and 2w, they can also

be regarded as analogues of elliptic functions. For example, the Weierstrass
σ-function is defined by

σ(z) := σ(z;ω1, ω2) := z
∏

ω �=0

(
1− z

ω

)
exp

(
z

ω
− z2

2ω2

)
,

where ω = mω1+nω2, −∞ < m,n <∞, and Imω2/ω1 > 0. Set ω3 = ω1+ω2
and ηj = ζ(ωj/2), j = 1, 2, 3, where ζ(t) denotes the Weierstrass ζ-function.
Then the Weierstrass σ-function obeys the quasiperiodic relations [88, p. 52]
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σ(z + ωj) = −σ(z)e2ηj(z+ωj/2), j = 1, 2, 3.

Interesting analogues of the integrals studied by Ramanujan in [256]
and [258] that involve Bessel functions have been derived by N.S. Koshliakov
[192]. Those taking the qualifying examination in mathematics at Harvard
University in fall 1998, day 2, were asked to evaluate a special case of φw(t).

14.2 Values of Useful Integrals

Throughout our proofs, we appeal to several integral evaluations, all of which
can be found in the Tables of I.S. Gradshteyn and I.M. Ryzhik [126]. First [126,
p. 515, formulas 3.898, nos. 1, 2], for Re β > 0,

∫ ∞

0

e−βx2

sin(ax) sin(bx)dx =
1

4

√
π

β

{
e−(a−b)2/(4β) − e−(a+b)2/(4β)

}
,

(14.2.1)
∫ ∞

0

e−βx2

cos(ax) cos(bx)dx =
1

4

√
π

β

{
e−(a−b)2/(4β) + e−(a+b)2/(4β)

}
.

(14.2.2)

Second [126, p. 400, formula 3.546, no. 2], for Re β > 0,

∫ ∞

0

e−βx2

cosh(ax)dx =
1

2

√
π

β
ea

2/(4β). (14.2.3)

Third [126, p. 536, formula 3.981, no. 1], for Re β > 0 and a > 0,

∫ ∞

0

sin(ax)

sinh(βx)
dx =

π

2β
tanh

(
aπ

2β

)
. (14.2.4)

Fourth [126, p. 552, formula 4.133, no. 1], for Re γ > 0,

∫ ∞

0

e−x2/(4γ) sin(ax) sinh(βx)dx =
√
πγeγ(β

2−a2) sin(2aβγ). (14.2.5)

14.3 The Claims in the Manuscript

We now examine in order the claims made by Ramanujan on pages 221
and 222.

Entry 14.3.1 (p. 221). For w > 0,

φw(t) =
1√
w
e−πt2/(4w)φ1/w(it/w). (14.3.1)
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Proof. Using (13.2.21), inverting the order of integration, employing (14.2.2),
and simplifying, we find that

φw(t) = 2

∫ ∞

0

∫ ∞

0

cos(2πxz)

cosh(πz)
cos(πtx)e−πwx2

dzdx

= 2

∫ ∞

0

dz

cosh(πz)

∫ ∞

0

cos(2πxz) cos(πtx)e−πwx2

dx

= 2

∫ ∞

0

1

cosh(πz)

1

4

√
1

w

{
e−

(2πz−πt)2

4πw + e−
(2πz+πt)2

4πw

}

=
1√
w
e−πt2/(4w)

∫ ∞

0

cosh(πzt/w)

cosh(πz)
e−πz2/wdz, (14.3.2)

which is equivalent to (14.3.1). ��

A different proof of Entry 14.3.1 has been given by Y. Lee [210].

Entry 14.3.2 (p. 221). We have

eπ(t+w)2/(4w)φw(t+ w) = e
πt2/(4w)

(
1

2
+ ψw(t)

)
. (14.3.3)

Proof. First observe from (14.2.3) that

∫ ∞

0

cosh(πtx/w)e−πx2/wdx =
1

2

√
weπt

2/(4w) (14.3.4)

and from (14.2.4) that

∫ ∞

0

sin(2πxz)

sinh(πz)
dz =

1

2
tanh(πx). (14.3.5)

Thus, using (14.3.2), (14.3.4), and (14.3.5), we find that

φw(t+ w)

=
1√
w
e−π(t+w)2/(4w) (14.3.6)

×
∫ ∞

0

cosh(πtx/w) cosh(πx) + sinh(πtx/w) sinh(πx)

cosh(πx)
e−πx2/wdx

=
1√
w
e−π(t+w)2/(4w)

{
1

2

√
weπt

2/(4w)

+2

∫ ∞

0

∫ ∞

0

sin(2πxz)

sinh(πz)
sinh(πtx/w)e−πx2/wdz dx

}
.

Now, by (14.2.5),
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2

∫ ∞

0

∫ ∞

0

sin(2πxz)

sinh(πz)
sinh(πtx/w)e−πx2/wdz dx

= 2

∫ ∞

0

dz

sinh(πz)

∫ ∞

0

sin(2πxz) sinh(πtx/w)e−πx2/wdx

= 2

∫ ∞

0

1

sinh(πz)

1

2

√
weπt

2/(4w)e−πz2w sin(πtz)dz

=
√
weπt

2/(4w)

∫ ∞

0

sin(πtz)

sinh(πz)
e−πz2wdz

=
√
weπt

2/(4w)ψw(t).

If we use this last calculation in (14.3.6) and manipulate slightly, we complete
the proof of (14.3.3). ��

Entry 14.3.3 (p. 221). We have

1

2
+ ψw(t+ i) =

i√
w
e−πt2/(4w)

{
1

2
− ψ1/w

(
it

w
+ i

)}
. (14.3.7)

Proof. Rewrite (14.3.3) as

1

2
+ ψw(t) = e

πt/2+πw/4φw(t+ w). (14.3.8)

Thus, using (14.3.8), (14.3.1), (14.1.3), and (14.3.3) with w replaced by 1/w,
we find that

1

2
+ ψw(t+ i) = ie

πt/2+πw/4φw(t+ i+ w)

= ieπt/2+πw/4 1√
w
e−π(t+i+w)2/(4w)φ1/w(i(t+ i+ w)/w)

=
i√
w
e−π(t2−1+2it+2iw)/(4w)φ1/w

(
− it
w

− i+ 1

w

)

=
i√
w
e−π(t2−1+2it+2iw)/(4w)e−π(−it/w−i)/2−π/(4w)

{
1

2
+ ψ1/w

(
− it
w

− i
)}

=
i√
w
e−πt2/(4w)

{
1

2
− ψ1/w

(
it

w
+ i

)}
,

where in the last step we used (14.1.3). Hence, (14.3.7) has been established.
��

Entry 14.3.4 (p. 221). We have the evaluations

φw(i) =
1

2
√
w
, (14.3.9)

ψw(i) =
i

2
√
w
, (14.3.10)



312 14 Integral Analogues of Theta Functions and Gauss Sums

φw(w) =
1

2
e−πw/4, (14.3.11)

1

2
− ψw(w) = e

−πw/4φw(0). (14.3.12)

Proof. From the definition (14.1.1),

φw(i) =

∫ ∞

0

e−πwx2

dx =
1

2
√
w
,

and from the definition (14.1.2),

ψw(i) = i

∫ ∞

0

e−πwx2

dx =
i

2
√
w
.

Next, by the functional equation (14.3.1),

φw(w) =
1√
w
e−πw/4φ1/w(i) =

1

2
e−πw/4,

upon the use of (14.3.9). Lastly, by (14.3.3) with t = −w and by (14.1.3),

eπw/4

{
1

2
+ ψw(−w)

}
= eπw/4

{
1

2
− ψw(w)

}
= φw(0),

and so the final assertion (14.3.12) of our entry has been proved. ��

Entry 14.3.5 (p. 221). We have

φw(w ± i) =
(

1

2
√
w

∓ i

2

)
e−πw/4, (14.3.13)

ψw(w ± i) = 1

2
± i

2
√
w
e−πw/4, (14.3.14)

φw

(
1

2
w

)
+ ψw

(
1

2
w

)
=

1

2
. (14.3.15)

Proof. Using (14.3.3), (14.1.3), and (14.3.10) and then simplifying, we find
that

φw(w±i) = e−π(±i+w)2/(4w)−π/(4w)

{
1

2
+ ψw(±i)

}
= e−πw/4

{
∓ i
2
+

1

2
√
w

}
,

which completes the proof of (14.3.13).
Appealing to (14.3.7) with t = ±w and using (14.1.3), we find that

1

2
± ψw(w ± i) = i√

w
e−πw/4

{
1

2
− ψ1/w(±i+ i)

}
. (14.3.16)
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We need to distinguish two cases in (14.3.16). First,

ψ1/w(2i) = i

∫ ∞

0

sinh(2πx)

sinh(πx)
e−πx2/wdx

= 2i

∫ ∞

0

cosh(πx)e−πx2/wdx = i
√
weπw/4, (14.3.17)

by (14.2.3). Using the calculation from (14.3.17) in (14.3.16) and simplifying,
we find that

ψw(w + i) =
i

2
√
w
e−πw/4 +

1

2
,

as claimed in (14.3.14). Second, we observe that trivially ψ1/w(0) = 0, and so
in the second case, (14.3.16) reduces to

1

2
− ψw(w − i) = i√

w
e−πw/4 1

2
,

which immediately gives the other evaluation in (14.3.14). Third, return
to (14.3.3) and set t = − 1

2w to deduce that

1

2
− ψw

(
1

2
w

)
= φw

(
1

2
w

)
,

which is what we wanted to prove. ��

Entry 14.3.6 (p. 221). We have

φw(t+ i) + φw(t− i) =
1√
w
e−πt2/(4w), (14.3.18)

ψw(t+ i)− ψw(t− i) =
i√
w
e−πt2/(4w). (14.3.19)

Proof. Using the definition (14.1.1), elementary trigonometric identities,
and (14.2.2), we find that

φw(t+ i) + φw(t− i) = 2

∫ ∞

0

cos(πtx)e−πwx2

dx =
1√
w
e−πt2/(4w),

as claimed in (14.3.18).
Next, employing (14.1.2), further elementary trigonometric identities,

and (14.2.2) once again, we see that

ψw(t+ i)− ψw(t− i) = 2i

∫ ∞

0

cos(πtx)e−πwx2

dx =
i√
w
e−πt2/(4w),

which is (14.3.19). ��
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Entry 14.3.7 (p. 221). We have

eπ(t+w)2/(4w)φw(t+ w) + e
π(t−w)2/(4w)φw(t− w) = eπt

2/(4w). (14.3.20)

Proof. Employing the identity (14.3.3) and the oddness of ψ(t) noted in
(14.1.3), we readily find that

eπ(t+w)2/(4w)φw(t+ w) + e
π(t−w)2/(4w)φw(t− w)

= eπt
2/(4w)

{
1

2
+ ψw(t)

}
+ eπt

2/(4w)

{
1

2
+ ψw(−t)

}
= eπt

2/(4w),

which is identical to (14.3.20). ��

Entry 14.3.8 (p. 221). We have

eπ(t+w)2/(4w)

{
1

2
− ψw(t+ w)

}
= eπ(t−w)2/(4w)

{
1

2
+ ψw(t− w)

}
.

(14.3.21)

Proof. Appealing to (14.3.3) and then using (14.1.3), we find that

eπt
2/(4w)

{
1

2
+ ψw(t)

}
= eπ(t+w)2/(4w)φw(t+ w)

= eπ(t+w)2/(4w)φw(−t− w). (14.3.22)

Replacing t by −t− w above and using (14.1.3), we arrive at

eπ(t+w)2/(4w)

{
1

2
− ψw(t+ w)

}
= eπt

2/(4w)φw(t).

Replacing t by t− w in (14.3.22) and using (14.1.3), we deduce that

eπ(t−w)2/(4w)

{
1

2
+ ψw(t− w)

}
= eπt

2/(4w)φw(t).

The identity (14.3.21) is now an immediate consequence of the last two
identities. ��

Entry 14.3.9 (p. 221). If n is any positive integer, then

φw(t) + (−1)n+1φw(t+ 2ni) =
1√
w

n−1∑

k=0

(−1)ke−π(t+(2k+1)i)2/(4w). (14.3.23)

Proof. We employ (14.3.18) with t successively replaced by t+i, t+3i, . . . , t+
(2n− 1)i to deduce the array
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φw(t+ 2i) + φw(t) =
1√
w
e−π(t+i)2/(4w),

φw(t+ 4i) + φw(t+ 2i) =
1√
w
e−π(t+3i)2/(4w),

...

φw(t+ 2ni) + φw(t+ (2n− 2)i) =
1√
w
e−π(t+(2n−1)i)2/(4w).

Alternately adding and subtracting the identities above, we immediately
deduce (14.3.23). ��
Entry 14.3.10 (p. 221). If n is any positive integer,

ψw(t)− ψw(t+ 2ni) = − i√
w

n−1∑

k=0

e−π(t+(2k+1)i)2/(4w). (14.3.24)

Proof. We employ (14.3.19) with t successively replaced by t+i, t+3i, . . . , t+
(2n− 1)i, and so record the identities

ψw(t+ 2i)− ψw(t) =
i√
w
e−π(t+i)2/(4w),

ψw(t+ 4i)− ψw(t+ 2i) =
i√
w
e−π(t+3i)2/(4w),

...

ψw(t+ 2ni)− ψw(t+ (2n− 2)i) =
i√
w
e−π(t+(2n−1)i)2/(4w).

Adding the identities above, we deduce (14.3.24) forthwith. ��
Entry 14.3.11 (p. 221). For any positive integer n,

eπt
2/(4w)φw(t) + (−1)n+1eπ(t+2nw)2/(4w)φw(t+ 2nw)

=

n−1∑

k=0

(−1)keπ(t+(2k+1)w)2/(4w). (14.3.25)

Proof. We return to (14.3.20) and successively replace t by t+w, t+3w, . . . , t+
(2n− 1)w to deduce the n equations

eπ(t+2w)2/(4w)φw(t+ 2w) + eπt
2/(4w)φw(t) = e

π(t+w)2/(4w),

eπ(t+4w)2/(4w)φw(t+ 4w) + eπ(t+2w)2/(4w)φw(t+ 2w) = eπ(t+3w)2/(4w),

...

eπ(t+2nw)2/(4w)φw(t+ 2nw) + eπ(t+(2n−2)w)2/(4w)φw(t+ (2n− 2)w)

= eπ(t+(2n−1)w)2/(4w).
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If we now alternately add and subtract the identities above, we readily deduce
(14.3.25). ��

Entry 14.3.12 (p. 221). For any positive integer n,

eπt
2/(4w)

{
1

2
+ ψw(t)

}
+ (−1)n+1eπ(t+2nw)2/(4w)

{
1

2
+ ψw(t+ 2nw)

}

=
n∑

k=1

(−1)k−1eπ(t+2kw)2/(4w). (14.3.26)

Proof. We apply (14.3.21) with t successively replaced by t+w, t+3w, . . . , t+
(2n− 1)w in order to derive the set of equations

eπ(t+2w)2/(4w)

{
1

2
− ψw(t+ 2w)

}
= eπt

2/(4w)

{
1

2
+ ψw(t)

}
,

eπ(t+4w)2/(4w)

{
1

2
− ψw(t+ 4w)

}
= eπ(t+2w)2/(4w)

{
1

2
+ ψw(t+ 2w)

}
,

...

eπ(t+2nw)2/(4w)

{
1

2
− ψw(t+ 2nw)

}

= eπ(t+(2n−2)w)2/(4w)

{
1

2
+ ψw(t+ (2n− 2)w)

}
.

We now alternately add and subtract these identities to achieve (14.3.26). ��

Entry 14.3.13 (p. 222). Let m and n denote any positive integers and set
s = t+ 2mw ± 2ni. Then

φw(s) + (−1)(m+1)(n+1)e−
1
2πm(s+t)φw(t)

= e−πs2/(4w)
m−1∑

k=0

(−1)keπ(s−(2k+1)w)2/(4w)

+
(−1)(m+1)(n+1)

√
w

e−
1
2πm(s+t)

n−1∑

k=0

(−1)ke−π(t±(2k+1)i)2/(4w). (14.3.27)

Proof. We first observe that an analogue to Entry 14.3.9 can be obtained by
beginning the proof with the relation

φw(t) + φw(t− 2i) =
1√
w
e−π(t−i)2/(4w).

Proceeding as before, we can then deduce that

φw(t) + (−1)n+1φw(t− 2ni) =
1√
w

n−1∑

k=0

(−1)ke−π(t−(2k+1)i)2/(4w). (14.3.28)
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We apply Entry 14.3.11 with n replaced by m, where m is a positive
integer, and then with t replaced by t ± 2ni, where n is a positive integer.
After rearranging and using the definition of s, we find that

φw(s) + (−1)m+1e−πms+πm2wφw(t± 2ni)

= φw(s) + (−1)m+1e−πs2/(4w)+π(t±2ni)2/(4w)φw(t± 2ni)

= (−1)m+1e−πs2/(4w)
m∑

j=1

(−1)j−1eπ(t±2ni+(2j−1)w)2/(4w)

= e−πs2/(4w)
m−1∑

r=0

(−1)reπ(s−(2r+1)w)2/(4w), (14.3.29)

where we changed the index of summation by setting j = m− r.
Next, we apply Entry 14.3.9 and its analogue (14.3.28) to see that

(−1)n+1φw(t± 2ni) + φw(t) =
1√
w

n−1∑

k=0

(−1)ke−π(t±(2k+1)i)2/(4w).

Upon multiplying both sides by

(−1)(m+1)(n+1)e−
1
2πm(s+t),

we find that

(−1)n+1+(m+1)(n+1)e−
1
2πm(s+t)φw(t±2ni)+(−1)(m+1)(n+1)e−

1
2πm(s+t)φw(t)

=
(−1)(m+1)(n+1)e−

1
2πm(s+t)

√
w

n−1∑

k=0

(−1)ke−π(t±(2k+1)i)2/(4w). (14.3.30)

We now add (14.3.29) and (14.3.30) and observe, with the aid of the definition
of s, that the coefficient of φw(t± 2ni) is equal to

(−1)m+1e−πms+πm2w + (−1)m(n+1)e−
1
2πm(s+t) = 0. (14.3.31)

We thus immediately obtain (14.3.27) to complete the proof. ��

Entry 14.3.14 (p. 222). Let m and n denote positive integers. Then, if
s = 2mw ± 2ni,

1

2
− ψw(s) + (−1)mn+m+1e−

1
2πm(s+t)

{
1

2
− ψw(t)

}

= e−πs2/(4w)
m∑

j=1

(−1)j−1eπ(s−2jw)2/(4w)

± (−1)mn+m+1i√
w

e−
1
2πm(s+t)

n−1∑

j=0

e−π(t±(2j+1)i)2/(4w). (14.3.32)
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Proof. If we examine the proof of Entry 14.3.10, we see that we can obtain
an analogue of (14.3.24), just as we previously obtained (14.3.28), except that
now the right-hand side is multiplied by −1. Hence,

ψw(t)− ψw(t± 2ni) = ∓ i√
w

n−1∑

j=0

e−π(t+(2j+1)i)2/(4w). (14.3.33)

We apply Entry 14.3.12 with n replaced by m, and then with t replaced
by t± 2ni. Next multiply both sides by (−1)m+1e−πs2/(4w). Setting also j =
m+ 1− r below, we find that

1

2
+ ψw(s) + (−1)m+1eπ(t±2ni)2/(4w)−πs2/(4w)

{
1

2
+ ψw(t± 2ni)

}

= (−1)m+1e−πs2/(4w)
m∑

j=1

(−1)j−1eπ(t±2ni+2jw)2/(4w)

= −e−πs2/(4w)
m∑

r=1

(−1)reπ(s+2(1−r)w)2/(4w)

= 1− e−πs2/(4w)
m∑

r=2

(−1)reπ(s+2(1−r)w)2/(4w).

Rearranging, we deduce that

1

2
− ψw(s)− (−1)m+1eπ(t±2ni)2/(4w)−πs2/(4w)

{
1

2
+ ψw(t± 2ni)

}

= e−πs2/(4w)
m∑

r=2

(−1)reπ(s+2(1−r)w)2/(4w). (14.3.34)

Observe that with the definition of s,

(−1)m+1eπ(t±2ni)2/(4w)−πs2/(4w) = (−1)m+1e−πms+πm2w. (14.3.35)

We also observe that if r = m + 1, the corresponding expression (including

e−πs2/(4w)) on the right-hand side of (14.3.34) is also equal to the right-hand
side of (14.3.35). We add this expression to both sides of (14.3.34) and replace
r by r + 1, so that we can rewrite (14.3.34) in the form

1

2
− ψw(s) + (−1)m+1e−πms+πm2w

{
1

2
− ψw(t± 2ni)

}

= e−πs2/(4w)
m∑

r=1

(−1)r−1eπ(s−2rw)2/(4w). (14.3.36)

Multiply both sides of (14.3.33) by
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−(−1)mn+m+1e−
1
2πm(s+t)

to deduce that

(−1)mn+m+1e−
1
2πm(s+t)

({
1

2
− ψw(t)

}
−
{
1

2
− ψw(t± 2ni)

})

= ± (−1)mn+m+1i√
w

e−
1
2πm(s+t)

n−1∑

j=0

e−π(t+(2j+1)i)2/(4w). (14.3.37)

We now add (14.3.36) and (14.3.37). Observe that, with the definition of s,
the coefficient of 1

2 − ψw(t± 2ni) equals

(−1)m+1e−πms+πm2w − (−1)mn+m+1e−
1
2πm(s+t) = 0,

by the same calculation as in (14.3.31). We thus immediately deduce (14.3.32)
to complete the proof. ��

Entry 14.3.15 (p. 222). Let t = mw ± ni, where m and n are positive
integers. If m is odd and n is odd, or if m is even and n is odd, or if m is
odd and n is even, then

φw(t) =
1

2
e−πt2/(4w)

m−1∑

j=0

(−1)jeπ(t−(2j+1)w)2/(4w)

+
1

2
√
w

n−1∑

j=0

(−1)jeπ(t∓(2j+1)i)2/(4w). (14.3.38)

Proof. In Entry 14.3.13, replace t by −t and then set s = t. Thus, t has the
form stated in the present entry. In all three cases, (14.3.27) readily reduces
to (14.3.38). ��

Entry 14.3.16 (p. 222). Let t = mw ± ni, where m and n are positive
integers. If m is odd and n is odd, or if m is even and n is odd, or if m is
even and n is even, then

ψw(t) = −1

2
e−πt2/(4w)

m∑

j=1

(−1)j−1eπ(t−2jw)2/(4w)

± i

2
√
w

n−1∑

j=0

eπ(t∓(2j+1)i)2/(4w). (14.3.39)

Proof. The proof is similar to the previous proof. In Entry 14.3.14, replace t
by −t and then set s = t. In all three cases, (14.3.32) simplifies to (14.3.39).

��
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We quote Ramanujan for the last claim on page 222 of [269]. If t = mw±ni,
then

φw(t) = e
−1

4πm2w

{
1

2

(
1√
w

+ e∓
1
2πimn

)
sin 1

2πm?. (14.3.40)

Evidently, the presence of the question mark indicates that Ramanujan was
unsure of his claim and that further terms (possibly unknown to Ramanujan)
were needed to complete the identity. As (14.3.40) is presently stated, it is
not true in general. For example, if m = 2 and n = 1, (14.3.40) is false.

14.4 Page 198

Page 198 in the lost notebook is devoted to properties of the function

Fw(t) :=

∫ ∞

0

sin(πtx)

tanh(πx)
e−πwx2

dx. (14.4.1)

The formulas claimed by Ramanujan on page 198 are difficult to read, partly
because the original page was perhaps a thin, colored piece of paper, for
example, a piece of parchment paper, that was difficult to photocopy.

It is clear from the definition (14.4.1) that

Fw(t) = −Fw(−t). (14.4.2)

Entry 14.4.1 (p. 198). We have

Fw(t) = − i√
w
e−πt2/(4w)F1/w(it/w). (14.4.3)

Proof. Write

Fw(t) =

∫ ∞

0

sin(πtx) cosh(πx)

sinh(πx)
e−πwx2

dx

=

∫ ∞

0

sin(πtx) cos(iπx)

sinh(πx)
e−πwx2

dx

=
1

2

∫ ∞

0

sin(t+ i)πx+ sin(t− i)πx
sinh(πx)

e−πwx2

dx

=
1

2
{ψw(t+ i) + ψw(t− i)} , (14.4.4)

by (14.1.2). Recall from (14.3.7) that

1

2
+ ψw(t+ i) =

i√
w
e−πt2/(4w)

{
1

2
− ψ1/w

(
it

w
+ i

)}
. (14.4.5)
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Since ψ(t) is odd, we find from (14.4.5) that

−1

2
+ψw(t−i) = −1

2
−ψw(−t+i) = − i√

w
e−πt2/(4w)

{
1

2
−ψ1/w

(
− it
w
+i

)}
.

(14.4.6)

Hence, from (14.4.4)–(14.4.6),

Fw(t) =
1

2

{
1

2
+ ψw(t+ i)−

1

2
+ ψw(t− i)

}

=
1

2

(
i√
w
e−πt2/(4w)

{
1

2
− ψ1/w

(
it

w
+ i

)}

− i√
w
e−πt2/(4w)

{
1

2
− ψ1/w

(
− it
w

+ i

)})

=
i

2
√
w
e−πt2/(4w)

(
−ψ1/w

(
it

w
+ i

)
+ ψ1/w

(
− it
w

+ i

))

= − i

2
√
w
e−πt2/(4w)

(
ψ1/w

(
it

w
+ i

)
+ ψ1/w

(
it

w
− i
))

= − i√
w
e−πt2/(4w)F1/w(it/w),

by (14.4.4), and this completes the proof. ��

Entry 14.4.2 (p. 198). If n is any positive integer, then

Fw(t)− Fw(t+ 2ni) = − i√
w

n∑′

j=0

e−π(t+2ji)2/(4w), (14.4.7)

where the prime ′ on the summation sign indicates that the terms with j = 0, n
are to be multiplied by 1

2 .

Proof. Recall from (14.4.4) that

Fw(t) =
1

2
{ψw(t+ i) + ψw(t− i)}, (14.4.8)

and so

Fw(t)− Fw(t+ 2ni)

=
1

2
{ψw(t+ i)− ψw(t+ (2n+ 1)i)}+ 1

2
{ψw(t− i)− ψw(t+ (2n− 1)i)}.
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Applying Entry 14.3.10 on the right side above, we see that

Fw(t)− Fw(t+ 2ni)

=
1

2

{
− i√

w

n−1∑

k=0

e−π(t+(2k+2)i)2/(4w) − i√
w

n−1∑

k=0

e−π(t+2ki)2/(4w)

}

= − i√
w

n∑

j=0

′
e−π(t+2ji)2/(4w).

This concludes the proof. ��

Entry 14.4.3 (p. 198). If n is a positive integer, then

Fw(t)− eπn(t+nw)Fw(t+ 2nw) = −e−πt2/(4w)

n∑′

j=0

eπ(t+2jw)2/(4w), (14.4.9)

where the prime on the summation sign has the same meaning as in Entry
14.4.2.

Proof. Replacing t by t+ i and t− i in Entry 14.3.8, we deduce, respectively,
that

eπ(t+i+w)2/(4w)ψw(t+ i+ w) + e
π(t+i−w)2/(4w)ψw(t+ i− w)

=
1

2

(
eπ(t+i+w)2/(4w) − eπ(t+i−w)2/(4w)

)
(14.4.10)

and

eπ(t−i+w)2/(4w)ψw(t− i+ w) + eπ(t−i−w)2/(4w)ψw(t− i− w)

=
1

2

(
eπ(t−i+w)2/(4w) − eπ(t−i−w)2/(4w)

)
. (14.4.11)

Now observe that e4πi(t+w)/(4w) = e4πi(t−w)/(4w). We multiply eπ(t−i+w)2/(4w)

in its two appearances in (14.4.11) by e4πi(t+w)/(4w), and we multiply

eπ(t−i−w)2/(4w) in its two appearances in (14.4.11) by e4πi(t−w)/(4w). Thus,
(14.4.11) can be recast in the form

eπ(t+i+w)2/(4w)ψw(t− i + w) + eπ(t+i−w)2/(4w)ψw(t− i− w)

=
1

2

(
eπ(t+i+w)2/(4w) − eπ(t+i−w)2/(4w)

)
. (14.4.12)

Using (14.4.8), (14.4.10), and (14.4.12), we find that
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eπ(t+i+w)2/(4w)Fw(t+ w) + e
π(t+i−w)2/(4w)Fw(t− w)

=
1

2

{
eπ(t+i+w)2/(4w)ψw(t+ i+ w) + e

π(t+i+w)2/(4w)ψw(t− i+ w)

+eπ(t+i−w)2/(4w)ψw(t+ i− w) + eπ(t+i−w)2/(4w)ψw(t− i− w)
}

=
1

2

(
eπ(t+i+w)2/(4w) − eπ(t+i−w)2/(4w)

)
. (14.4.13)

We now apply (14.4.13) with t successively replaced by t+w, t+3w, . . . ,
t+ (2n− 1)w to deduce the n equations

eπ(t+i+2w)2/(4w)Fw(t+ 2w) + eπ(t+i)2/(4w)Fw(t)

=
1

2

(
eπ(t+i+2w)2/(4w) − eπ(t+i)2/(4w)

)
,

eπ(t+i+4w)2/(4w)Fw(t+ 4w) + eπ(t+i+2w)2/(4w)Fw(t+ 2w)

=
1

2

(
eπ(t+i+4w)2/(4w) − eπ(t+i+2w)2/(4w)

)
,

...

eπ(t+i+2nw)2/(4w)Fw(t+ 2nw) + eπ(t+i+(2n−2)w)2/(4w)Fw(t+ (2n− 2)w)

=
1

2

(
eπ(t+i+2nw)2/(4w) − eπ(t+i+(2n−2)w)2/(4w)

)
.

Alternately adding and subtracting the identities above, we conclude that

eπ(t+i)2/(4w)Fw(t) + (−1)n+1eπ(t+i+2nw)2/(4w)Fw(t+ 2nw)

=

n∑′

j=0

(−1)j+1eπ(t+i+2jw)2/(4w),

that is to say,

Fw(t)− eπn(t+nw)Fw(t+ 2nw) = −e−πt2/(4w)

n∑′

j=0

eπ(t+2jw)2/(4w),

which completes our proof. ��

Entry 14.4.4 (p. 198). Let s = t+2η1mw+ 2η2ni, where η
2
1 = η22 = 1, and

where m and n are positive integers. Then

Fw(s) + (−1)mn−1e−
1
2πη1m(s+t)Fw(t) = η1e

−πs2/(4w)

m∑′

j=0

eπ(s−2jη1w)2/(4w)

+ η2(−1)mn i√
w
e−

1
2πη1m(s+t)

n∑′

j=0

e−π(t+2η2ji)
2/(4w), (14.4.14)
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where the primes on the summation signs have the same meaning as in the
two previous entries.

Proof. If we examine the proof of Entry 14.4.3, we see that we can similarly
obtain an expression for Fw(t)− e−πn(t−nw)Fw(t− 2nw), but with the right-
hand side multiplied by −1 and the exponents j in the summands being
replaced by −j. Thus, we shall apply Entry 14.4.3 and its just described
analogue with n replaced by m and t replaced by t + 2η2ni. Note that the
right-hand side will be multiplied by η1, and so we obtain

Fw(t+ 2η2ni)−eπη1m(t+2η2ni+η1mw)Fw(t+ 2η2ni+ 2η1mw)

= −η1e−π(t+2η2ni)
2/(4w)

m∑′

j=0

eπ(t+2η2ni+2η1jw)2/(4w).

Using the definition of s, we can reformulate the foregoing equality as

Fw(t+ 2η2ni)− eπη1m(s−η1mw)Fw(s)

= −η1e−π(s−2η1mw)2/(4w)

m∑′

j=0

eπ(s−2η1mw+2η1jw)2/(4w)

= −η1e−π(s−2η1mw)2/(4w)

m∑′

j=0

eπ(s−2η1jw)2/(4w). (14.4.15)

If we examine the proof of Entry 14.4.2, we see that we can obtain an
analogue for Fw(t)−Fw(t−2ni) with the right-hand side now being multiplied
by −1 and with the summand exponents j replaced by −j. Then if we apply
Entry 14.4.2 and its analogue that we just described above to Fw(t+2η2ni), we
must multiply the right-hand side by η2. Hence, using (14.4.7), its analogue,
and (14.4.15), we find that

Fw(t)−eπη1m(s−η1mw)Fw(s)

= −η1e−π(s−2η1mw)2/(4w)

m∑′

j=0

eπ(s−2η1jw)2/(4w)−η2
i√
w

n∑

j=0

′
e−π(t+2η2ji)

2/(4w).

Upon multiplying both sides above by e−πη1m(s−η1mw) and simplifying, we
find that

Fw(s) + (−1)mn−1e−
1
2πη1m(s+t)Fw(t) = −η1e−πs2/(4w)

m∑′

j=0

eπ(s−2jη1w)2/(4w)

+ η2(−1)mn i√
w
e−

1
2πη1m(s+t)

n∑′

j=0

eπ(t+2η2ji)
2/(4w),
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where we used the fact that

(−1)mne−
1
2πη1m(s+t) = e−πη1m(s−η1mw).

This completes our proof. ��

14.5 Examples

If we set s = t in Entry 14.4.4, it follows that w = −(η2ni)/(η1m). If we
further suppose that both m and n are odd, then (14.4.14) reduces to the
identity

(1 + e−πη1mt)Fw(t) = η1e
−πt2/(4w)

m∑

j=0

′
eπ(t−2jη1w)2/(4w)

− η2
i√
w
e−πη1mt

n∑

j=0

′
e−π(t+2η2ji)

2/(4w).

In the identity above, first let η1 = 1, η2 = −1 and multiply both sides by
emt. Second, let η1 = −1, η2 = 1 and multiply both sides by e−mt. Replace t
by 2t/π in each identity. We then respectively obtain the two identities

2 cosh(mt)

∫ ∞

0

sin(2tx)

tanh(πx)
e−

πnx2

m idx

=
1

2
emt + e(m−2)t+

πn
m i + e(m−4)t+

4πn
m i + · · ·+ 1

2
e−mt+πmni

+

√
m

n

{
1

2
e
−mt+

(
mt2

πn +
π
4

)
i
+ e

(
2
n−1

)
mt+

[(
t2

π2 −1

)
πm
n +

π
4

]
i

+ · · ·+ 1

2
e
mt+

[(
t2

π2 −n2

)
πm
n +

π
4

]
i
}

(14.5.1)

and

2 cosh(mt)

∫ ∞

0

sin(2tx)

tanh(πx)
e−

πnx2

m idx

= −1

2
e−mt − e(2−m)t+

πn
m i − e(4−m)t+

4πn
m i + · · · − 1

2
emt+πmni

−
√
m

n

{
1

2
e
mt+

(
mt2

πn +
π
4

)
i
+ e

(
1− 2

n

)
mt+

[(
t2

π2 −1

)
πm
n +

π
4

]
i

+ · · ·+ 1

2
e
−mt+

[(
t2

π2 −n2

)
πm
n +

π
4

]
i
}
. (14.5.2)
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Next add (14.5.1) and (14.5.2), divide both sides by 2, and equate the real
and imaginary parts on both sides to obtain the two identities

2 cosh(mt)

∫ ∞

0

sin(2tx)

tanh(πx)
cos
πnx2

m
dx

=
1

2
sinh{mt}+ sinh{(m− 2)t} cos πn

m
+ sinh{(m− 4)t} cos 4πn

m

+ · · ·+ 1

2
sinh{−mt} cos(πmn)

+

√
m

n

{
1

2
sinh{−mt} cos

(
mt2

πn
+
π

4

)
+ sinh

{(
2

n
− 1

)
mt

}

× cos

((
t2

π2
− 1

)
πm

n
+
π

4

)

+ · · ·+ 1

2
sinh{mt} cos

((
t2

π2
− n2

)
πm

n
+
π

4

)}
(14.5.3)

and

− 2 cosh(mt)

∫ ∞

0

sin(2tx)

tanh(πx)
sin
πnx2

m
dx

= sinh{(m− 2)t} sin πn
m

+ sinh{(m− 4)t} sin 4πn

m

+ · · ·+ 1

2
sinh{−mt} sin(πmn)

+

√
m

n

{
1

2
sinh{−mt} sin

(
mt2

πn
+
π

4

)
+ sinh

{(
2

n
− 1

)
mt

}

× sin

((
t2

π2
− 1

)
πm

n
+
π

4

)

+ · · ·+ 1

2
sinh{mt} sin

((
t2

π2
− n2

)
πm

n
+
π

4

)}
. (14.5.4)

Using (14.5.3) and (14.5.4), we can evaluate several definite integrals.
For example, if we set m = n = 1 in (14.5.3) and (14.5.4), we find that,
respectively,

∫ ∞

0

sin(2tx)

tanh(πx)
cos(πx2)dx =

sinh t

2 cosh t

(
1− cos

(
t2

π
+
π

4

))

and
∫ ∞

0

sin(2tx)

tanh(πx)
sin(πx2)dx =

sinh t

2 cosh t
sin

(
t2

π
+
π

4

)
.

These evaluations can be found in [126, p. 542, formulas 3.991, nos. 1, 2],
respectively. No further cases of (14.5.3) and (14.5.4) can be found in [126].
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14.6 One Further Integral

There is one further integral, namely,

Gw(t) :=

∫ ∞

0

sin(πtx)

coth(πx)
e−πwx2

dx,

that can be placed in the theory of φw(t), ψw(t), and Fw(t). Note that

Gw(t) =

∫ ∞

0

sin(πtx) sinh(πx)

cosh(πx)
e−πwx2

dx

= −i
∫ ∞

0

sin(πtx) sin(iπx)

cosh(πx)
e−πwx2

dx

=
i

2

∫ ∞

0

cos{πx(t+ i)} − cos{πx(t− i)}
cosh(πx)

e−πwx2

dx

=
i

2
{φw(t+ i)− φw(t− i)}, (14.6.1)

by (14.1.1). The formula (14.6.1) should be compared with (14.3.18).



15

Functional Equations for Products of Mellin

Transforms

15.1 Introduction

Pages 223–227 in [269] form a third manuscript originally written by
Ramanujan but in the handwriting of G.N. Watson. These five pages are
devoted to finding solutions to a certain functional equation for products of
Mellin transforms. At the beginning of the manuscript, sufficient details are
provided, but in the latter portions of the manuscript fewer details are given,
especially for a lengthy series of examples illustrating one of Ramanujan’s
theorems. As did Ramanujan, we shall proceed formally. Hypotheses from the
theory of Mellin transforms can be added to ensure validity of the processes.
The manuscript is divided into three sections. We follow Ramanujan’s devel-
opment throughout, although, as we shall see, the organization in this rough
manuscript is not optimal. Because the manuscript comprises continuous dis-
course, we have refrained from setting aside claims and using the designation
“Entry” in this chapter.

15.2 Statement of the Main Problem

Let

X1(s) :=

∫ ∞

0

xs−1χ1(x)dx and X2(s) :=

∫ ∞

0

xs−1χ2(x)dx. (15.2.1)

The functions χ1 and χ2 are to be chosen so that the functional equation

X1(s)X2(1− s) = λ2 (15.2.2)

holds, where λ is independent of s.

G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook:
Part IV, DOI 10.1007/978-1-4614-4081-9 15,
© Springer Science+Business Media New York 2013
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Ramanujan then claims that the functional equations

⎧
⎪⎨

⎪⎩

∫ ∞

0

φ(x)χ1(nx)dx = λψ(n),
∫ ∞

0

ψ(x)χ2(nx)dx = λφ(n)
(15.2.3)

imply each other. This claim is best established after further theory is
developed.

From (15.2.1),

X1(
1
2 ) =

∫ ∞

0

x−1/2χ1(x)dx and X2(
1
2 ) =

∫ ∞

0

x−1/2χ2(x)dx.

(15.2.4)

Setting x = y2 in (15.2.4), we find that

X1(
1
2 ) = 2

∫ ∞

0

χ1(y
2)dy and X2(

1
2 ) = 2

∫ ∞

0

χ2(y
2)dy. (15.2.5)

Since by (15.2.2), X1(
1
2 )X2(

1
2 ) = λ

2, we conclude from (15.2.5) that

∫ ∞

0

χ1(y
2)dy

∫ ∞

0

χ2(y
2)dy =

(
1

2
λ

)2

. (15.2.6)

Suppose now that χ1(x) and χ2(x) are replaced by a1χ1(cx) and a2χ2(cx),
respectively, where a1, a2, and c are constants. Then, if cx = t and j = 1, 2,

Xj(s) =

∫ ∞

0

xs−1ajχj(cx)dx = ajc
−s

∫ ∞

0

ts−1χj(t)dt.

It then follows from (15.2.2) that

X1(s)X2(1− s) = a1a2c−sc−1+sλ2 =
a1a2
c
λ2. (15.2.7)

Hence, the aforementioned substitutions imply that in (15.2.2), λ must be
replaced by

√
a1a2/c λ, or if we set λ∗ =

√
a1a2/c λ, then, from (15.2.2),

X1(s)X2(1 − s) = λ∗2.

Now let

Z1(s) :=

∫ ∞

0

xs−1φ(x)dx and Z2(s) :=

∫ ∞

0

xs−1ψ(x)dx. (15.2.8)

Then, by (15.2.3),
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Z1(s) =
1

λ

∫ ∞

0

xs−1dx

∫ ∞

0

ψ(y)χ2(xy)dy

=
1

λ

∫ ∞

0

ψ(y)dy

∫ ∞

0

xs−1χ2(xy)dx

=
1

λ

∫ ∞

0

y−sψ(y)dy

∫ ∞

0

ts−1χ2(t)dt

=
1

λ
Z2(1 − s)X2(s). (15.2.9)

Hence, by (15.2.2),

Z1(s)

Z2(1− s)
=
X2(s)

λ
=

λ

X1(1 − s)
. (15.2.10)

We assume throughout the sequel that a given pair of functions F (s) and
f(x) are related by Mellin transforms, that is to say,

F (s) =

∫ ∞

0

xs−1f(x)dx and f(x) =
1

2πi

∫ c+i∞

c−i∞
F (s)x−sds.

(15.2.11)

We now justify Ramanujan’s claim that the two equations in (15.2.3) im-
ply each other. In fact, we prove that Eqs. (15.2.2) and (15.2.10) imply both
equations in (15.2.3), so that in this sense they are equivalent. We prove the
first equation in (15.2.3); the proof of the second is analogous. To that end,
by (15.2.8), (15.2.11), (15.2.10), (15.2.2), (15.2.1), (15.2.11), and (15.2.8),

ψ(n) =
1

2πi

∫ c+i∞

c−i∞
Z2(s)n

−sds

=
λ

2πi

∫ c+i∞

c−i∞

Z1(1− s)
X2(1− s)

n−sds

=
1

2πiλ

∫ c+i∞

c−i∞
Z1(1 − s)X1(s)n

−sds

=
1

2πiλ

∫ c+i∞

c−i∞
Z1(1 − s)n−sds

∫ ∞

0

xs−1χ1(x)dx

=
1

λ

∫ ∞

0

χ1(nt)dt
1

2πi

∫ c+i∞

c−i∞
Z1(1− s)ts−1ds

=
1

λ

∫ ∞

0

χ1(nt)φ(t)dt,

which is what we wanted to prove.
Ramanujan next completes Sect. 15.2 with several examples.
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Example 15.2.1. If
⎧
⎪⎨

⎪⎩

χ1(x) = χ2(x) = cosx,

or

χ1(x) = χ2(x) = sinx,

(15.2.12)

then

λ2 =
1

2
π. (15.2.13)

To establish the first part of Example 15.2.1, recall that for Re s > 0 [126,
p. 458, formula 3.761, no. 9],

∫ ∞

0

xs−1 cosx dx = Γ (s) cos
(πs
2

)
.

Hence,

X1(s)X2(1− s) = Γ (s) cos
(πs
2

)
Γ (1− s) cos

(
π(1 − s)

2

)

=
π

sin(πs)
cos
(πs

2

)
sin
(πs

2

)
=
π

2
,

where we employed the reflection formula for the gamma function.
For the second part of Example 15.2.1, recall that for Re s > 0 [126, p. 458,

formula 3.761, no. 4],

∫ ∞

0

xs−1 sinx dx = Γ (s) sin
(πs
2

)
.

Hence,

X1(s)X2(1− s) = Γ (s) sin
(πs
2

)
Γ (1− s) sin

(
π(1− s)

2

)

=
π

sin(πs)
sin
(πs

2

)
cos
(πs
2

)
=
π

2
.

Example 15.2.2. If

χ1(x) = χ2(x) = Jν(x)
√
x, (15.2.14)

where Jν denotes the ordinary Bessel function of order ν and Re ν > −1, then

λ = 1. (15.2.15)

To establish (15.2.15), recall that for −Re ν − 1
2 < Re s < 1 [126, p. 707,

formula 6.561, no. 14],

∫ ∞

0

xs−1√xJν(x)dx = 2s−1/2Γ (
1
2ν +

1
2s+

1
4 )

Γ (12ν −
1
2s+

3
4 )
.
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Hence,

X1(s)X2(1− s) = 2s−1/2Γ (
1
2ν +

1
2s+

1
4 )

Γ (12ν −
1
2s+

3
4 )

2−s+1/2Γ (
1
2ν −

1
2s+

3
4 )

Γ (12ν +
1
2s+

1
4 )

= 1.

Example 15.2.3. If

χ1(x) = χ2(x) =
xν

1 + x2
,

where ν is an integer, then

λ =
π

2
. (15.2.16)

In order to prove (15.2.16), recall that [126, p. 341, formula 3.241, no. 3]

PV

∫ ∞

0

xν+s−1

1− x2 dx =
π

2
cot

(ν + s)π

2
, Re(ν + s) > 0,

where PV denotes the principal value of the integral. Hence,

X1(s)X2(1− s) =
π2

4
cot

(ν + s)π

2
cot

(ν + 1− s)π
2

=
π2

4

cot
νπ

2
cot
sπ

2
− 1

cot
νπ

2
+ cot

sπ

2

·
− cot

(ν + 1)π

2
cot
sπ

2
− 1

cot
(ν + 1)π

2
− cot

sπ

2

=
π2

4
,

where it is helpful to consider the cases ν even and odd separately.
Ramanujan concludes page 223 by giving examples in which “φ and ψ

are the same function.” The first two examples provide self-reciprocal Fourier
cosine and sine transforms, respectively.

Example 15.2.4. We have

∫ ∞

0

e−x2

cos(2nx)dx =

√
π

2
e−n2

, (15.2.17)

∫ ∞

0

xe−x2

sin(2nx)dx =
n
√
π

2
e−n2

. (15.2.18)

The identities (15.2.17) and (15.2.18) are given in the Tables [126, p. 515,
formula 3.896, no. 4; p. 529, formula 3.952, no. 1], respectively.

The next example is misprinted in [269]; Ramanujan (or Watson) wrote
Jν(nx) instead of Jν(2nx). The example gives a self-reciprocal transform with
respect to the kernel

√
nx Jν(2nx).
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Example 15.2.5. We have

∫ ∞

0

xν+1/2e−x2√
nxJν(2nx)dx =

1

2
nν+1/2e−n2

. (15.2.19)

The integral evaluation (15.2.19) can be found in [126, p. 738, for-
mula 6.631, no. 4].

Example 15.2.6. We have

PV

∫ ∞

0

1

1 + x2
dx

1− n2x2 =
π

2(1 + n2)
. (15.2.20)

The evaluation (15.2.20) is located in [126, p. 348, formula 3.264, no. 1].

15.3 The Construction of χ1 and χ2

We have used Ramanujan’s title for this section; he did not give a title for
the first section. The first half of page 224 is clear and well written, with the
example toward the end covered previously in Example 15.2.1. We therefore
quote Ramanujan.

If χ1 is given it is theoretically (though not always) possible to find
χ2 with the help of (15.2.2) and (15.2.11). In this procedure χ1 and
χ2 are generally neither the same function nor similar functions, nor
both of them capable of finite expression at the same time. It is also
extremely improbable that we can select functions like cosx or sinx.
We shall now proceed in a different way. It is always possible to choose
a number of functions X1(s) and X2(s) which are either the same
function or similar functions so that X1(s)X2(1 − s) is an absolute
constant. Then by (15.2.11) we have

⎧
⎪⎪⎨

⎪⎪⎩

χ1(x) =
1

2πi

∫ c+i∞

c−i∞
x−sX1(s)ds,

χ2(x) =
1

2πi

∫ c+i∞

c−i∞
x−sX2(s)ds.

(15.3.1)

For instance suppose that

X1(s) = X2(s) = Γ (s) cos
1
2πs or Γ (s) sin 1

2πs (15.3.2)

so that X1(s)X2(1 − s) is a constant. Then from (15.3.1) we deduce
that χ1(x) = χ2(x) = cosx or sinx by using the well-known formula

1

2πi

∫ c+i∞

c−i∞
x−sΓ (s)ds = e−x. (15.3.3)
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The identity (15.3.3) is not tagged by Ramanujan. However, because the
tag (15.3.3) is missing and because Ramanujan later refers to the identity as
(15.3.3), we have inserted a tag.

We quote Ramanujan once more, but with one serious misprint corrected.

Suppose now that the 2g integers, say

0, 1, 2, . . . , 2g − 1

are divided into any group of g integers, say

a1, a2, . . . , ag

b1, b2, . . . , bg

and that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X1(s) = Γ (s)

g∏

r=1

sin
π(s+ ar)

2g
,

X2(s) = Γ (s)

g∏

r=1

sin
π(s− br + 2g − 1)

2g

(15.3.4)

so that X1(s)X2(1 − s) is a constant. Then we can easily find χ1(x)
and χ2(x) with the help of (15.3.1) and (15.3.3).

It is interesting that many years later, in 1950, A.P. Guinand [134] redis-
covered the same general set of examples as given by Ramanujan in (15.3.4).
Guinand worked out all the specific cases for g = 3.

Ramanujan next asserts that the number of possible choices of a1, a2, . . . , ag
and b1, b2, . . . , bg is

(2g)!

(g!)2
. (15.3.5)

Ramanujan then defines these solutions in χ1 and χ2 to belong to class g.
However, these solutions “include the number of solutions belonging to class
δ, where δ is a divisor of g. Hence eliminating all these extraneous solutions
we find the number of ways belonging to class g is”

ωg =
∑

δ

μ(δ)
(2g/δ)!

{(g/δ)!}2 , (15.3.6)

where the sum is over all divisors δ of g, and where μ denotes the Möbius
function. The truth of (15.3.6) is easily seen by a straightforward application
of the inclusion–exclusion principle. Ramanujan then provides a table of values
of ωg, 1 ≤ g ≤ 10:
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g ωg g ωg

1
2!

(1!)2
= 2 6

12!

(6!)2
− 6!

(3!)2
− 4!

(2!)2
+

2!

(1!)2
= 900

2
4!

(2!)2
− 2!

(1!)2
= 4 7

14!

(7!)2
− 2!

(1!)2
= 3, 430

3
6!

(3!)2
− 2!

(1!)2
= 18 8

16!

(8!)2
− 8!

(4!)2
= 12, 800

4
8!

(4!)2
− 4!

(2!)2
= 64 9

18!

(9!)2
− 6!

(3!)2
= 48, 600

5
10!

(5!)2
− 2!

(1!)2
= 250 10

20!

(10!)2
− 10!

(5!)2
− 4!

(2!)2
+

2!

(1!)2
= 184, 500

Table 15.1. Calculation of ωg

At this point, we demonstrate that with the choices made in (15.3.4),
X1(s)X2(1− s) is a constant. To that end, by the reflection formula for Γ (s),

X1(s)X2(1− s) = Γ (s)Γ (1− s)
g∏

r=1

sin
π(s+ ar)

2g
sin
π(−s− br + 2g)

2g

=
π

sin(πs)

g∏

r=1

sin
π(s+ ar)

2g
sin
π(s+ br)

2g

=
π

sin(πs)

2g−1∏

r=0

sin
π(s+ r)

2g

=
π

sin(πs)

sin(πs)

22g−1
=

π

22g−1
, (15.3.7)

where we used a well-known value for the foregoing product of sines [126,
p. 41, formula 1.392, no. 1].

After giving Table 15.1, Ramanujan sketchily gives the following table of
inverse Mellin transforms for χ1 and χ2.

g Inverse Mellin transforms

1 Trigonometric functions only

2 Trigonometric functions and e−x

3 Trigonometric functions and e−x
√
3

4 Trigonometric functions and e−x and e−x
√
2

5 Trigonometric functions and e−2x and e−x(1+
√
5)

6 Trigonometric functions and e−x, e−2x, and e−x
√

3

Table 15.2. Inverse Mellin transforms
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We now justify Ramanujan’s claims in Table 15.2. For g = 1, see the
discourse after (15.3.2). These inverse Mellin transforms

1

2πi

∫ c+i∞

c−i∞
Γ (s) sin

πs

2
x−sds = sinx, −1 < Re s < 1, (15.3.8)

1

2πi

∫ c+i∞

c−i∞
Γ (s) cos

πs

2
x−sds = cosx, 0 < Re s < 1, (15.3.9)

are well known and can be found, for instance, in the Tables of A. Erdélyi [115,
p. 348, Eqs. (6) and (7)].

Second, let g = 2. Take a1 = 0 and a2 = 1. Then

X1(s) = Γ (s) sin
πs

4
sin
π(s+ 1)

4
=

1

2
Γ (s)

{
cos
π

4
− cos

(πs
2

+
π

4

)}
.

A similar formula holds for X2(s). Hence, by (15.3.3), (15.3.8), and (15.3.9),
the inverse Mellin transforms for X1(s) and X2(s) will involve trigonometric
functions and e−x, as claimed by Ramanujan.

Third, set g = 3. In general,

X1(s) = Γ (s) sin
π(s+ a1)

6
sin
π(s+ a2)

6
sin
π(s+ a3)

6

=
1

2
Γ (s)

{
cos
π(a2 − a1)

6
− cos

(
πs

3
+
π(a1 + a2)

6

)}
sin
π(s+ a3)

6

=
1

4
Γ (s)

{
sin
(πs
6

+
πc1
6

)
+ sin

(πs
6

+
πc2
6

)

− sin
(πs

2
+
πc3
6

)
+ sin

(πs
6

+
πc4
6

)}
,

for certain constants c1, c2, c3, and c4. A similar formula holds for X2(s). Now
for − 1

2π < Reα < 1
2π [115, p. 348, Eqs. (9) and (11)],

1

2πi

∫ c+i∞

c−i∞
Γ (s) sin(αs)x−sds = e−x cosα sin(x sinα), −1 < Re s,

(15.3.10)

1

2πi

∫ c+i∞

c−i∞
Γ (s) cos(αs)x−sds = e−x cosα cos(x sinα), 0 < Re s. (15.3.11)

Hence, using (15.3.8)–(15.3.11), we see that the inverse Mellin transforms of
X1(s) and X2(s) can be expressed in terms of trigonometric functions and

e−x
√
3/2. Thus, after the replacement of x by 2x, we see that Ramanujan’s

claim is correct.
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Fourth, let g = 4. Then

X1(s) = Γ (s) sin
π(s+ a1)

8
sin
π(s+ a2)

8
sin
π(s+ a3)

8
sin
π(s+ a4)

8

=
1

4
Γ (s)

{
cos
π(a1 − a2)

8
− cos

(
πs

4
+
π(a1 + a2)

8

)}

×
{
cos
π(a3 − a4)

8
− cos

(
πs

4
+
π(a3 + a4)

8

)}
.

It should now be clear that after applying further trigonometric identities and
appealing to (15.3.3) and (15.3.8)–(15.3.11), we shall find that the inverse

Mellin transform of X1(s) involves trigonometric functions, e−x, and e−x/
√
2.

The argument for X2(s) is similar.
Fifth, set g = 5. Then

X1(s) = Γ (s) sin
π(s+ a1)

10
sin
π(s+ a2)

10
sin
π(s+ a3)

10

× sin
π(s+ a4)

10
sin
π(s+ a5)

10

=
1

4
Γ (s)

{
cos
π(a1 − a2)

10
− cos

(
πs

5
+
π(a1 + a2)

10

)}

×
{
cos
π(a3 − a4)

10
− cos

(
πs

5
+
π(a3 + a4)

10

)}
sin
π(s+ a5)

10
.

After further applications of elementary trigonometric identities and the use
of (15.3.8)–(15.3.11), we see that the inverse Mellin transforms of X1(s) will
involve trigonometric functions, e−x, exp(−x sin π

10 ) = exp(−x(−1 +
√
5)/4),

and exp(−x sin 3π
10 ) = exp(−x(1 +

√
5)/4). Thus, after replacing x by 2x, we

see that Ramanujan’s claim is justified.
Finally, we consider the case g = 6. Then

X1(s) = Γ (s) sin
π(s+ a1)

12
sin
π(s+ a2)

12
sin
π(s+ a3)

12

× sin
π(s+ a4)

12
sin
π(s+ a5)

12
sin
π(s+ a6)

12

=
1

8
Γ (s)

{
cos
π(a1 − a2)

12
− cos

(
πs

6
+
π(a1 + a2)

12

)}

×
{
cos
π(a3 − a4)

12
− cos

(
πs

6
+
π(a3 + a4)

12

)}

×
{
cos
π(a5 − a6)

12
− cos

(
πs

6
+
π(a5 + a6)

12

)}
.

Of course, we need to apply further trigonometric identities before calculating
the inverse Mellin transform of X1(s). Using (15.3.3) and (15.3.8)–(15.3.11),
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we find that we obtain trigonometric functions, e−x, exp(−x cos π
6 ), and

exp(−x cos π
3 ). Thus, Ramanujan’s claim again follows, although he has re-

placed x by 2x throughout.

15.4 The Case in Which χ1(x) = χ2(x), φ(x) = ψ(x)

The title of this section is that given by Ramanujan. In the first part, Ramanu-
jan, in essence, repeats a portion of Sect. 15.2, but with the added restrictions
given in the title of the section. Since the details are similar to those pre-
viously given, there is no need to elaborate on them here, and so we quote
Ramanujan.

Let

X(s) =

∫ ∞

0

xs−1χ(x)dx,

and let the function X(s) satisfy the relation

X(s)X(1− s) = λ2, (15.4.1)

where λ is independent of s. Then the two equations
⎧
⎪⎨

⎪⎩

∫ ∞

0

φ(x)χ(nx)dx = λψ(n),
∫ ∞

0

ψ(x)χ(nx)dx = λφ(n)
(15.4.2)

imply each other. It follows from (15.2.6) that

1

2
λ = ±

∫ ∞

0

χ(x2)dx. (15.4.3)

We have already discussed about the construction of χ(x). We shall
now consider the interesting case in which φ(x) = ψ(x). This is really
two cases one in which λ has the positive sign and the other in which
λ has the negative sign. It follows from (15.2.10) that if

Z(s) =

∫ ∞

0

xs−1φ(x)dx

and

Z(s)

Z(1− s) =
X(s)

λ
=

λ

X(1− s) , (15.4.4)

then ∫ ∞

0

φ(x)χ(nx)dx = λφ(n). (15.4.5)
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Thus φ(x) is a positive reciprocal function of itself or a negative reciprocal
function of itself according as λ is taken with positive or negative sign from
(15.4.3). Suppose now that T (s) is a function such that T (s) = T (1− s) (for
instance Riemann’s ξ(s) or some such function) and also that a solution of
Z(s) is found from (15.4.4). Then we can replace Z(s) by Z(s)T (s) and get
a new φ function satisfying (15.4.5) for every T (s) we choose. The following
methods will show that the construction of φ is much easier than that of χ in
the preceding section.

The next three sentences are mysterious, because the introduction of the
function f(x) is spurious. At any rate, we quote what Ramanujan and Watson
recorded.

Let f(x) be an arbitrary function. Then if

φ(n) = f(n) +
1

λ

∫ ∞

0

f(x)χ(nx)dx (15.4.6)

it follows from (15.4.2) that

∫ ∞

0

φ(x)χ(nx)dx = λφ(n).

Here λ may have any of the two values in (15.4.3).

Let f(x) be any function such that

f

(
1

x

)
= xf(x), (15.4.7)

and let ∫ ∞

0

φ(x)χ(nx)dx = λφ(n). (15.4.8)

Then ∫ ∞

0

F (x)χ(nx)dx = λF (n), (15.4.9)

where
∫ 1/ε

ε

f(z)φ(xz)dz = F (x), (15.4.10)

where ε is any small positive number including zero. Ramanujan then says,
“This is very easy to prove.” Indeed, using (15.4.10), setting t = xz, employing
(15.4.8), setting z = 1/u, invoking (15.4.7), and lastly using (15.4.10) again,
we find that
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∫ ∞

0

F (x)χ(nx)dx =

∫ ∞

0

∫ 1/ε

ε

f(z)φ(xz)χ(nx)dzdx

=

∫ 1/ε

ε

f(z)
dz

z

∫ ∞

0

φ(t)χ(nt/z)dt

= λ

∫ 1/ε

ε

f(z)

z
φ(n/z)dz

= λ

∫ 1/ε

ε

f(1/u)

u
φ(nu)du

= λ

∫ 1/ε

ε

f(u)φ(nu)du

= λF (n),

and so the proof of (15.4.9) is complete.
As an illustration, let

f(x) :=
x
1
2 (ab−1)

(1 + xa)b
e−u(xv+x−v), (15.4.11)

where a and b are arbitrary real numbers and the real part of u is positive. A
straightforward calculation shows that f(x) satisfies (15.4.7). Thus, (15.4.9)
holds, where F (x) is given by (15.4.10) and φ(x) satisfies (15.4.8). Ramanujan
then gives three special cases. If a = b = 1, ε = 0, and u = 0, then

F (n) =

∫ ∞

0

φ(nx)

1 + x
dx.

If a = 2, b = 1
2 , ε = 0, and u = 0, then

F (n) =

∫ ∞

0

φ(nx)√
1 + x2

dx.

For the third example, first replace v by 1
2v in (15.4.11). Now let a be arbitrary

and b = 0. Then if x = t2,

F (n) =

∫ ∞

0

x−1/2e−u(xv/2+x−v/2)φ(nx)dx = 2

∫ ∞

0

e−u(tv+t−v)φ(nt2)dt.

(In the Ramanujan–Watson manuscript, the factor 2 on the right-hand side
above is missing.)

For Ramanujan’s last example, return to Example 15.2.5, which we rewrite
in the form

∫ ∞

0

xν+1/2e−x2√
2nxJν(2nx)dx =

1√
2
nν+1/2e−n2

.
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Hence,

χ1(x) = χ2(x) =
√
2xJν(2x), λ = 2−1/2,

and

φ(x) = ψ(x) =
1√
2
xν+1/2e−x2

.

Now in (15.4.11), set b = 0 and v = 2. Then (15.4.10), with f(x) as just
stipulated and φ(x) as above, becomes

F (t) =

∫ 1/ε

ε

x−1/2e−u(x2+x−2) 1√
2
(tx)ν+1/2e−t2x2

dx

=
tν+1/2

√
2

∫ 1/ε

ε

xνe−(u+t2)x2−u/x2

dx.

Thus, from (15.4.9), with F (t) as given above,

∫ ∞

0

F (x)
√
2nxJν(2nx)dx =

1√
2
F (n).

We have corrected several misprints in the example above.

15.5 Examples

In the remainder of his rough draft of a potential paper, Ramanujan works
out the values of χ1(x) and χ2(x) for g = 1, 2, 3 and all available possibilities
for a1, a2, . . . , ag.

g = 1, ω1 = 2

First, take a1 = 0. Then in (15.3.4) let

X1(s) = X2(s) = Γ (s) sin
πs

2
.

By (15.3.7),

X1(s)X2(1− s) =
π

2
.

Then, by (15.3.1) and (15.3.8),

χ1(x) = χ2(x) = sinx.

Second, take a1 = 1. By (15.3.4),

X1(s) = X2(s) = Γ (s) sin
π(s+ 1)

2
.
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By (15.3.7),

X1(s)X2(1− s) =
π

2
.

Then, by (15.3.1) and (15.3.9),

χ1(x) = χ2(x) = cosx.

g = 2, ω2 = 4

By (15.3.7), for all the examples for g = 2,

X1(s)X2(1− s) =
π

8
. (15.5.1)

First, let a1 = 0 and a2 = 1. Then

X1(s) := Γ (s) sin
πs

4
sin
π(s+ 1)

4
, (15.5.2)

X2(s) := Γ (s) sin
π(s+ 1)

4
sin
πs

4
. (15.5.3)

Then, by (15.3.3), (15.3.9), and (15.3.8), for j = 1, 2,

χj(x) =
1

2πi

∫ c+i∞

c−i∞
Γ (s) sin

πs

4
sin
π(s+ 1)

4
x−sds

=
1

4πi

∫ c+i∞

c−i∞
Γ (s)

{
cos
π

4
− cos

(πs
2

+
π

4

)}
x−sds

=
1

4
√
2πi

∫ c+i∞

c−i∞
Γ (s)

{
1− cos

πs

2
+ sin

πs

2

}
x−sds

=
1

2
√
2

{
e−x − cosx+ sinx

}
.

These calculations are in agreement with Ramanujan, who gives

λ =
√
π and χ1(x) = χ2(x) = e

−x − cosx+ sinx.

Thus, Ramanujan has multiplied each of (15.5.2) and (15.5.3) by 2
√
2. Then,

by (15.2.7), in place of (15.5.1), we would deduce that X1(s)X2(1 − s) =
(2
√
2)2π/8 = π.
Second, let a1 = 1 and a2 = 2. Then

X1(s) := Γ (s) sin
π(s+ 1)

4
sin
π(s+ 2)

4
,

X2(s) := Γ (s) sin
π(s+ 3)

4
sin
πs

4
.
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Foregoing the calculations, which are similar to those above, we find that

χ1(x) =
1

2πi

∫ c+i∞

c−i∞
Γ (s) sin

π(s+ 1)

4
sin
π(s+ 2)

4
x−sds

=
1

2
√
2

{
cosx+ sinx+ e−x

}

and

χ2(x) =
1

2πi

∫ c+i∞

c−i∞
Γ (s) sin

π(s+ 3)

4
sin
πs

4
x−sds

=
1

2
√
2

{
cosx+ sinx− e−x

}
.

Except for the fact that Ramanujan normalized X1(s) and X2(s) by multi-
plying each by 2

√
2, our calculations agree with those of Ramanujan.

Third, set a1 = 0 and a2 = 3. Note that we will obtain the same repre-
sentations for χ1 and χ2 that we did in the previous example, but with the
roles of χ1 and χ2 reversed. In this set of examples with g = 2 and in the
next set with g = 3, Ramanujan does not provide all the solutions in χ1 and
χ2. However, it is to be understood that when χ1 and χ2 are different, then
another entry, with their roles inverted, is an (absent) entry in the list as well.

Fourth, set a1 = 2 and a2 = 3. In this instance,

X1(s) := Γ (s) sin
π(s+ 2)

4
sin
π(s+ 3)

4
,

X2(s) := Γ (s) sin
π(s+ 3)

4
sin
π(s+ 2)

4
.

With calculations not unlike those above, we find that for j = 1, 2,

χj(x) =
1

2πi

∫ c+i∞

c−i∞
Γ (s) sin

π(s+ 2)

4
sin
π(s+ 3)

4
x−sds

=
1

2
√
2

{
cosx− sinx+ e−x

}
,

which, except for the factor 2−3/2, agrees with Ramanujan’s claim.

g = 3, ω3 = 18

Amazingly, Ramanujan calculated all 18 examples when g = 3, a fact
indicating that this manuscript was not written in the last year of his life
when he was running out of time and left projects only partially completed
in his lost notebook. For all these examples, by (15.3.7), we know that

X1(s)X2(1− s) =
π

32
.
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Of the 20 possible choices for a1, a2, and a3, the choices 1, 3, 5 and 0, 2, 4
yield the same inverse Mellin transforms that were obtained when g = 1, and
so 18 remain to be examined. In all the examples recorded by Ramanujan, he
replaced the variable x by 2x and multiplied the inverse Mellin transform by a
constant (either ±4 or ±8). By the discourse after (15.2.6), and in particular,
by (15.2.7), these changes alter the value of λ, and consequently, instead of
obtaining the value

√
π/32, we obtain either the value

√
π or 1

2

√
π.

We work out the first of Ramanujan’s 18 examples in detail. Since the
calculations are similar for the remaining examples, we provide only the eval-
uations of the associated inverse Mellin transforms.

1. Set a1 = 0, a2 = 1, and a3 = 2. Then

χ1(x) =
1

2πi

∫ c+i∞

c−i∞
Γ (s) sin

πs

6
sin
π(s+ 1)

6
sin
π(s+ 2)

6
x−sds

=
1

4πi

∫ c+i∞

c−i∞
Γ (s)

{
cos
π

6
− cos

(πs
3

+
π

6

)}
sin
π(s+ 2)

6
x−sds

=
1

4πi

∫ c+i∞

c−i∞
Γ (s)

{√
3

2

[
sin
πs

6
cos
π

3
+ cos

πs

6
sin
π

3

]

−1

2

[
sin
(πs

2
+
π

2

)
+ sin

(
−πs

6
+
π

6

)]}
x−sds

=
1

8πi

∫ c+i∞

c−i∞
Γ (s)

{√
3 sin

πs

6
+ cos

πs

6
− cos

πs

2

}
x−sds

=

√
3

4
e−

√
3x/2 sin

x

2
+

1

4
e−

√
3x/2 cos

x

2
− 1

4
cosx,

where we have employed the evaluations (15.3.10), (15.3.11), and (15.3.9).
Next, it is easily checked that χ2(x) = χ1(x), and so by the calculation

above,

χ2(x) =

√
3

4
e−

√
3x/2 sin

x

2
+

1

4
e−

√
3x/2 cos

x

2
− 1

4
cosx.

This is the first example recorded by Ramanujan under the heading g = 3,
ω3 = 18 on page 227 of [269]. However, Ramanujan wrote

λ =
1

2

√
π, χ1(x) = χ2(x) = cos(2x)−e−x

√
3
(
cosx+

√
3 sinx

)
. (15.5.4)

Thus, Ramanujan replaced x by 2x and multiplied both χ1(x) and χ2(x)
by −4. According to the discussion after (15.2.6), then λ =

√
π/32 is to be

multiplied by
√
−4 · −4/2 =

√
8, i.e., that λ =

√
π/32 is to be replaced by

1
2

√
π.
As indicated above, we provide only a skeleton of the calculations for the

remaining 17 examples. We first consider the five remaining cases in which
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χ1(x) = χ2(x). Second, we consider the 12 cases in which χ1(x) �= χ2(x).
However, because the roles of χ1(x) and χ2(x) can be inverted, we only need
to consider six cases. Also, because the same calculation with trigonometric
functions is used repeatedly for different values of a1, a2, and a3, we derive
here in a very elementary fashion a general trigonometric identity that is to
be used in all the examples that follow.

Let a, b, and c be any complex numbers. Then, by elementary trigonometry,

F (a, b, c) : = sin
π(s+ a)

6
sin
π(s+ b)

6
sin
π(s+ c)

6
(15.5.5)

=
1

2

{
cos
π(a− b)

6
− cos

(
π(a+ b)

6
+
πs

3

)}
sin
π(s+ c)

6

=
1

2
cos
π(a− b)

6

{
cos
πc

6
sin
πs

6
+ sin

πc

6
cos
πs

6

}

− 1

4

{
sin

(
π(a+ b+ c)

6
+
πs

2

)
+ sin

(
π(c− a− b)

6
− πs

6

)}

=
1

2
cos
π(a− b)

6

{
cos
πc

6
sin
πs

6
+ sin

πc

6
cos
πs

6

}

− 1

4

{
cos
π(a+ b+ c)

6
sin
πs

2
+ sin

π(a+ b + c)

6
cos
πs

2

− cos
π(a+ b − c)

6
sin
πs

6
− sin

π(a+ b− c)
6

cos
πs

6

}
.

We shall repeatedly employ (15.5.5) below without comment. Also, define, for
j = 1, 2 and a, b, and c real,

χj(a, b, c;x) := χj(x)

:=
1

2πi

∫ α+i∞

α−i∞
Γ (s) sin

π(s+ a)

6
sin
π(s+ b)

6
sin
π(s+ c)

6
x−sds. (15.5.6)

Below, we repeatedly use (15.5.6) to calculate χ1(x) and χ2(x).
2. Let a1 = 3, a2 = 4, and a3 = 5. Then

F (3, 4, 5) = −1

4
sin
πs

2
− 1

4
sin
πs

6
+

√
3

4
cos
πs

6

and, by (15.3.8), (15.3.10), and (15.3.11),

χ1(x) = χ2(x) = −1

4
sinx− 1

4
e−

√
3x/2 sin

x

2
+

√
3

4
e−

√
3x/2 cos

x

2
.

With the changes of variable mentioned above, λ = 1
2

√
π.

3. Let a1 = 2, a2 = 4, and a3 = 5. Then

F (2, 4, 5) =
1

8
cos
πs

2
−

√
3

8
sin
πs

2
+

1

4
cos
πs

6
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and, by (15.3.9), (15.3.8), and (15.3.11),

χ1(x) = χ2(x) =
1

8
cosx−

√
3

8
sinx+

1

4
e−

√
3x/2 cos

x

2
.

In this case, the changes of variable yield λ =
√
π.

4. Let a1 = 1, a2 = 2, and a3 = 5. Then

F (1, 2, 5) =
1

8
sin
πs

2
+

√
3

8
cos
πs

2
− 1

4
sin
πs

6

and, by (15.3.8), (15.3.9), and (15.3.10),

χ1(x) = χ2(x) =
1

8
sinx+

√
3

8
cosx− 1

4
e−

√
3x/2 sin

x

2
.

As above, the changes of variable yield λ =
√
π.

5. Let a1 = 0, a2 = 3, and a3 = 4. Then

F (0, 3, 4) =

√
3

8
sin
πs

2
+

1

8
cos
πs

2
+

√
3

8
sin
πs

6
− 1

8
cos
πs

6
.

Thus, by (15.3.8)–(15.3.11),

χ1(x) = χ2(x) =

√
3

8
sinx+

1

8
cosx+

√
3

8
e−

√
3x/2 sin

x

2
− 1

8
e−

√
3x/2 cos

x

2
.

As above, the changes of variable give λ =
√
π.

6. Let a1 = 0, a2 = 1, and a3 = 3. Then

F (0, 1, 3) =
1

8
sin
πs

2
−

√
3

8
cos
πs

2
+

1

8
sin
πs

6
+

√
3

8
cos
πs

6
.

Hence, from (15.3.8), (15.3.9), (15.3.10), and (15.3.11),

χ1(x) = χ2(x) =
1

8
sinx−

√
3

8
cosx+

1

8
e−

√
3x/2 sin

x

2
+

√
3

8
e−

√
3x/2 cos

x

2
.

As before, the changes of variable give λ =
√
π.

The next six examples are those recorded by Ramanujan when χ1(x) �=
χ2(x). We preserve the order in which Ramanujan gave the examples.

7. Let a1 = 0, a2 = 4, and a3 = 5. Then

F (0, 4, 5) =
1

4
cos
πs

2
+

√
3

4
sin
πs

6
− 1

4
cos
πs

6
.

Hence, from (15.3.9), (15.3.10), and (15.3.11),

χ1(x) =
1

4
cosx+

√
3

4
e−

√
3x/2 sin

x

2
− 1

4
e−

√
3x/2 cos

x

2
.



348 15 Functional Equations for Products of Mellin Transforms

Let a1 = 2, a2 = 3, and a3 = 4. Then

F (2, 3, 4) =
1

4
cos
πs

2
+

1

2
cos
πs

6
.

Hence, from (15.3.9) and (15.3.11),

χ2(x) =
1

4
cosx+

1

2
e−

√
3x/2 cos

x

2
.

If we make the needed changes of variable, we find that λ = 1
2

√
π.

8. Let a1 = 1, a2 = 2, and a3 = 3. Then

F (1, 2, 3) =
1

4
sin
πs

2
+

1

4
sin
πs

6
+

√
3

4
cos
πs

6
.

Hence, by (15.3.8), (15.3.10), and (15.3.11),

χ1(x) =
1

4
sinx+

1

4
e−

√
3x/2 sin

x

2
+

√
3

4
e−

√
3x/2 cos

x

2
.

Let a1 = 0, a2 = 1, and a3 = 5. Then

F (0, 1, 5) =
1

4
sin
πs

2
− 1

2
sin
πs

6
.

Hence, from (15.3.8) and (15.3.10),

χ2(x) =
1

4
sinx− 1

2
e−

√
3x/2 sin

x

2
.

The requisite changes of variable show us that λ = 1
2

√
π.

9. Let a1 = 1, a2 = 2, and a3 = 4. Then

F (1, 2, 4) =

√
3

8
sin
πs

2
+

1

8
cos
πs

2
+

1

4
cos
πs

6
.

Therefore, by (15.3.8)–(15.3.11),

χ1(x) =

√
3

8
sinx+

1

8
cosx+

1

4
e−

√
3x/2 cos

x

2
.

Let a1 = 0, a2 = 2, and a3 = 5. Then

F (0, 2, 5) =

√
3

8
sin
πs

2
+

1

8
cos
πs

2
−

√
3

8
sin
πs

6
− 1

8
cos
πs

6
.

Hence, from (15.3.8), (15.3.9), (15.3.10), and (15.3.11),

χ2(x) =

√
3

8
sinx+

1

8
cosx−

√
3

8
e−

√
3x/2 sin

x

2
− 1

8
e−

√
3x/2 cos

x

2
.

If we make the proper changes of variable, we find that λ =
√
π.
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10. Let a1 = 1, a2 = 4, and a3 = 5. Then

F (1, 4, 5) = −1

8
sin
πs

2
+

√
3

8
cos
πs

2
+

1

4
sin
πs

6
.

Hence, by (15.3.8)–(15.3.10),

χ1(x) = −1

8
sinx+

√
3

8
cosx+

1

4
e−

√
3x/2 sin

x

2
.

Let a1 = 2, a2 = 3, and a3 = 5. Then

F (2, 3, 5) = −1

8
sin
πs

2
+

√
3

8
cos
πs

2
− 1

8
sin
πs

6
+

√
3

8
cos
πs

6
.

So, from (15.3.8), (15.3.9), (15.3.10), and (15.3.11),

χ2(x) = −1

8
sinx+

√
3

8
cosx− 1

8
e−

√
3x/2 sin

x

2
+

√
3

8
e−

√
3x/2 cos

x

2
.

The requisite changes of variable yield λ =
√
π.

11. Let a1 = 0, a2 = 1, and a3 = 4. Then

F (0, 1, 4) =

√
3

8
sin
πs

2
− 1

8
cos
πs

2
−

√
3

8
sin
πs

6
+

1

8
cos
πs

6
.

Hence, by (15.3.8)–(15.3.11),

χ1(x) =

√
3

8
sinx− 1

8
cosx−

√
3

8
e−

√
3x/2 sin

x

2
+

1

8
e−

√
3x/2 cos

x

2
.

Let a1 = 0, a2 = 2, and a3 = 3. Then

F (0, 2, 3) =

√
3

8
sin
πs

2
− 1

8
cos
πs

2
+

√
3

8
sin
πs

6
+

1

8
cos
πs

6
.

Thus, from (15.3.8), (15.3.9), (15.3.10), and (15.3.11),

χ2(x) =

√
3

8
sinx− 1

8
cosx+

√
3

8
e−

√
3x/2 sin

x

2
+

1

8
e−

√
3x/2 cos

x

2
.

Making the same changes of variable as before, we see that λ =
√
π.

12. Let a1 = 0, a2 = 3, and a3 = 5. Then

F (0, 3, 5) =
1

8
sin
πs

2
+

√
3

8
cos
πs

2
+

1

8
sin
πs

6
−

√
3

8
cos
πs

6
.

Hence, by (15.3.8)–(15.3.11),

χ1(x) =
1

8
sinx+

√
3

8
cosx+

1

8
e−

√
3x/2 sin

x

2
−

√
3

8
e−

√
3x/2 cos

x

2
.
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Let a1 = 1, a2 = 3, and a3 = 4. Then

F (1, 3, 4) =
1

8
sin
πs

2
+

√
3

8
cos
πs

2
+

1

8
sin
πs

6
+

√
3

8
cos
πs

6
.

Thus, from (15.3.8), (15.3.9), (15.3.10), and (15.3.11),

χ2(x) =
1

8
sinx+

√
3

8
cosx+

1

8
e−

√
3x/2 sin

x

2
+

√
3

8
e−

√
3x/2 cos

x

2
.

As in the previous three examples, λ =
√
π.
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A Preliminary Version of Ramanujan’s Paper

“On the Product
∞∏

n=0

[
1 +

(
x

a+nd

)3]
”

16.1 Introduction

The first four sections of this partial manuscript, which is found on pages
313–317 in Ramanujan’s lost notebook [269], are almost identical to the first
four sections of [254], [267, pp. 50–52]. We therefore feel that it is not necessary
to offer further comments on these sections. Hence, the manuscript is copied
here as it is printed in [269, pp. 313–315], except that we economize notation
by using product and summation signs, instead of writing out the first few
terms of a product or sum, as Ramanujan usually did. To aid readers, we occa-
sionally insert remarks in square brackets. Section 5, however, is not included
in [254]. Three of the equalities in this aborted section are incorrect, but they
are easily corrected. One of the identities in this section is an expansion nor-
mally established with the use of partial fractions. Although the identity is
correct, Ramanujan might have had doubts about his proofs of partial frac-
tion expansions, because in an unpublished manuscript, which we thoroughly
examined in Chap. 12, Ramanujan stated an incorrect partial fraction expan-
sion prefaced by the assertion that he established it by the calculus of residues.
Therefore, possibly because of a lack of confidence, Ramanujan chose not to
include this section in his paper. Because this portion of the manuscript was
not discussed in [254], we offer proofs for all the (corrected) claims. We re-
mark that [254] might be considered to be a forerunner for Ramanujan’s paper
[255]. See also Entry 22 in Chap. 13 of Ramanujan’s second notebook [268],
[38, p. 225] and a paper by M. Chamberland and A. Straub [87] in which more
general infinite products are examined.

G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook:
Part IV, DOI 10.1007/978-1-4614-4081-9 16,
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16.2 An Elegant Product Formula

Let

φ(α, β) =

∞∏

n=1

{
1 +

(
α+ β

n+ α

)3
}
.

It can easily be shown that

{
1 +

(
α+ β

n+ α

)3
}{

1 +

(
α+ β

n+ β

)3
}

=

(
1 +

α+ 2β

n

)(
1 +

2α+ β

n

)

(
1 +

α

n

)3(
1 +

β

n

)3

×

⎧
⎨

⎩1−
(
(α− β) + i(α+ β)

√
3

2n

)2
⎫
⎬

⎭

⎧
⎨

⎩1−
(
(α− β)− i(α+ β)

√
3

2n

)2
⎫
⎬

⎭ ;

(16.2.1)

∞∏

n=1

(
1 +

α+ 2β

n

)(
1 +

2α+ β

n

)

(
1 +

α

n

)3(
1 +

β

n

)3 =
{Γ (1 + α)Γ (1 + β)}3

Γ (1 + α+ 2β)Γ (1 + β + 2α)
;

(16.2.2)

∞∏

n=1

⎧
⎨

⎩1−
(
(α− β) + i(α+ β)

√
3

2n

)2
⎫
⎬

⎭

⎧
⎨

⎩1−
(
(α − β)− i(α+ β)

√
3

2n

)2
⎫
⎬

⎭

=
coshπ(α+ β)

√
3− cosπ(α− β)

2π2(α2 + αβ + β2)
. (16.2.3)

It follows from (16.2.1)–(16.2.3) that

φ(α, β)φ(β, α)

=
{Γ (1 + α)Γ (1 + β)}3

Γ (1 + α+ 2β)Γ (1 + β + 2α)
· coshπ(α + β)

√
3− cosπ(α − β)

2π2(α2 + αβ + β2)
. (16.2.4)

But φ(α, β)/φ(β, α) can be expressed in finite terms if α − β be any integer.
It follows from (16.2.4) that, if α − β be any integer, then φ(α, β) can be
expressed in finite terms. That is to say

∞∏

k=1

{
1 +

(
x

n+ k

)3
}

(16.2.5)

can be expressed in finite terms, if x− 2n be any integer.
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(Because of careless photocopying by the publisher, a portion of the right
side of (16.2.4) and part of the discourse between (16.2.4) and (16.2.5) were
cropped. The product in [254] corresponding to (16.2.5) appears to be more
general, but it is easy to see that with simple changes of variables, the two
formulations have the same generality.)

16.3 The Special Case α = β

Suppose now that α = β in (16.2.4). We obtain

∞∏

n=1

{
1 +

(
2α

n+ α

)3
}

=
{Γ (1 + α)}3
Γ (1 + 3α)

· sinhπα
√
3

πα
√
3
. (16.3.1)

Similarly supposing that β = α+ 1 in (16.2.4) we obtain

∞∏

n=1

{
1 +

(
1 + 2α

n+ α

)3
}

=
{Γ (1 + α)}3
Γ (2 + 3α)

·
coshπ(12 + α)

√
3

π
. (16.3.2)

Since

{
1 +

(α
n

)3}
{
1 + 3

(
α

2n+ α

)2
}

=
1 +

α

n(
1 +

α

2n

)2
(
1 +

α2

n2
+
α4

n4

)

it is easy to see that

∞∏

n=1

(
1+
(α
n

)3)
{
1+3

(
α

2n+α

)2
}

=
Γ (12α)

Γ (12 (1+α))
· coshπα

√
3− cosπα

2α+2πα
√
π

.

(16.3.3)

16.4 An Application of Binet’s Formula

It is known that, if the real part of α is positive, then

logΓ (α) =
(
α− 1

2

)
logα− α+ 1

2 log(2π) + 2

∫ ∞

0

tan−1(x/α)

e2πx − 1
dx. (16.4.1)

(The representation for logΓ (α) in (16.4.1) is known as Binet’s integral for-
mula for logΓ (α), and a proof can be found in [315, p. 251].) From this we
can easily show that, if the real part of α is positive, then

1

2
log(2πα) + log

{ ∞∏

n=1

(
1 +

(α
n

)3)
}

= log

(
coshπα

√
3− cosπα

πα

)
− πα√

3
+ 2

∫ ∞

0

tan−1(x/α)3

e2πx − 1
dx. (16.4.2)



354 16 A Preliminary Version of Ramanujan’s Paper

Hence we see that
∫ ∞

0

tan−1 x3

e2παx − 1
dx

can be expressed in finite terms for all positive integral values of α. Thus for
example

∫ ∞

0

tan−1 x3

e2πx − 1
dx =

1

4
log 2π − 1

2
log
(
1 + e−π

√
3
)
− π

4
√
3
;

∫ ∞

0

tan−1 x3

e4πx − 1
dx =

1

8
log 12π − 1

4
log
(
1 + e−2π

√
3
)
− π

4
√
3
;

and so on.

16.5 A Sum–Integral Identity

It is easy to see that

∞∑

n=1

(−1)n−1n2

n3 + α3
=

1

3

∞∑

n=1

(−1)n−1

n+ α
+

4

3

∞∑

n=1

(−1)n−1(2n− α)
(2n− α)2 + 3α2

. (16.5.1)

Since
∞∑

n=0

(−1)n(2n+ 1)

(2n+ 1)2 + x2
=
π

4
sech

πx

2
,

we see that the left-hand side of (16.5.1) can be expressed in finite terms if α
is any odd integer. For example

∞∑

n=1

(−1)n−1n2

n3 + 1
=

1

3

(
1− log 2 + πsech1

2π
√
3
)
.

Again, if α > 0, then

∫ ∞

0

x5

sinhπx
· dx

α6 + x6
=

2

π

∫ ∞

0

{
1

2x2
+

∞∑

n=1

(−1)n

n2 + x2

}
x6dx

α6 + x6

=
1

3

∞∑

n=0

(−1)n

n+ α
− 4

3

∞∑

n=1

(−1)n−1(2n+ α)

(2n+ α)2 + 3α2
. (16.5.2)

Hence the left-hand side of (16.5.2) can be expressed in finite terms if α is
any odd integer. For example

∫ ∞

0

x5

sinhπx
· dx

1 + x6
=

1

3

(
log 2− 1 + πsech1

2π
√
3
)
.
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16.6 The Unpublished Section

(We emphasize that certain identities in this section are incorrect. Proofs of
all correct and corrected identities in Sect. 16.6 are provided in Sect. 16.7.)
If 2α be a positive integer, then it can easily be shown that

∞∑

n=1

n

n4 + 4α4
=

1

4α

2α∑

n=1

1

(n− α)2 + α2 ; (16.6.1)

and

∫ ∞

0

x

e2πx − 1
· dx

4α4 + x4
=

π

8α2
(−1)2α

e2πα + (−1)2α+1
+

1

8α

2α∑

n=1

1

(n− α)2 + α2 .

(16.6.2)

It can easily be shown by the theory of residues, that

1

16πα4
+

∞∑

n=1

n cothnπ

n4 + 4α4
=

π

8α2
· cosh 2πα+ cos 2πα

cosh 2πα− cos 2πα
. (16.6.3)

It follows from (16.6.1) and (16.6.3) that, if 2α be a positive integer, then

∞∑

n=1

n

e2nπ − 1

1

n4 + 4α4
=

π

16α2

{
e2πα + (−1)2α

e2πα − (−1)2α

}2

− 1

32πα4
− 1

8α

2α∑

n=1

1

(n− α)2 + α2 . (16.6.4)

In a similar manner we can show that, if α be a positive integer, then

∞∑

n=0

2n+ 1

(2n+ 1)4 + 4α4
=

1

4α

α−1∑

n=0

1

(2n+ 1− α)2 + α2 ; (16.6.5)

and

∞∑

n=0

2n+ 1

e(2n+1)π + 1
· 1

(2n+ 1)4 + 4α4
=

π

32α2

{
eπα − (−1)α

eπα + (−1)α

}2

− 1

8α

α−1∑

n=0

1

(2n+ 1− α)2 + α2 . (16.6.6)

It follows from (16.6.4) that, if 2α be a positive integer, then

∞∑

n=1

{
1

e2nπ − 1
− 1

e2π(n+2α) − 1

}
1

(n+ α)2 + α2
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can be expressed in finite terms. Similarly from (16.6.6) we see that, if α be
a positive integer, then

∞∑

n=1

{
1

e(2n−1)π + 1
− 1

e(2α+2n−1)π + 1

}
1

(2n− 1 + α)2 + α2

can be expressed in finite terms. For example

∞∑

n=1

1

(n2 + (n+ 1)2)(sinh(2n+ 1)π − sinhπ)

=
1

2 sinhπ

(
1

π
+ cothπ − π

2
tanh2

π

2

)
. (16.6.7)

16.7 Proofs of the Equalities in Sect. 16.6

Proof of (16.6.1). Observe that

∞∑

n=1

n

n4 + 4α4
=

1

4α

∞∑

n=1

1

(n− α)2 + α2 − 1

4α

∞∑

n=1

1

(n+ α)2 + α2
. (16.7.1)

If we now assume that 2α is a positive integer, we see that all the terms in
the second series on the right-hand side of (16.7.1) are canceled by those in
the first series. Since the largest index for those terms in the first series that
are not canceled by those in the second series is n = 2α, the identity (16.6.1)
follows. ��

Proof of a Corrected Version of (16.6.2). The identity (16.6.2) should be
replaced by

∫ ∞

0

x

e2πx − 1
· dx

4α4 + x4
=

π

8α2
cos(2πα)− e2πα

cosh(2πα)− cos(2πα)

+
π

16α2
− 1

8α

2α∑

n=1

1

(n− α)2 + α2 . (16.7.2)

In fact, on page 269 in his second notebook [268], [41, p. 419, Entry 8],
Ramanujan states a more general formula,

∞∑

n=1

nm+1

n4 + 4α4
=
π

4
(α

√
2)m−2 sec

(
1
4πm

)
(16.7.3)

− 2 cos
(
1
2πm

) ∫ ∞

0

xm+1dx

(e2πx − 1)(x4 + 4α4)

+
π

2
(α

√
2)m−2 cos

(
1
4πm+ 2πα

)
− e2πα cos

(
1
4πm

)

cosh(2πα)− cos(2πα)
,
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where m is a nonnegative integer. Note that if we set m = 0 in (16.7.3), we
obtain (16.7.2) upon the use of (16.6.1). ��

The identity (16.6.2), or the corrected version (16.7.2), is actually not
further used in this fragment. Possibly, Ramanujan recorded it because he
considered (16.6.2) to be an integral analogue of (16.6.4).

Proof of (16.6.3). This partial fraction decomposition can be found as a
corollary in Sect. 20 of Chap. 14 in Ramanujan’s second notebook [268],
[38, p. 274]. ��

Proof of (16.6.4). First, since 2α is a positive integer, elementary manipu-
lation easily shows that

cosh(2πα) + cos(2πα)

cosh(2πα)− cos(2πα)
=

{
e2πα + (−1)2α

e2πα − (−1)2α

}2

. (16.7.4)

Thus, by (16.7.4), (16.6.3), and (16.6.1),

π

8α2

{
e2πα + (−1)2α

e2πα − (−1)2α

}2

=
1

16πα4
+

∞∑

n=1

n cothnπ

n4 + 4α4

=
1

16πα4
+

∞∑

n=1

{
1 +

2

e2nπ − 1

}
n

n4 + 4α4

=
1

16πα4
+ 2

∞∑

n=1

n

e2nπ − 1

1

n4 + 4α4
+

1

4α

2α∑

n=1

1

(n− α)2 + α2 .

Rearranging the last identity yields (16.6.4). ��

Proof of (16.6.5). We can easily see that

∞∑

n=0

2n+ 1

(2n+ 1)4 + 4α4
=

1

4α

∞∑

n=0

1

(2n+ 1− α)2 + α2

− 1

4α

∞∑

n=0

1

(2n+ 1 + α)2 + α2
. (16.7.5)

The terms in the two series on the right side of (16.7.5) cancel each other,
except for the first α terms of the first series, and so the identity (16.6.5)
follows. ��



358 16 A Preliminary Version of Ramanujan’s Paper

Proof of a Corrected Version of (16.6.6). From Entry 25 in Chap. 14 of
Ramanujan’s second notebook [268], [38, p. 292],

∞∑

n=0

2n+ 1

(e(2n+1)π + 1)((2n+ 1)4 + 4α4)
=

π

32α2
− πe−πα

16α2(cosh(πα) + cos(πα))

− 1

4α

∞∑

n=0

1

(2n+ 1 + α)2 + α2
.

(16.7.6)

Replacing α by −α in (16.7.6), we find that

∞∑

n=0

2n+ 1

(e(2n+1)π + 1)((2n+ 1)4 + 4α4)
=

π

32α2
− πeπα

16α2(cosh(πα) + cos(πα))

+
1

4α

∞∑

n=0

1

(2n+ 1− α)2 + α2 .

(16.7.7)

Adding (16.7.6) and (16.7.7), dividing both sides by 2, and observing the same
cancellation as previously noted in (16.7.5), we find that

∞∑

n=0

2n+ 1

(e(2n+1)π + 1)((2n+ 1)4 + 4α4)

=
π

32α2
− π

16α2
· cosh(πα)

cosh(πα) + cos(πα)
+

1

8α

α−1∑

n=0

1

(2n+ 1− α)2 + α2

= − π

32α2
·
{
eπα − (−1)α

eπα + (−1)α

}2

+
1

8α

α−1∑

n=0

1

(2n+ 1− α)2 + α2 . (16.7.8)

Comparing (16.7.8) with (16.6.6), we see that Ramanujan’s claim (16.6.6) can
be corrected by multiplying the right-hand side by −1. ��

We now justify the two claims made by Ramanujan below (16.6.6). Re-
calling that 2α is a positive integer, we find that

∞∑

n=1

{
1

e2nπ − 1
− 1

e2(n+2α)π − 1

}
1

(n+ α)2 + α2

=

∞∑

n=1

{
1

(e2nπ − 1)((n+ α)2 + α2)
− 1

(e2nπ − 1)((n− α)2 + α2)

}

+

2α∑

n=1

1

(e2nπ − 1)((n− α)2 + α2)
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= −
∞∑

n=1

4nα

(e2nπ − 1)(n4 + 4α4)
+

2α∑

n=1

1

(e2nπ − 1)((n− α)2 + α2)

= −4α

{
π

16α2

{
e2πα + (−1)2α

e2πα − (−1)2α

}2

− 1

32πα4
− 1

8α

2α∑

n=1

1

(n− α)2 + α2

}

+

2α∑

n=1

1

(e2nπ − 1)((n− α)2 + α2) , (16.7.9)

by (16.6.4). This justifies the first claim.
The proof of the second is similar. Now, recalling that α is a positive

integer and using (16.7.8), we find that

∞∑

n=1

{
1

e(2n−1)π + 1
− 1

e(2n+2α−1)π + 1

}
1

(2n− 1 + α)2 + α2

=
∞∑

n=1

{
1

(e(2n−1)π + 1)((2n− 1 + α)2 + α2)

− 1

(e(2n−1)π + 1)((2n− 1− α)2 + α2)

}

+

α∑

n=1

1

(e(2n−1)π + 1)((2n− 1− α)2 + α2)

= −
∞∑

n=1

4(2n− 1)α

(e(2n−1)π + 1)((2n− 1)4 + 4α4)

+

α∑

n=1

1

(e(2n−1)π + 1)((2n− 1− α)2 + α2)

= −4α

{
− π

32α2
·
{
eπα − (−1)α

eπα + (−1)α

}2

+
1

8α

α−1∑

n=0

1

(2n+ 1− α)2 + α2

}

+
α∑

n=1

1

(e(2n−1)π + 1)((2n− 1− α)2 + α2) .

Proof of a Corrected Version of (16.6.7). Let α = 1
2 in (16.7.9) to de-

duce that

∞∑

n=1

{
1

e2nπ − 1
− 1

e(2n+2)π − 1

}
1

n2 + n+ 1
2

=

∞∑

n=1

2 sinhπ

(cosh(2n+ 1)π − coshπ)(n2 + (n+ 1)2)
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= −2

{
π

4

{
eπ − 1

eπ + 1

}2

− 1

2π
− 1

2

}
+

2

e2π − 1

= −π
2
tanh2

π

2
+

1

π
+ cothπ. (16.7.10)

Dividing both sides of (16.7.10) by 2 sinhπ, we conclude that

∞∑

n=1

1

(cosh(2n+ 1)π − coshπ)(n2 + (n+ 1)2)

=
1

2 sinhπ

(
−π
2
tanh2

π

2
+

1

π
+ cothπ

)
.

Hence, in Ramanujan’s claim (16.6.7), sinh(2n+1)π−sinhπ should be replaced
by cosh(2n+ 1)π − coshπ. ��
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A Preliminary Version of Ramanujan’s Paper

“On the Integral
∫ x
0

tan−1 t
t
dt”

17.1 Introduction

The partial manuscript on pages 322–325 in Ramanujan’s lost notebook [269]
is a preliminary version of Ramanujan’s seventh published paper [250], [267,
pp. 40–43]. However, not all of the material in [250] can be found in this
preliminary version. The photographer of the manuscript for [269] unfortu-
nately inverted the order of the second and third pages. Moreover, the second
page is written in rougher, less legible handwriting, indicating that this page
is a replacement for a more legible page that has evidently been lost. The
photographic reproduction of this page was so poor that we had to rely on
Ramanujan’s paper [250] to decipher several formulas. As in the manuscript
discussed in Chap. 16, we faithfully copy what Ramanujan has written, except
that we economize series and product notation, and for clarity we introduce
parentheses in arguments of certain functions. At the end of the manuscript,
we offer a few additional comments.

17.2 Ramanujan’s Preliminary Manuscript

Let

Φ(x) =

∫ x

0

tan−1 t

t
dt.

Then, changing t into 1/t, it is easy to see that if x > 0,

Φ(x) − Φ
(
1

x

)
=

1

2
π log x. (17.2.1)

It is also clear that if −1 ≤ x ≤ 1, then

Φ(x) =

∞∑

n=0

(−1)nx2n+1

(2n+ 1)2
. (17.2.2)
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Part IV, DOI 10.1007/978-1-4614-4081-9 17,
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The following results can easily be proved by differentiating both sides with
respect to x.

If 0 < x < 1
2π, then

∞∑

n=0

sin(4n+ 2)x

(2n+ 1)2
= Φ(tanx)− x log tanx. (17.2.3)

As particular cases of (17.2.3) we have

∞∑

n=0

(−1)n

(4n+ 1)2
= Φ(

√
2− 1) +

π

8
log(1 +

√
2) +

π2

16
; (17.2.4)

Φ(1) =
3

2
Φ(2 −

√
3) +

1

8
π log(2 +

√
3). (17.2.5)

If 0 < x < 1
2π, then

∞∑

n=0

(12 )n

n!

cos2n+1 x+ sin2n+1 x

(2n+ 1)2
= Φ(tanx) +

1

2
π log(2 cosx); (17.2.6)

and

∞∑

n=1

sin(nx)

n2
cosn x = Φ(tanx) +

1

2
π log cosx− x log sinx. (17.2.7)

If − 1
2π < x <

1
2π and 1 is greater than or equal to either |(1 − α) sinx| or

|(1− 1/α) cosx|, then
∞∑

n=1

sin(nx)

n2

(
1− 1

α

)n

cosn x+
∞∑

n=1

sin(n{x+ 1
2π})

n2
(1− α)n sinn x

= Φ(tanx) − Φ(α tanx) + x logα. (17.2.8)

If −1 < x < 1, then

∞∑

n=0

(−1)n(2n+ 1) log

(
1− x2

(2n+ 1)2

)

=
4

π

{
Φ(1)− Φ

(
tan{ 1

4π(1 − x)}
)}

+ log
(
tan{ 1

4π(1− x)}
)
. (17.2.9)

As an example we have

∞∏

n=0

(
1− 4

(6n+ 3)2

)(−1)n(2n+1)

=

exp

(
4

3π
Φ(1)

)

(2 +
√
3)2/3

. (17.2.10)

If x is real, then
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∞∑

n=0

(−1)n(2n+ 1) log

(
1 +

x2

(2n+ 1)2

)

=
4

π

{
Φ(1)− Φ

(
e−

1
2πx

)}
− 2x tan−1

(
e−

1
2πx

)
. (17.2.11)

For example

∞∏

n=0

(
1 +

{
2

(2n+ 1)π
log(2 +

√
3)

}2
)(−1)n(2n+1)

= exp

(
4

3π
Φ(1)

)
.

(17.2.12)

It follows from (17.2.9) and (17.2.11) that, if −1 < β < 1 and 1
2πα =

log
(
tan{ 1

4π(1 + β)}
)
, then

(
12 + α2

12 − β2

)(
32 − β2
32 + α2

)3(
52 + α2

52 − β2

)5(
72 − β2
72 + α2

)7

· · · = e
1
2παβ . (17.2.13)

∞∏

n=1

(
1− 1

(2n+ 1)2

)(−1)n(2n+1)

=
π

8
exp

(
4

π
Φ(1)

)
. (17.2.14)

∞∑

n=0

(−1)n(2n+1) log

(
1 +

64x4

(2n+ 1)4

)
=

8

π
Φ(1)−2x log

(
coshπx+ sinπx

coshπx− sinπx

)

− 4x tan−1
( cosπx

sinhπx

)
− 8

π

∞∑

n=0

(−1)n
cos(2n+ 1)πx

(2n+ 1)2
e−(2n+1)πx. (17.2.15)

∞∑

n=0

(−1)n(2n+ 1) tan−1 8x2

(2n+ 1)2
= log

(
coshπx+ sinπx

coshπx− sinπx

)

− 2x tan−1
( cosπx

sinhπx

)
+

4

π

∞∑

n=0

(−1)n
sin(2n+ 1)πx

(2n+ 1)2
e−(2n+1)πx. (17.2.16)

If n is a positive odd integer,

∞∏

k=0

(
1 +

4n4

(2k + 1)4

)(−1)k(2k+1)

=

⎛

⎝1− e−
1
2πn

1 + e−
1
2πn

⎞

⎠
2n(−1)

1
2 (n−1)

exp

(
8

π
Φ(1)

)
.

(17.2.17)
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If n is any even positive integer,

∞∏

k=0

(
1 +

4n4

(2k + 1)4

)(−1)k(2k+1)

(17.2.18)

= exp

{
8

π
Φ(1)− 8

π
(−1)

1
2n

(
Φ

(
e−

1
2πn

)
+

1

2
πn tan−1

(
e−

1
2πn

))}
.

If n is a positive odd integer,

∞∑

k=0

(−1)k(2k + 1) tan−1 2n2

(2k + 1)2
(17.2.19)

=
4

π
(−1)

1
2 (n−1)

⎧
⎨

⎩
πn

4
log

⎛

⎝1 + e−
1
2πn

1− e−
1
2πn

⎞

⎠+

∞∑

k=0

1

(2k + 1)2
e−

1
2 (2k+1)πn

⎫
⎬

⎭.

If n is a positive even integer,

∞∑

k=0

(−1)k(2k+1) tan−1 2n2

(2k + 1)2
= n(−1)

1
2 (n−1) tan−1

(
e−

1
2πn

)
. (17.2.20)

By the theory of residues it can be shown that, if α and β are positive and
αβ = π2, then

∞∑

n=0

1

(2n+ 1)2(e(2n+1)α − 1)
+

π

4β

∞∑

n=1

1

n2(enβ + e−nβ)
=

π

16

(
α

3
+
β

2

)
− 1

2
Φ(1).

(17.2.21)

Putting α = β = π in (17.2.21) we can easily calculate the value of Φ(1)
approximately. Thus

Φ(1) = 0.9159655942 (17.2.22)

approximately.
If − 1

2π < x <
1
2π, then

∞∑

n=0

n!

(32 )n

sin2n+1 x

2n+ 1
= 2Φ(tan 1

2x). (17.2.23)

17.3 Commentary

At the top of the first page of the manuscript, brief notes, possibly in Hardy’s
handwriting, are appended. In particular, it is mentioned that (17.2.23) is
not given in Ramanujan’s published paper [250]. However, (17.2.23) indeed
can be found in Ramanujan’s paper; see equation (8) there. As pointed out
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in Ramanujan’s Collected Papers [267, pp. 40, 337], the identity (17.2.4) is
incorrect, with the corrected version being

∞∑

n=0

(−1)n(n−1)/2

(2n+ 1)2
=

√
2Φ(

√
2− 1) +

π

4
√
2
log(1 +

√
2).

As remarked in the introduction, not all of the results in [250] can be found in
this preliminary version. For the convenience of readers, we provide a table in-
dicating the identity in [250] corresponding to the identity in this manuscript:

[269] [250] [269] [250] [269] [250]
(17.2.1) (4) (17.2.9) (12) (17.2.17) (20)
(17.2.2) (3) (17.2.10) (13) (17.2.18) (21)
(17.2.3) (5) (17.2.11) (15) (17.2.19) (22)
(17.2.4) (6) (17.2.12) (16) (17.2.20) (23)
(17.2.5) (7) (17.2.13) (17) (17.2.21) (25)
(17.2.6) (10) (17.2.14) (14) (17.2.22) (27)
(17.2.7) (9) (17.2.15) (18) (17.2.23) (8)
(17.2.8) (11) (17.2.16) (19)
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A Partial Manuscript Connected with

Ramanujan’s Paper “Some Definite Integrals”

18.1 Introduction

A partial manuscript on definite integrals is found on pages 190–191 in [269].
The manuscript was intended to be Sect. 4 of a paper whose identity is
unknown to us. The manuscript’s content points to Ramanujan’s paper “Some
Definite Integrals” [255], [267, pp. 53–58]. The first sentence on page 190 and
the conclusion of the manuscript might lead one to conclude that this frag-
ment is connected with Ramanujan’s paper “New Expressions for Riemann’s
Functions ξ(s) and Ξ(s)”, [257], [267, pp. 72–77], but the connections with
the former paper appear stronger. The manuscript’s ten integral formulas are
numbered (18)–(27). In the next section, we copy the partial manuscript, and
in the following section we offer commentary.

Page 192 in [269] provides a list of three Dirichlet L-series. Possibly
Ramanujan briefly began here another section to be added to the partial
manuscript on pages 190–191, because, as we shall see in the sequel, the
integrals that are evaluated on these two pages have associations with L-series.
Page 203 is an isolated page on which Ramanujan evaluates six quotients
of either Riemann zeta functions or L-functions. Because of the bond with
L-functions, we have also chosen to discuss this page in this chapter.

18.2 The Partial Manuscript

4. There are of course results corresponding to all the previous results for the
functions analogous to the ζ-function. Thus, for example we have

∫ ∞

0

cos 2nx

coshπx
dx =

1

2 coshn
, (18.2.18)

∫ ∞

0

cos 3nx

1 + 2 coshπx
dx =

1√
3
· 1

1 + 2 cosh2n
, (18.2.19)

G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook:
Part IV, DOI 10.1007/978-1-4614-4081-9 18,
© Springer Science+Business Media New York 2013
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∫ ∞

0

coshπx

cosh 2πx
cos 4nxdx =

1

2
√
2
· coshn

cosh 2n
, (18.2.20)

∫ ∞

0

sinhπx

cosh 2πx
sin 4nxdx =

1

2
√
2
· sinhn

cosh 2n
, (18.2.21)

∫ ∞

0

sinhπx

2 cosh2πx− 1
sin 6nxdx =

1

2
√
3
· sinhn

2 cosh 2n− 1
. (18.2.22)

From these we can easily deduce that

√
α

∫ ∞

0

e−(αx)2

coshπx
dx =

√
β

∫ ∞

0

e−(βx)2

coshπx
dx (18.2.23)

with the condition that αβ = π.

√
α

∫ ∞

0

e−(αx)2

2 coshπx+ 1
dx =

√
β

∫ ∞

0

e−(βx)2

2 coshπx+ 1
dx (18.2.24)

with the condition that αβ = 3
2π.

√
α

∫ ∞

0

coshπx

cosh 2πx
e−(αx)2dx =

√
β

∫ ∞

0

coshπx

cosh 2πx
e−(βx)2dx (18.2.25)

with the condition that αβ = 2π.

√
α

∫ ∞

0

sinhπx

cosh 2πx
αxe−(αx)2dx =

√
β

∫ ∞

0

sinhπx

cosh 2πx
βxe−(βx)2dx (18.2.26)

with the condition that αβ = 2π.

√
α

∫ ∞

0

sinhπx

2 cosh2πx− 1
αxe−(αx)2dx =

√
β

∫ ∞

0

sinhπx

2 cosh2πx− 1
βxe−(βx)2dx

(18.2.27)

with the condition that αβ = 3π.
From the above results we can easily deduce the results corresponding to

those of §§2–3 for the functions

∞∑

n=0

(−1)n

(2n+ 1)s
,

∞∑

n=1

(n
3

) 1

ns
,

∞∑

n=0

(−1)n(n−1)/2

(2n+ 1)s
,
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∞∑

n=0

(−1)n(n+1)/2

(2n+ 1)s
,

∞∑

n=0

(
2n+ 1

3

)
(−1)n

(2n+ 1)s
,

where 1, 3, 5, 7, . . . are the natural odd numbers, 1, 2, 4, 5, . . . are the natural
numbers without the multiples of 3 and 1, 5, 7, 11, . . . are the natural odd
numbers without the multiples of 3.

18.3 Discussion and Proofs of the Identities

We have corrected two misprints. The condition αβ = 3
2π for (18.2.24) is a

replacement of Ramanujan’s for αβ = 3
4π. On the right-hand side of (18.2.26),

Ramanujan inadvertently wrote α at it first appearance in the integrand,
instead of β.

The identities (18.2.18) and (18.2.19) are identical to formulas (7) and
(8), respectively, in [255], [267, p. 55]. Ramanujan’s discourses in [255] and
in the present manuscript indicate that Ramanujan was regarding the three
self-reciprocal Fourier transforms in [255] and the five self-reciprocal Fourier
transforms here as known. The identities (18.2.18), (18.2.20), and (18.2.21) are
especially easy to prove, because each can be established by expanding the
denominator in a geometric series and integrating termwise. The identities
(18.2.19) and (18.2.23) are more difficult to prove. One can find (18.2.18),
(18.2.20), and (18.2.21) in the Tables [126, p. 537, formula 3.981, no. 3;
page 538, formula 3.981, no. 10; p. 537, formula 3.981, no. 6].

Formula (18.2.19) is a special case of a more general integral evaluation
given in [126, p. 539, formula 3.983, no. 6], where the requirement a < 0 given
there is spurious. In that formula, set a = 3n, b = 1

3π, β = 0, and γ = π to
deduce that

∫ ∞

0

cos 3nx

2 coshπx+ 1
dx =

cosh 4n− cosh 2n√
3(cosh 6n− 1)

=
2 cosh2 2n− 1− cosh 2n√

3(4 cosh3 2n− 3 cosh2n− 1)

=
1√

3(2 cosh 2n+ 1)
,

because 4x3 − 3x− 1 = (2x2 − x− 1)(2x+ 1).
Lastly, (18.2.22) is a special case of a more general integral formula found

in [126, p. 539, formula 3.984, no. 3], where the factor π is unfortunately
missing in the evaluation, i.e., the formula should read

∫ ∞

0

sinax sinh 1
2x

coshx+ cosβ
dx = π

sinh(aβ)

2 sin 1
2β cosh(aπ)

. (18.3.1)



370 18 Some Definite Integrals

It will be necessary to make a change of variable x = 2ru, r > 0, to rewrite
(18.3.1) as

∫ ∞

0

sin(2aru) sinh(ru)

cosh(2ru) + cosβ
du = π

sinh(aβ)

4r sin 1
2β cosh(aπ)

. (18.3.2)

Setting r = π, a = 3n/π, and β = 2
3π in (18.3.2), we deduce that

∫ ∞

0

sin(6nu) sinh(πu)

2 cosh(2πu)− 1
du =

sinh(2n)

4
√
3 cosh(3n)

=
sinhn coshn

2
√
3(4 cosh3 n− 3 coshn)

=
sinhn

2
√
3(4 cosh2 n− 3)

=
sinhn

2
√
3(2 cosh 2n− 1)

,

which completes the proof of (18.2.22).
The beautiful identity (18.2.23) was first submitted as a problem to the

Journal of the Indian Mathematical Society [245], [267, pp. 324–325], with
Ramanujan’s solution being one of the few published solutions by Ramanujan
to his own problems. The same solution is sketched in Ramanujan’s paper
[255], [267, p. 55]. It is also given in Chap. 13 of his second notebook [268],
[38, p. 225], where (in the latter source) the condition αβ = π was unfath-
omably replaced by αβ = π/4. A. Dixit [111] has found an elegant extension
of the following formula, also due to Ramanujan [257, Eq. (13)], which we
provide below under a slight renaming of the parameters α and β. If α and β
are two positive numbers such that αβ = 1, then

α−1/2 − 4πα−3/2

∫ ∞

0

xe−πx2/α2

e2πx − 1
dx = β−1/2 − 4πβ−3/2

∫ ∞

0

xe−πx2/β2

e2πx − 1
dx

=
1

4π
√
π

∫ ∞

0

Γ

(
−1 + it

4

)
Γ

(
−1− it

4

)
Ξ

(
t

2

)
cos

(
1

2
t logα

)
dt,

(18.3.3)

where Ξ(x) denotes Riemann’s Ξ-function. Observe that if the far left-hand
side of (18.3.3) is shown to be equal to the far right-hand side, then the first
equality follows readily from the relation αβ = 1.

The identity (18.2.24) is also stated by Ramanujan in [255], where a proof
is sketched. Since (18.2.25)–(18.2.27) are not given by Ramanujan in [255], we
provide proofs. The proofs are dependent on the elementary identities

∫ ∞

0

e−a2x2

cos bx dx =

√
π

2a
e−b2/(4a2), (18.3.4)
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where Re a > 0 and b is real, and

∫ ∞

0

xe−a2x2

sin bx dx =
b
√
π

4a3
e−b2/(4a2), (18.3.5)

where Re a > 0 and b is real [126, p. 515, formula 3.896, no. 4; p. 529, for-
mula 3.952, no. 1].

Proof of (18.2.25). Using (18.2.20) and (18.3.4), we find that

√
α

∫ ∞

0

coshπx

cosh 2πx
e−(αx)2dx = 2

√
2α

∫ ∞

0

e−α2x2

dx

∫ ∞

0

coshπu

cosh 2πu
cos(4πxu)du

= 2
√
2α

∫ ∞

0

coshπu

cosh 2πu
du

∫ ∞

0

e−α2x2

cos(4πxu)dx

=

√
2π

α

∫ ∞

0

coshπu

cosh 2πu
e−4π2u2/α2

du

=
√
β

∫ ∞

0

coshπu

cosh 2πu
e−(βu)2du,

since αβ = 2π. ��

Proof of (18.2.26). Using (18.2.21) and (18.3.5), we see that

√
α

∫ ∞

0

sinhπx

cosh 2πx
αxe−(αx)2dx

= 2α
√
2α

∫ ∞

0

xe−α2x2

dx

∫ ∞

0

sinhπu

cosh 2πu
sin(4πxu)du

= 2α
√
2α

∫ ∞

0

sinhπu

cosh 2πu
du

∫ ∞

0

xe−α2x2

sin(4πxu)dx

=

(
2π

α

)3/2 ∫ ∞

0

sinhπu

cosh 2πu
ue−4π2u2/α2

du

=
√
β

∫ ∞

0

sinhπu

cosh 2πu
βue−(βu)2du,

because αβ = 2π. ��

Proof of (18.2.27). Employing (18.2.22) and (18.3.5), we readily find that

√
α

∫ ∞

0

sinhπx

2 cosh2πx− 1
αxe−(αx)2dx

= 2
√
3α3/2

∫ ∞

0

xe−α2x2

dx

∫ ∞

0

sinhπu

2 cosh2πu− 1
sin(6πxu)du
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= 2
√
3α3/2

∫ ∞

0

sinhπu

2 cosh 2πu− 1
du

∫ ∞

0

xe−α2x2

sin(6πxu)dx

=

(
3π

α

)3/2 ∫ ∞

0

sinhπu

2 cosh2πu− 1
ue−9π2u2/α2

du

=
√
β

∫ ∞

0

sinhπu

2 cosh2πu− 1
βue−(βu)2du,

since αβ = 3π. ��

It is difficult to ascertain Ramanujan’s intention in the last paragraph
of the manuscript, since the content of §§2–3 is unknown to us. However,
the five L-functions listed by Ramanujan are associated with the five self-
reciprocal functions (18.2.18)–(18.2.22), respectively. For these connections,
see E.C. Titchmarsh’s text [305, pp. 262–263]. Titchmarsh does not divulge
who first established the self-reciprocal relations (18.2.18)–(18.2.22). Is it
possible that the contents of this partial manuscript were communicated by
Hardy to Titchmarsh, who was his former doctoral student?

18.4 Page 192

It is not clear that page 192 is a portion of the previous manuscript, but
the editor’s decision to place this page after pages 190 and 191 is reasonable.
The three entries on this page are labeled 28, 32, and 36, with a fourth labeled
40 and empty. The last entry on page 191 is labeled 27), but note that a
different tagging notation is used. We quote the three entries.

28. 1−s + 3−sω + 5−sω5 + 9−sω2 + 11−sω4 + 13−sω3 + 15−s 

+ 17−sω + 19−sω5 + 23−sω2 + 25−sω4 + 27−sω3 + · · ·
where ω6 =  2 = 1,

32. 1−s + 3−sω + 5−sω3 + 7−sω6 + 9−sω2 + 11−sω7 + 13−sω5 

+ 15−sω4 + 17−sω4 + 19−sω5 + 21−sω7 + 23−sω2 + 25−sω6

+ 27−sω3 + 29−sω + 31−s + · · ·
where ω8 =  2 = 1,

36. 1−s + 5−sω + 7−sω2 + 11−sω5 + 13−sω4 + 17−sω3 + 19−s 

+ 23−sω + 25−sω2 + 29−sω5 + 31−sω4 + 35−sω3 + · · ·
where ω6 =  2 = 1.

Note that Ramanujan has made no claims about these three series. Each is a
Dirichlet L-function, with the periods of the characters being 28, 32, and 36,
respectively.
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18.5 Explicit Evaluations of Certain Quotients
of L-Series

Let

χ4(n) =

{
(−1)m, if n = 2m+ 1,

0, if n is even,

and let χ3(n) denote the Legendre symbol
(
n
3

)
.

Entry 18.5.1 (p. 203). Let ζ(s) denote the Riemann zeta function, and
let L(s, χ4) and L(s, χ3) denote the Dirichlet L-functions associated with the
characters χ4 and χ3 defined above. Then

(1− 22/3)ζ(1/3)

(1− 21/3)ζ(2/3)
=

π1/3

Γ (1/3)

21/3 + 41/3√
3

, (18.5.1)

L(1/3, χ4)

L(2/3, χ4)
=

π1/3

Γ (1/3)
· 41/3, (18.5.2)

L(1/3, χ3)

L(2/3, χ3)
=

π1/3

Γ (1/3)
· 21/3 · 31/6, (18.5.3)

(1− 23/4)ζ(1/4)

(1− 21/4)ζ(3/4)
=

π1/4

Γ (1/4)

√
3 + 25/4, (18.5.4)

L(1/4, χ4)

L(3/4, χ4)
=

π1/4

Γ (1/4)

√
2 + 2

√
2, (18.5.5)

L(1/4, χ3)

L(3/4, χ3)
=

π1/4

Γ (1/4)

√√
3 +

√
6. (18.5.6)

Proof. We recall the functional equation of ζ(s) [306, p. 22],

π−s/2Γ (12s)ζ(s) = π
−(1−s)/2Γ (12 − 1

2s)ζ(1 − s). (18.5.7)

We also need the functional equations of the two L-functions cited above [101,
p. 71, Eq. (11)]

π−(2−s)/24(2−s)/2Γ (1−1
2s)L(1−s, χ4) = π

−(s+1)/24(s+1)/2Γ (12 (s+1))L(s, χ4)

(18.5.8)

and

π−(2−s)/23(2−s)/2Γ (1−1
2s)L(1−s, χ3)

= π−(s+1)/23(s+1)/2Γ (12 (s+1))L(s, χ3). (18.5.9)
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The duplication formula

Γ (2x) =
22x−1

√
π
Γ (x)Γ (x+ 1

2 ) (18.5.10)

and the reflection formula

Γ (x)Γ (1 − x) = π

sin(πx)
(18.5.11)

are also needed in our calculations.
We first prove (18.5.1). Setting s = 1

3 in (18.5.7), we find that

(1 − 22/3)ζ(1/3)

(1 − 21/3)ζ(2/3)
=

(1 + 21/3)ζ(1/3)

ζ(2/3)
= (1 + 21/3)π−1/6Γ (1/3)

Γ (1/6)
. (18.5.12)

Setting x = 1
6 in (18.5.10), we readily find that

Γ (1/3)

Γ (1/6)
=

2−2/3

√
π
Γ (2/3). (18.5.13)

Using (18.5.13) in (18.5.12), we deduce that

(1− 22/3)ζ(1/3)

(1− 21/3)ζ(2/3)
= (1 + 21/3)(2π)−2/3Γ (2/3)

=
π1/3√
3Γ (1/3)

(21/3 + 22/3),

upon the use of the reflection formula (18.5.11) with x = 2
3 . This then

completes the proof of (18.5.1).
The proof of (18.5.2) is next on our agenda. Setting s = 2

3 in (18.5.8), we
easily arrive at

L(1/3, χ4)

L(2/3, χ4)
= π−1/621/3

Γ (5/6)

Γ (2/3)
=

24/3π5/6

Γ (2/3)Γ (1/6)
,

by the reflection formula (18.5.11). Using next the duplication formula
(18.5.10), we see that

L(1/3, χ4)

L(2/3, χ4)
=
π5/624/3

Γ (2/3)

2−2/3

√
π

Γ (2/3)

Γ (1/3)
=
π1/341/3

Γ (1/3)
,

and this completes the proof of (18.5.2).
We establish (18.5.3). In (18.5.9), we set s = 2

3 and use the reflection and
duplication formulas (18.5.11) and (18.5.10) to find that

L(1/3, χ3)

L(2/3, χ3)
= π−1/631/6

Γ (5/6)

Γ (2/3)
=

2π5/631/6

Γ (2/3)Γ (1/6)
=
π1/331/621/3

Γ (1/3)
.
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To prove (18.5.4), we set s = 1
4 in the functional equation (18.5.7), employ

the reflection and duplication formulas (18.5.11) and (18.5.10), and lastly
recall the value

sin2
(
3π

8

)
=

√
2 + 1

2
√
2
.

Hence,

(1 − 23/4)ζ(1/4)

(1 − 21/4)ζ(3/4)
= (1 + 21/4 +

√
2)
ζ(1/4)

ζ(3/4)
=

(1 + 21/4 +
√
2)π1/4√√

2 + 1Γ (1/4)
.

Since

(1 + 21/4 +
√
2)√√

2 + 1
=
√
3 + 25/4,

we see that the proof of (18.5.4) is complete.
The proof of (18.5.5) follows along the same lines. We set s = 3

4 in (18.5.8)
and use the reflection and duplication formulas, (18.5.11) and (18.5.10), to
deduce that

L(1/4, χ4)

L(3/4, χ4)
=

π1/4

Γ (1/4)21/4 sin(π/8)
.

If we now use the facts

sin2
(π
8

)
=

√
2− 1

2
√
2

and
√
2 + 2

√
2 =

√
2√√
2− 1

,

we complete the proof of (18.5.5).
Lastly, put s = 3

4 in the functional equation (18.5.9) and proceed in exactly
the same manner as in the previous proof to arrive at

L(1/4, χ3)

L(3/4, χ3)
=

π1/431/4

Γ (1/4)
√√

2− 1
.

If we now use the identity

31/4√√
2− 1

=

√√
3 +

√
6,

we finish the proof of (18.5.6). ��
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Miscellaneous Results in Analysis

19.1 Introduction

Recall that when Ramanujan’s lost notebook [269] was published in 1988,
other fragments and partial manuscripts were also published with the lost
notebook. In the first portion of this chapter, we examine two formulas
found on page 336 of [269] that are clearly wrong. Undoubtedly, Ramanujan
realized that these results are indeed incorrect as they stand. He possibly pos-
sessed correct identities and used some unknown formal procedure to replace
certain expressions by divergent series in order to make the identities more
attractive. Ramanujan frequently enjoyed stating identities in an unorthodox
fashion in order to surprise or titillate his audience. We timorously conjecture
that Ramanujan had established correct identities in each case, but we do not
know what they are.

Following our discussion of these two intriguing but incorrect formulas, we
consider various isolated results. Perhaps the most interesting are an integral-

series identity on page 197 and a study of the integral
∫ x

0
sinu
u du, for which

Ramanujan determines the points where it achieves local maxima and minima.

19.2 Two False Claims

Entry 19.2.1 (p. 336). Let σs(n) =
∑

d|n d
s, and let ζ(s) denote the Rie-

mann zeta function. Then

Γ (s+ 1
2 )

⎧
⎨

⎩
ζ(1 − s)

(s− 1
2 )x

s− 1
2

+
ζ(−s) tan 1

2πs

2xs+
1
2

+

∞∑

n=1

σs(n)

2i

{
(x− in)−s− 1

2 − (x+ in)−s− 1
2

}}

G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook:
Part IV, DOI 10.1007/978-1-4614-4081-9 19,
© Springer Science+Business Media New York 2013
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= (2π)s
{
ζ(1 − s)
2
√
πx

− 2π
√
πxζ(−s) tan 1

2πs

+
√
π

∞∑

n=1

σs(n)√
n
e−2π

√
2nx sin

(π
4
+ 2π

√
2nx

)}
. (19.2.1)

Entry 19.2.2 (p. 336). Let σs(n) and ζ(s) be as in the preceding entry. If α
and β are positive numbers such that αβ = 4π2, then

α(s+1)/2

{
1

α
ζ(1 − s) + 1

2
ζ(−s) tan 1

2πs+
∞∑

n=1

σs(n) sin(nα)

}

= β(s+1)/2

{
1

β
ζ(1 − s) + 1

2
ζ(−s) tan 1

2πs+

∞∑

n=1

σs(n) sin(nβ)

}
. (19.2.2)

Each of Ramanujan’s claims is easily seen to be false in general, because
each contains divergent series. In Sects. 19.3–19.6, we examine these two for-
mulas. Formula (19.2.2) is especially intriguing because of its beautiful sym-
metry, because it appears to be a relation between Eisenstein series formally
extended to the real line, and because it appears to be an analogue of the
Poisson summation formula or a special instance of the Voronöı summation
formula.

19.3 First Attempt: A Possible Connection with
Eisenstein Series

A first examination of (19.2.2) reminds us of the transformation formulas
for Eisenstein series when s is a positive odd integer. In [29], Berndt derived
modular transformation formulas for a large class of analytic Eisenstein series.
Specializing Theorem 2 of [29] for r1 = r2 = 0 and the modular transformation
Tz = −1/z, for z ∈ H = {z : Im z > 0} we find that for any complex number s,

z−s(1 + eπis)

∞∑

n=1

σs−1(n)e
−2πin/z = (1 + eπis)

∞∑

n=1

σs−1(n)e
2πinz

− z−seπis(2πi)−s(1 + eπis)Γ (s)ζ(s) + (2πi)−s(1 + eπis)Γ (s)ζ(s)

− (2πi)−s

∫

C

us−1 1

ezu − 1

1

eu − 1
du, (19.3.1)

where ζ(s) denotes the Riemann zeta function. Here C is a loop beginning at
+∞, proceeding to the left in H, encircling the origin in the positive direction
so that u = 0 is the only zero of (ezu − 1)(eu − 1) lying “inside” the loop, and
then returning to +∞ in the lower half-plane. We choose the branch of us

with 0 < argu < 2π. Otherwise, outside the integrand, we choose the branch
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of logw such that −π ≤ argw < π. Replacing s by s + 1 in (19.3.1) and
slightly simplifying, we find that

z−s−1
∞∑

n=1

σs(n)e
−2πin/z =

∞∑

n=1

σs(n)e
2πinz

+ z−s−1eπis(2πi)−s−1Γ (s+ 1)ζ(s+ 1) + (2πi)−s−1Γ (s+ 1)ζ(s+ 1)

− (2πi)−s−1

1− eπis
∫

C

us
1

ezu − 1

1

eu − 1
du. (19.3.2)

Next, recall the functional equation of the Riemann zeta function (3.1.4) [306,
p. 16, equation (2.1.8)],

ζ(1 − s) = 21−sπ−s cos
(
1
2πs

)
Γ (s)ζ(s). (19.3.3)

If we replace s by s+ 1 in (19.3.3), we easily see that

(2πi)−s−1Γ (s+ 1)ζ(s+ 1) =
ie−πis/2ζ(−s)
2 sin

(
1
2πs

) . (19.3.4)

Using (19.3.4) in (19.3.2), we conclude that

z−s−1
∞∑

n=1

σs(n)e
−2πin/z =

∞∑

n=1

σs(n)e
2πinz + z−s−1 ie

πis/2ζ(−s)
2 sin

(
1
2πs

)

+
ie−πis/2ζ(−s)
2 sin

(
1
2πs

) − (2πi)−s−1

1− eπis
∫

C

us
1

ezu − 1

1

eu − 1
du. (19.3.5)

Omitting n, note that the product of the arguments in the exponentials in the
two infinite series in (19.3.5) is equal to 4π2, in accordance with the condition
αβ = 4π2 prescribed by Ramanujan. Equation (19.3.5) is as close to (19.2.2)
as we can get using the chief theorem from [29].

19.4 Second Attempt: A Formula in Ramanujan’s
Paper [257]

We conjecture that Ramanujan’s formula (19.2.2) arose from the research that
produced his paper [257], [267, pp. 72–77]. On page 75 in [267], in formula
(15), Ramanujan asserts that if Re s > −1 and if α and β are positive numbers
such that αβ = 4π2, then

ζ(1 − s)
4 cos(12πs)

α(s−1)/2 +
ζ(−s)

8 sin(12πs)
α(s+1)/2

+ α(s+1)/2

∫ ∞

0

∫ ∞

0

xs sin(αxy)

(e2πx − 1)(e2πy − 1)
dx dy
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=
ζ(1 − s)

4 cos(12πs)
β(s−1)/2 +

ζ(−s)
8 sin(12πs)

β(s+1)/2

+ β(s+1)/2

∫ ∞

0

∫ ∞

0

xs sin(βxy)

(e2πx − 1)(e2πy − 1)
dx dy. (19.4.1)

Suppose that we multiply both sides of (19.4.1) by 4 cos(12πs) to deduce that

α(s+1)/2

{
1

α
ζ(1− s) + 1

2
ζ(−s) cot(12πs)

+ 4 cos(12πs)

∫ ∞

0

∫ ∞

0

xs sin(αxy)

(e2πx − 1)(e2πy − 1)
dx dy

}

=β(s+1)/2

{
1

β
ζ(1− s) + 1

2
ζ(−s) cot(12πs)

+ 4 cos(12πs)

∫ ∞

0

∫ ∞

0

xs sin(βxy)

(e2πx − 1)(e2πy − 1)
dx dy

}
. (19.4.2)

We note that the first two expressions on each side of (19.4.2) are identical to
the first two terms on each side of (19.2.2), except that tan(12πs) in (19.2.2)
has been replaced by cot(12πs) in (19.4.2). However, we are unable to make
any identification of the double integrals in (19.4.2) with the divergent sums
in (19.2.2).

19.5 Third Attempt: The Voronöı Summation Formula

Our third attempt to prove Entries 19.2.2 and 19.2.1 depends on the Voronöı
summation formula. We only briefly sketch the background and hypotheses
needed for the statement of the Voronöı summation formula. For complete
details, see the papers [26–28], and [89].

Let s = σ + it, with σ and t real, and let

φ(s) :=

∞∑

n=1

a(n)λ−s
n and ψ(s) :=

∞∑

n=1

b(n)μ−s
n , 0 < λn, μn → ∞,

be two Dirichlet series with abscissas of absolute convergence σa and σ∗a,
respectively. Let r > 0, and suppose that φ(s) and ψ(s) satisfy a functional
equation of the type

Γ (s)φ(s) = Γ (r − s)ψ(r − s). (19.5.1)

Define also

Q(x) :=
1

2πi

∫

C

φ(s)xs

s
ds, (19.5.2)

where C is a simple closed curve(s) containing the integrand’s poles in its
interior.
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The Voronöı summation formula in its original form with a(n) = d(n),
where d(n) denotes the number of positive divisors of the positive integer n,
was first proved by M.G. Voronöı in 1904 [310]. Since then, “Voronöı sum-
mation formulas” have been established for a variety of arithmetic functions
under various hypotheses. In particular, Berndt [28] established various ver-
sions of the Voronöı summation formula, including the following theorem from
[28, p. 142, Theorem 1], where several references to the literature on Voronöı
summation formulas can be found.

Theorem 19.5.1. Let f ∈ C(1)(0,∞). Then, if 0 < a < λ1 < x <∞,

∑′

λn≤x

a(n)f(λn) =

∫ x

a

Q′(t)f(t)dt (19.5.3)

+

∞∑

n=1

b(n)

∫ x

a

(
t

μn

)(r−1)/2

Jr−1(2
√
μnt)f(t)dt,

where the prime ′ on the summation sign on the left-hand side indicates that
if x = λn, for some integer n, then only 1

2a(n)f(λn) is counted, and where
Jν(x) denotes the ordinary Bessel function of order ν.

This is the simplest theorem of this sort. The two applications that we
make of Theorem 19.5.1 are formal in the sense that there are no versions of the
Voronöı summation formula that would ensure the validity of our applications;
indeed, as we remarked above, both (19.2.1) and (19.2.2) contain divergent
series. Possibly Ramanujan discovered some version of the Voronöı summation
formula for a(n) = σk(n), but if so, he apparently had established neither a
precise version nor conditions for its validity. Under this assumption, we next
see how Ramanujan might have been led to the two entries above.

In order to avoid possible confusion, we are going to replace s by k in our
attempts to prove (19.2.1) and (19.2.2). It is well known and easy to prove
that for any real number k,

ζ(s)ζ(s − k) =
∞∑

n=1

σk(n)

ns
, σ > sup{1, k + 1}. (19.5.4)

Then with the use of the functional equation (19.3.3) for ζ(s), it is not difficult
to show that if k is an odd integer [89, p. 17],

(2π)−sΓ (s)ζ(s)ζ(k − s)
= (−1)(k+1)/2(2π)−(k+1−s)Γ (k + 1− s)ζ(k + 1− s)ζ(1 − s). (19.5.5)

Thus, in the settings (19.5.1) and (19.5.5), we have

a(n) = σk(n), b(n) = (−1)(k+1)/2σk(n), k odd, (19.5.6)



382 19 Miscellaneous Results in Analysis

λn = μn = 2πn, n ≥ 1, r = k + 1. (19.5.7)

Furthermore, Q(x) is the sum of the residues of

(2π)−sζ(s)ζ(s − k)xs
s

taken over all its poles, which are at s = 1, s = k + 1, and s = 0. Since ζ(s)
has a simple pole at s = 1 with residue 1 and [306, p. 19]

ζ(0) = −1

2
, (19.5.8)

we find that

Q(x) = −1

2
ζ(−k) + ζ(1 − k)x

2π
+
ζ(k + 1)xk+1

(2π)k+1(k + 1)
.

It follows that

Q′(x) =
ζ(1 − k)

2π
+
ζ(k + 1)xk

(2π)k+1
. (19.5.9)

We first examine (19.2.2). In our formal application of (19.5.3), we clearly
should set a = 0, x = ∞, and f(t) = sin(αt/(2π)). In order to apply (19.5.3),
we need to employ the integral evaluation [126, p. 773, formula 6.728, no. 5]

∫ ∞

0

xk+1Jk(bx) sin(ax
2)dx =

bk

(2a)k+1
cos

(
b2

4a
− kπ

2

)
. (19.5.10)

Hence, using (19.5.10), we find that

∫ ∞

0

tk/2Jk(2
√
2πnt) sin

(
αt

2π

)
dt = 2

∫ ∞

0

uk+1Jk(2
√
μn u) sin

(
αu2

2π

)
du

=
(2π)3k/2+1nk/2

αk+1
cos

(
4π2n

α
− kπ

2

)

= (−1)(k−1)/2 (2π)
3k/2+1nk/2

αk+1
sin

(
4π2n

α

)

= (−1)(k−1)/2 (2π)
3k/2+1nk/2

αk+1
sin(βn),

(19.5.11)

since αβ = 4π2.
With the preliminary details out of the way, we are now ready to ap-

ply the Voronöı summation formula (19.5.3). Using the calculations (19.5.9)
and (19.5.11) and the parameters defined above, we formally find that
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∞∑

n=1

σk(n) sin(αn) =

∫ ∞

0

(
ζ(1 − k)

2π
+
ζ(k + 1)tk

(2π)k+1

)
sin

(
αt

2π

)
dt

−
(
2π

α

)k+1 ∞∑

n=1

σk(n) sin(βn). (19.5.12)

Thus, if we replace s by k in (19.2.2) and assume that k is an odd integer,
then (19.5.12) is as close as we can get in our efforts to formally derive (19.2.2).
Note that on the right side of (19.5.12) a minus sign appears, in contrast to
the right side of (19.2.2), and that a divergent integral appears on the right-
hand side of (19.5.12) in place of the expressions involving the Riemann zeta
function appearing in (19.2.2).

We now turn to (19.2.1). Observe that the infinite series on the left-hand
side are reminiscent of the finite Riesz sums

∑
n≤x σs(n)(x − n)r, for which

identities have been derived by, for example, A. Oppenheim [239] and A. Lau-
rinčikas [209]. Once more, we make an application of the Voronöı summation
formula. Note that the series on the left-hand side of (19.2.1) does not con-
verge for any real value of s, since σs(n) ≥ ns. Also note that for x sufficiently
large and for σ > 1

2 , each expression in (19.2.1) tends to 0 as x tends to ∞,
except for −2π

√
πxζ(−s) tan 1

2πs, which tends to ∞.
To effect our application of Theorem 19.5.1, we need the integral evaluation

[126, p. 709, formula 6.565, no. 2]

∫ ∞

0

xν+1Jν(bx)(x
2 + a2)−ν−1/2dx =

√
π bν−1

2eabΓ (ν + 1
2 )
, (19.5.13)

where Rea > 0, b > 0, Re ν > − 1
2 , and Jν(x) denotes the ordinary Bessel

function of order ν. Apply the Voronöı summation formula (19.5.3) twice, with
a = 0, x = ∞, and f(t) = (x ∓ it)−k−1/2, under the same conditions (19.5.6)
and (19.5.7) as in our previous application. We do not provide further details
but invite readers to consult the paper by Berndt, O.-Y. Chan, S.-G. Lim,
and A. Zaharescu [48], where the remainder of the failed proof can be found.
We eventually then arrive at the “identity”

∞∑

n=1

σk(n)
{
(x − in)−k−1/2 − (x+ in)−k−1/2

}

=

∫ ∞

0

(
ζ(1 − k)

2π
+
ζ(k + 1)tk

(2π)k+1

)(
(x− it)−k−1/2 − (x+ it)−k−1/2

)
dt

− i
√
2

Γ (k + 1
2 )

∞∑

n=1

σk(n)√
n
e−2

√
πnx sin

(
2
√
πnx+

1

4
π

)
, (19.5.14)

which should be compared with (19.2.1). Observe that the integral on the
right-hand side of (19.5.14) diverges, although it can be subdivided into two
improper integrals, one of which converges and is elementary, and the other
of which diverges.
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19.6 Fourth Attempt: Mellin Transforms

Another effort to prove Entries 19.2.1 and 19.2.2 has utilized Mellin trans-
forms. We refer readers to the aforementioned paper by Berndt, Chan, Lim,
and Zaharescu [48] for the details of this failed attempt.

19.7 An Integral on Page 197

Entry 19.7.1 (p. 197). Let n > 0 and let t > 0. Then

∫ ∞

0

sin(πtx)

x cosh(πx)
e−iπnx2

dx =
π

2
− 2

∞∑

k=0

(−1)k
e−(2k+1)πt/2+(2k+1)2iπn/4

2k + 1

− π√
n
e−iπ/4

∫ ∞

0

∞∑

k=0

(−1)ke(t+u+(2k+1)i)2iπ/(4n)du. (19.7.1)

Ramanujan has a slight misprint in his formulation of (19.7.1) in [269]; he
forgot the factor π in the exponents in the summands in the first series on the
right-hand side.

Before proving Entry 19.7.1, we state the values of some integrals that we
need in our proof. For a, b > 0 [126, p. 542, formulas 3.989, nos. 5, 6],

∫ ∞

0

sin(πax2) cos(bx)

cosh(πx)
dx = −

∞∑

k=0

(−1)ke−(2k+1)b/2 sin

(
(2k + 1)2πa

4

)

+
1√
a

∞∑

k=0

(−1)ke−(2k+1)b/(2a) sin

(
π

4
− b2

4πa
+

(2k + 1)2π

4a

)
(19.7.2)

and

∫ ∞

0

cos(πax2) cos(bx)

cosh(πx)
dx =

∞∑

k=0

(−1)ke−(2k+1)b/2 cos

(
(2k + 1)2πa

4

)

+
1√
a

∞∑

k=0

(−1)ke−(2k+1)b/(2a) cos

(
π

4
− b2

4πa
+

(2k + 1)2π

4a

)
. (19.7.3)

In [126], the factor (−1)k has unfortunately been omitted from both sums
in (19.7.2) and from the latter sum in (19.7.3). These formulas, including the
mistakes, were copied from the tables of integral transforms [115, p. 36]. Next,
for a > 0 and Re b > 0 [126, p. 545, formula 4.111, no. 7],

∫ ∞

0

sin(ax)

x cosh(bx)
dx = 2 tan−1

(
exp

πa

2b

)
− π

2
. (19.7.4)
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Proof of Entry 19.7.1. Our uninspiring method of proof is undoubtedly not
that used by Ramanujan, because our proof is a verification. We show that
the derivatives of both sides of (19.7.1) as functions of t are equal. We then
show that the limits of both sides of (19.7.1) as t→ ∞ are both equal to π/2
to conclude the proof. To that end, let F (t) and G(t) denote the left- and
right-hand sides of (19.7.1). Then, using (19.7.2) and (19.7.3) with a = n and
b = πt, we find that

F ′(t) = π
∫ ∞

0

sin(πtx)

cosh(πx)
e−iπnx2

dx

= π

( ∞∑

k=0

(−1)ke−(2k+1)πt/2ei(2k+1)2πn/4 (19.7.5)

+
1√
n

∞∑

k=0

(−1)ke−(2k=1)πt/n exp

(
−i
(
π

4
− πt

2

4n
+

(2k + 1)2π

4n

)))
.

On the other hand, by easily justified differentiations under the summation
and integral signs and an inversion in order of integration and summation by
absolute convergence,

G′(t) = π
∞∑

k=0

(−1)ke−(2k+1)πt/2+(2k+1)2πin/4

− 2
πi

4n

π√
n

∞∑

k=0

(−1)k
∫ ∞

0

(t+ u+ (2k + 1)i)e(t+u+(2k+1)i)2iπ/(4n)du

= π
∞∑

k=0

(−1)ke−(2k+1)πt/2+(2k+1)2πin/4

+
π√
n

∞∑

k=0

(−1)ke(t+u+(2k+1)i)2iπ/(4n). (19.7.6)

A comparison of (19.7.5) and (19.7.6) shows that indeed F ′(t) = G′(t). So, it
remains to show that F (t) and G(t) are equal for some value of t.

We let t tend to ∞ to deduce the desired equality. Because of absolute
and uniform convergence with respect to t in a neighborhood of ∞, we can let
t → ∞ under the integral and summation signs on the right side of (19.7.1)
and readily deduce that

lim
t→∞G(t) =

π

2
. (19.7.7)

On the other hand, write, with the use of (19.7.4),

F (t) =

∫ ∞

0

(
sin(πtx)

x cosh(πx)
e−iπnx2 − sin(πtx)

x cosh(πx)

)
dx+

∫ ∞

0

sin(πtx)

x cosh(πx)
dx
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=

∫ ∞

0

sin(πtx)

(
1

x cosh(πx)
e−iπnx2 − 1

x cosh(πx)

)
dx

+ 2 tan−1
(
eπt/2

)
− π

2
. (19.7.8)

Clearly, the function

1

x cosh(πx)
e−iπnx2

− 1

x cosh(πx)

is in L(−∞,∞). Hence, by (19.7.8) and a standard theorem from the theory
of Fourier integrals [305, p. 11],

lim
t→∞F (t) = 0 + 2

π

2
− π

2
=
π

2
. (19.7.9)

Thus, we see from (19.7.7) and (19.7.9) that limt→∞ F (t) = limt→∞G(t), and
so the proof is complete. ��

19.8 On the Integral
∫ x

0
sinu
u
du

On page 256 in [269], Ramanujan obtains explicit representations for the val-
ues of the local maxima and minima of the integral

S(x) :=
∫ x

0

sinu

u
du, (19.8.1)

when x > 0. The integral S(x) is intimately connected with the sine and
cosine integrals defined for x > 0 by [126, p. 936, formulas 8.230, nos. 1,2]

si(x) := −
∫ ∞

x

sin t

t
dt and ci(x) :=

∫ ∞

x

cos t

t
dt. (19.8.2)

Ramanujan first defines r, r > 0, and θ, 0 < θ < 1
2π, by

r cos θ :=

∫ ∞

0

e−xt

1 + t2
dt and r sin θ :=

∫ ∞

0

te−xt

1 + t2
dt, (19.8.3)

where x > 0. His first claim is the following identity.

Entry 19.8.1 (p. 256). If r is defined by (19.8.3), then

r2 =

∫ ∞

0

e−xt

t
log(1 + t2)dt.
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Proof. From [126, p. 359, formula 3.354, nos. 1,2],

∫ ∞

0

e−xt

1 + t2
dt = ci(x) sin x− si(x) cos x (19.8.4)

and

∫ ∞

0

te−xt

1 + t2
dt = −ci(x) cosx− si(x) sin x, (19.8.5)

where ci(x) and si(x) are defined by (19.8.2). Using the definitions (19.8.3) in
conjunction with the foregoing identities, we easily see that

r2 = r2 cos2 θ + r2 sin2 θ

= {ci(x) sin x− si(x) cos x}2 + {−ci(x) cos x− si(x) sinx}2

= ci2(x) + si2(x)

=

∫ ∞

0

e−xt

t
log(1 + t2)dt,

where we have used another integral evaluation from the Tables [126, p. 609,
formula 4.366, no. 1]. This completes the proof. ��

Entry 19.8.2 (p. 256). If r and θ are defined by (19.8.3) and x > 0, then

∫ x

0

sinu

u
du =

π

2
− r cos(x− θ) (19.8.6)

and

∫ x

0

1− cosu

u
du = γ + log x− r sin(x− θ), (19.8.7)

where γ denotes Euler’s constant.

Proof. Again using (19.8.3)–(19.8.5), we easily find that

r cos(x− θ) = r cosx cos θ + r sinx sin θ
= cosx {ci(x) sin x− si(x) cos x}
+ sinx {−ci(x) cos x− si(x) sinx}

= − si(x). (19.8.8)

The result (19.8.6) now follows from the definition (19.8.2) of si(x).
Next, from [126, p. 936, formula 8.230, no. 2],

∫ x

0

1− cosu

u
du = γ + log x− ci(x). (19.8.9)
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A comparison of (19.8.9) with (19.8.7) indicates that in order to prove (19.8.7),
all we need to do is to show that

r sin(x− θ) = ci(x). (19.8.10)

The demonstration of (19.8.10) follows along the same lines as the calculation
in (19.8.8), and so this completes the proof. ��

Entry 19.8.3 (p. 256). The function S(x) defined in (19.8.1) has local max-
ima at x = (2n+ 1)π, n ≥ 0, with the maximum values being

S(2n+ 1) =
π

2
+

∫ ∞

0

e−(2n+1)πt

1 + t2
dt, (19.8.11)

while the local minima are at x = 2nπ, n ≥ 1, with the minimum values being

S(2n) = π

2
−
∫ ∞

0

e−2nπt

1 + t2
dt. (19.8.12)

Proof. From elementary calculus, it is trivial to see that the critical points of
S(x) are at x = nπ, n > 0, when x is positive. Furthermore, it is easy to see
that when n is odd, a local maximum is reached, and when n is even, a local
minimum is obtained. Furthermore, from (19.8.6) and (19.8.3),

S(2n+ 1) =
π

2
− r cos((2n+ 1)π − θ) = π

2
+ r cos θ

=
π

2
+

∫ ∞

0

e−(2n+1)πt

1 + t2
dt,

and so (19.8.11) is established. Similarly, (19.8.6) and (19.8.3) immediately
yield (19.8.12). ��

19.9 Two Infinite Products

Entry 19.9.1 (p. 370). If |Re β| < 1, | Imα| < 1, and

cosh
(
1
2πβ

)
= sec

(
1
2πα

)
, (19.9.1)

then
∞∏

n=0

(
(2n+ 1)2 + α2

(2n+ 1)2 − β2

)(−1)n(2n+1)

= e
1
2παβ . (19.9.2)

With the roles of α and β reversed, Entry 19.9.1 is identical to equation
(17) in Ramanujan’s paper [250], [267, p. 41]. See also (17.2.13) of the present
volume. In fact, in place of the condition (19.9.1), Ramanujan wrote the hy-
pothesis
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πα

2
= gd

(
πβ

2

)
.

(Possibly, gd denotes the Gudermannian function.) Since Ramanujan only
sketched a proof of (19.9.2) in [250], the editors of [267, pp. 336–337] supplied
a more detailed proof. An equivalent form of Entry 19.9.1 can be found on
page 286 in Ramanujan’s second notebook [268], and a proof of Entry 19.9.1
in this form can be found in Berndt’s book [41, p. 461, Entry 30]. Lastly,
Ramanujan also submitted Entry 19.9.1 as a problem to the Journal of the
Indian Mathematical Society [248].

Entry 19.9.2 (p. 370 (incorrect)). For |x| < 1,

∞∏

n=1

{(
1 +

x

n2

)n2

e−x

}
= e

1
2x, (19.9.3)

provided that

x =

{
1

π
log

(
1 +

√
5

2

)}2

. (19.9.4)

If we take the logarithm of both sides of (19.9.3), employ the Maclaurin
series for log(1− z), and interchange the order of summation, we deduce that

∞∑

j=2

(−1)j−1

j
ζ(2j − 2)xj =

x

2
, (19.9.5)

where ζ(s) denotes the Riemann zeta function. Since ζ(0) = − 1
2 [306, p. 19],

we can rewrite (19.9.5) in the form

∞∑

j=0

(−1)j

j + 1
ζ(2j)xj = 0. (19.9.6)

Hence, combining (19.9.6) with (19.9.4), we see that Ramanujan claimed that
a root of (19.9.6) is (19.9.4), which, if true, would be a remarkable result.

Unfortunately, Entry 19.9.2 is incorrect. This entry also appears in Ra-
manujan’s third notebook [268, p. 365], and in [41, pp. 488–490] Berndt showed
that Ramanujan’s claim in Entry 19.9.2 is false. In particular, Ramanujan also
claimed on the same page in [268] that for |x| < 1,

∞∑

j=0

(−1)j

j + 1
ζ(2j)x2j+2 = − 1

π2

∫ πx

0

t2 coth t dt. (19.9.7)

If we set

x =
1

π
log

(
1 +

√
5

2

)
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above, Ramanujan’s claim in Entry 19.9.2 would be equivalent to asserting
that the integral on the right side of (19.9.7) equals 0, which is obviously
untrue.

19.10 Two Formulas from the Theory of Elliptic
Functions

We recall some needed notation from the theory of elliptic functions [39,
Chaps. 17, 18, in particular, pp. 101–102]. The incomplete elliptic integral
of the first kind is defined, for 0 < ϕ ≤ 1

2π, by

∫ ϕ

0

dt√
1− k2 sin2 t

, (19.10.1)

where k, 0 < k < 1, is the modulus. The complementary modulus k′ is defined
by k′ =

√
1− k2. For brevity, we set x = k2. The complete elliptic integral of

the first kind is given by (19.10.1) when ϕ = 1
2π and is denoted by K = K(k).

Define K ′ := K ′(k) := K(k′). Then in the theory of elliptic functions, we set

q := exp

(
−πK

′

K

)
=: e−y. (19.10.2)

Define, for 0 < θ ≤ 1
2π,

θ =
1

z

∫ ϕ

0

dt√
1− k2 sin2 t

.

Incomplete elliptic integrals satisfy Jacobi’s imaginary transformation. If 0 <
ϕ < 1

2π, then

∫ i log(tan(π/4+ϕ/2))

0

dt√
1− x sin2 t

= i

∫ ϕ

0

dt√
1− (1 − x) sin2 t

. (19.10.3)

Entry 19.10.1 (p. 346). Set, in the notation above,

2Kθ

π
=

∫ ϕ

0

dt√
1− k2 sin2 t

. (19.10.4)

Then

log tan

(
π

4
+
θ

2

)
+ 4

∞∑

n=0

(−1)n
q2n+1 sin{(2n+ 1)θ}
(2n+ 1)(1− q2n+1)

= log tan
(π
4
+
ϕ

2

)
.

(19.10.5)

Entry 19.10.1 coincides with Entry 16(v) of Chap. 18 of Ramanujan’s
second notebook [268], and a proof can be found in [39, p. 175].
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Entry 19.10.2 (p. 346). In addition to the notation set above, also put

2Kθ′

π
=

∫ ϕ

0

dt√
1− k′2 sin2 t

. (19.10.6)

Then,

θ′ + 2

∞∑

n=1

qn sinh(2nθ′)
n(1 + q2n)

= log tan
(π
4
+
ϕ

2

)
. (19.10.7)

Proof. In the notation above, in particular (19.10.2), in Entry 15(iv) in
Chap. 18 of his second notebook [268], Ramanujan claims that

θ +

∞∑

n=1

sin(2nθ)

n cosh(ny)
= ϕ; (19.10.8)

see [39, pp. 172–173] for a proof. Now in the notation of (19.10.4) and (19.10.6),
we will restate (19.10.3) in greater detail, inserting the arguments of the func-
tions θ and θ′. To that end,

θ
(
i log tan

(π
4
+
ϕ

2

))
= i θ′(ϕ). (19.10.9)

Next, in (19.10.8), we substitute (19.10.9) in the form θ = iθ′. Keeping in
mind that ϕ is defined by (19.10.6), we see from (19.10.9) that we must also
replace ϕ with i log tan (π/4 + ϕ/2). Hence,

i θ′ +
∞∑

n=1

sin(2niθ′)
n cosh(ny)

= i log tan
(π
4
+
ϕ

2

)
. (19.10.10)

Dividing both sides of (19.10.10) by i and recalling from (19.10.2) that
q = e−y, we deduce (19.10.7). ��

Slightly more complicated proofs of the two preceding entries were given
by the authors in Part II [13, pp. 238–240].
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Elementary Results

20.1 Introduction

In this chapter we collect several claims from [269] that are elementary in
nature.

20.2 Solutions of Certain Systems of Equations

At the bottom of page 340, there is a short note, “2 pp. of algebraical
oddities,” which was probably written by G.H. Hardy. On page 341, Ra-
manujan constructs families of solutions to Euler’s Diophantine equation
A3 + B3 = C3 + D3, which we discuss in Chap. 8, and so it seems doubt-
ful that page 341 is the second page to which Hardy refers. It seems more
likely that Hardy’s comment refers to pages 340 and 344, which we discuss
in the next section. The last several pages of [269] have been numbered by
an unknown person, and in particular, pages 340 and 344 have the numbers
81 and 85 attached to them. It is possible that the pages were shuffled be-
tween the times when Hardy recorded his remark and when an anonymous
cataloguer tagged the pages with numbers.

The first and third entries on page 340 are in the spirit of the third problem
[242] that Ramanujan submitted to the Journal of the Indian Mathematical
Society and the third article that he published [244] in the same journal.

Entry 20.2.1 (p. 340). Suppose that

(x6 + ax)5 − (x6 + bx)5 = A(x5 + p)5 +B(x5 + q)5 + C(x5 + r)5. (20.2.1)

Furthermore, write

A

1− pz +
B

1− qz +
C

1− rz =
α+ βz + γz2

1 + δz + εz2 + φz3
. (20.2.2)

G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook:
Part IV, DOI 10.1007/978-1-4614-4081-9 20,
© Springer Science+Business Media New York 2013
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Then

α = 5(a− b), β = −2
a− b
a+ b

(4a2 + 3ab+ 4b2), γ = 2(a3 − b3), (20.2.3)

δ = −2
a2 + ab+ b2

a+ b
, ε = a2 + ab+ b2, φ = −a

4 + 6a3b+ 6a2b2 + 6ab3 + b4

10(a+ b)
.

(20.2.4)

Proof. Expanding both sides of (20.2.1) by the binomial theorem, we easily
find that

x5
4∑

k=0

(
5

k

)
(a5−k − b5−k)x5k =

5∑

k=0

(
5

k

)
(Ap5−k +Bq5−k + Cr5−k)x5k.

Equating coefficients above, we readily deduce that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ap5 +Bq5 + Cr5 = 0,

Ap4 +Bq4 + Cr4 =
1

5
(a5 − b5),

Ap3 +Bq3 + Cr3 =
1

2
(a4 − b4),

Ap2 +Bq2 + Cr2 = a3 − b3,

Ap+Bq + Cr = 2(a2 − b2),

A+B + C = 5(a− b).

(20.2.5)

On the other hand, from (20.2.2),

(1 + δz + εz2 + φz3)
∞∑

n=0

(Apn +Bqn + Crn)zn = α+ βz + γz2. (20.2.6)

Equating constant terms in (20.2.6) and using (20.2.5), we deduce that

α = 5(a− b). (20.2.7)

Equating coefficients of zk, 1 ≤ k ≤ 5, in (20.2.6), using (20.2.7), and employ-
ing the identities in (20.2.5), we find that, respectively,

2(a2 − b2) + 5(a− b)δ = β, (20.2.8)

(a3 − b3) + 2δ(a2 − b2) + 5ε(a− b) = γ, (20.2.9)
1
2 (a

4 − b4) + δ(a3 − b3) + 2ε(a2 − b2) + 5φ(a− b) = 0, (20.2.10)
1
5 (a

5 − b5) + 1
2δ(a

4 − b4) + ε(a3 − b3) + 2φ(a2 − b2) = 0, (20.2.11)
1
5δ(a

5 − b5) + 1
2ε(a

4 − b4) + φ(a3 − b3) = 0. (20.2.12)
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We now observe that (20.2.10)–(20.2.12) are a set of three linear equations in
the unknowns δ, ε, and φ. If we solve this system, we indeed obtain the three
proffered values for δ, ε, and φ given in (20.2.4). Next, we calculate γ from
(20.2.9), and we deduce Ramanujan’s claimed value for γ in (20.2.3). Lastly, it
is easily checked that Ramanujan’s value of β in (20.2.3) follows readily from
(20.2.8). ��

Entry 20.2.2 (p. 340). If

z =
1

N
and N =

1

2
(a+ b) +

1

2
(a− b)M, (20.2.13)

and if δ, ε, and φ are given in (20.2.4), then

1 + δz + εz2 + φz3 = 0 (20.2.14)

is equivalent to

5(a+ b)(M3 −M) = (a− b)(5M2 − 1). (20.2.15)

Proof. Using the values of δ, ε, and φ from (20.2.4) and then the parameter-
izations (20.2.13), we find that (20.2.14) can be written as

N3 − 2
a2 + ab+ b2

a+ b
N2 + (a2 + ab+ b2)N − a

4 + 6a3b + 6a2b2 + 6ab3 + b4

10(a+ b)

=

{
1

2
(a+ b) +

1

2
(a− b)M

}3

− 2
a2 + ab+ b2

a+ b

{
1

2
(a+ b) +

1

2
(a− b)M

}2

+ (a2 + ab+ b2)

{
1

2
(a+ b) +

1

2
(a− b)M

}
− a

4 + 6a3b+ 6a2b2 + 6ab3 + b4

10(a+ b)

=
1

10(a+ b)

{
5

4
(a+ b)(a− b)3M3 − 5

4
(a− b)4M2

−5

4
(a+ b)(a− b)3M +

1

4
(a− b)4

}
= 0. (20.2.16)

Upon multiplying both sides of (20.2.16) by 40(a+ b)/(a− b)3, we arrive at

5(a+ b)M3 − 5(a− b)M2 − 5(a+ b)M + (a− b) = 0,

which is equivalent to (20.2.15). ��

Entry 20.2.3 (p. 340). Suppose that

x
{
(x+ a)3 + (x+ b)3

}
= A(x+ p)4 +B(x+ q)4 + Cx4. (20.2.17)
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Then

p =
a3 + b3

a2 + b2 − (a− b)
√
3ab
, q =

a3 + b3

a2 + b2 + (a− b)
√
3ab
, (20.2.18)

A = − (a2 + b2 − (a− b)
√
3ab)4

8(a− b)
√
3ab(a3 + b3)2

, B =
(a2 + b2 + (a− b)

√
3ab)4

8(a− b)
√
3ab(a3 + b3)2

, (20.2.19)

C =
(a3 − b3)(a− b)3

(a3 + b3)2
. (20.2.20)

Proof. Expanding both sides of (20.2.17) by the binomial theorem, we see
that

x

3∑

k=0

(
3

k

)
(a3−k + b3−k)xk =

4∑

k=0

(
4

k

)
(Ap4−k +Bq4−k)xk + Cx4.

Equating coefficients of xk, 0 ≤ k ≤ 4, we find that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = Ap4 +Bq4,

1

4
(a3 + b3) = Ap3 +Bq3,

1

2
(a2 + b2) = Ap2 +Bq2,

3

4
(a+ b) = Ap+Bq,

2 = A+B + C.

(20.2.21)

For brevity, set

a1 = 2, a2 =
3

4
(a+ b), a3 =

1

2
(a2 + b2), a4 =

1

4
(a3 + b3), a5 = 0.

(20.2.22)

We now employ a clever idea of Ramanujan [244], [267, pp. 18–19]. Write

φ(θ) :=
A

1− θp +
B

1− θq + C =

∞∑

n=1

anθ
n−1 =

A1 +A2θ +A3θ
2

1 +B1θ +B2θ2
,

(20.2.23)

where, by expanding the left side in geometric series, we see that indeed
a1, a2, . . . , a5 are given by (20.2.22), and where A1, A2, A3 and B1, B2 are
constants that we now proceed to determine. Rewriting the last equality in
(20.2.23) in the form

(1 +B1θ +B2θ
2)(a1 + a2θ + a3θ

2 + a4θ
3 + a5θ

4 + · · · ) = A1 +A2θ +A3θ
2,
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and equating coefficients on both sides, we find that
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A1 = a1,

A2 = a2 + a1B1,

A3 = a3 + a2B1 + a1B2,

0 = a4 + a3B1 + a2B2,

0 = a5 + a4B1 + a3B2.

(20.2.24)

Using (20.2.22), we see that the last two equations in (20.2.24) can be written
in the form

1

2
(a2 + b2)B1 +

3

4
(a+ b)B2 = −1

4
(a3 + b3),

1

4
(a3 + b3)B1 +

1

2
(a2 + b2)B2 = 0.

Solving simultaneously this pair of linear equations, we find that

B1 = − 2(a2 + b2)(a3 + b3)

4(a2 + b2)2 − 3(a+ b)(a3 + b3)
, (20.2.25)

B2 =
(a3 + b3)2

4(a2 + b2)2 − 3(a+ b)(a3 + b3)
. (20.2.26)

Using (20.2.25) and (20.2.26), we can determine A3 from the third equality
of (20.2.24). Accordingly,

A3 =
2(a2 + b2)3 − 3(a+ b)(a2 + b2)(a3 + b3) + 2(a3 + b3)2

4(a2 + b2)2 − 3(a+ b)(a3 + b3)
. (20.2.27)

We now use (20.2.25) in the second equality of (20.2.24) to conclude that

A2 =
12(a+ b)(a2 + b2)2 − 9(a+ b)2(a3 + b3)− 16(a2 + b2)(a3 + b3)

4{4(a2 + b2)2 − 3(a+ b)(a3 + b3)} .

(20.2.28)

Now that we have determined A1, A2, A3 andB1, B2, we return to (20.2.23)
and expand the rational function on the far right-hand side into partial
fractions,

φ(θ) =
A1 +A2θ +A3θ

2

1 +B1θ +B2θ2
=

p1
1− θq1

+
p2

1− θq2
+ p3

=
p1 + p2 + p3 − (p1q2 + p2q1 + q1p3 + q2p3)θ + q1q2p3θ

2

1− (q1 + q2)θ + q1q2θ2
. (20.2.29)

But we also see from (20.2.23) that p1 = A, p2 = B, p3 = C, q1 = p,
and q2 = q. Using these observations and comparing coefficients in the two
representations for the same rational function in (20.2.29), we find that
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A1 = p1 + p2 + p3 = A+B + C,

A2 = −(p1q2 + p2q1 + q1p3 + q2p3) = −Aq −Bp− C(p+ q),
A3 = p3q1q2 = Cpq,

B1 = −(q1 + q2) = −p− q,
B2 = q1q2 = pq.

(20.2.30)

We now are ready to determine p, q, C, and A,B in this order. From the
last two equations of (20.2.30) and from (20.2.25) and (20.2.26), we see that

− 2(a2 + b2)(a3 + b3)

4(a2 + b2)2 − 3(a+ b)(a3 + b3)
= −p− 1

p

(a3 + b3)2

4(a2 + b2)2 − 3(a+ b)(a3 + b3)
.

Solving this equation, we find that

p =
a3 + b3

a2 + b2 − (a− b)
√
3ab
,

as claimed in (20.2.18). Then, from either of the last two equalities in (20.2.30),
we readily compute that

q =
a3 + b3

a2 + b2 + (a− b)
√
3ab
.

Alternatively (and more easily), we could simply verify that the given values of
p and q simultaneously solve the last two equations of (20.2.30). Having found
p and q, we turn to the third equation in (20.2.30) to determine C. After a
moderate amount of elementary algebra, we find that C is given by (20.2.20).
Lastly, we employ the first two equations in (20.2.30) to demonstrate that A
and B are given by (20.2.19). Admittedly, a heavy amount of tedious, but
straightforward, elementary algebra is necessary. ��

M.D. Hirschhorn [162] has devised a somewhat different approach to the
three identities at the beginning of page 340.

In the last entry on page 340, Ramanujan attempts to find a family of
solutions to the diophantine equation

A4 +B4 + C4 = D4 + E4 + F 4. (20.2.31)

On page 384 of his third notebook [269], Ramanujan provides two families
of solutions to (20.2.31). See [40, pp. 94–95, 106–107] for a discussion of Ra-
manujan’s solutions. Unfortunately, Ramanujan’s recorded family of solutions
for (20.2.31) is erroneous. Hirschhorn and L. Vaserstein independently (and
almost simultaneously) found a correct version of Ramanujan’s formula. The
factors (n2+3)(n4+42n2+9) were inadvertently omitted by Ramanujan from
the last two terms on the right-hand side below.
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Entry 20.2.4 (p. 340; corrected). A family of solutions to (20.2.31) is
given by

{
x5(n2 + 3)2(n4 + 42n2 + 9)2 + x(n2 − 3)(n2 + 6n+ 3)

}4

−
{
x5(n2 + 3)2(n4 + 42n2 + 9)2 + x(n2 − 3)(n2 − 6n+ 3)

}4

=
{
x4(n2 + 3)(n4 + 42n2 + 9)(n4 + 6n3 + 18n2 − 18n+ 9) + (n2 − 3)

}4

−
{
x4(n2 + 3)(n4 + 42n2 + 9)(n4 − 6n3 + 18n2 + 18n+ 9) + (n2 − 3)

}4

+
{
6nx4(n2 + 3)(n4 + 42n2 + 9)(n2 + 4n− 3)

}4

−
{
6nx4(n2 + 3)(n4 + 42n2 + 9)(n2 − 4n− 3)

}4
.

20.3 Radicals

Most of page 344 in [269] is devoted to eight identities involving, on one side,
a quotient of binomial conjugates and, on the other side, geometric type series
in the variable g. In each case, there is a condition, such as g5 = 2, attached.

Entry 20.3.1 (p. 344). If g4 = 5, then

5
√
3 + 2g − 5

√
4− 4g

5
√
3 + 2g + 5

√
4− 4g

= 2 + g + g2 + g3. (20.3.1)

(The symbol g is almost completely obliterated in [269].) A clever proof of
Entry 20.3.1 was constructed by Hirschhorn [163] using the elementary and
easily proved principle of componendo et dividendo [19, p. 320], which we now
describe. Suppose that a �= b and c �= d. Then

a

b
=
c

d

if and only if
a+ b

a− b =
c+ d

c− d.

First Proof of Entry 20.3.1. Hirschhorn begins his proof of Entry 20.3.1 with
the trivial observation that (20.3.1) is equivalent to the identity

5
√
3 + 2g + 5

√
4g − 4

5
√
3 + 2g − 5

√
4g − 4

=
2 + g + g2 + g3

1
. (20.3.2)

By the principle of componendo et dividendo, with a = 5
√
3 + 2g, b = 5

√
4g − 4,

2c = 3 + g + g2 + g3, and 2d = 1 + g + g2 + g3, we deduce that (20.3.2) is
equivalent to the identity

5
√
3 + 2g

5
√
4g − 4

=
3 + g + g2 + g3

1 + g + g2 + g3
,
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which in turn is equivalent to the identity

3 + 2g

4g − 4
=

(
3 + g + g2 + g3

1 + g + g2 + g3

)5

. (20.3.3)

Now observe that

(4x−4)(3+x+x2+x3)5−(3+2x)(1+x+x2+x3)5 = (x4−5)P (x), (20.3.4)

where P (x) is a certain polynomial of degree 12. Setting x = g in (20.3.4) and
using the hypothesis g4 = 5, we complete the proof of (20.3.3) and hence also
of the proof of Entry 20.3.1. ��

Second Proof of Entry 20.3.1. We provide another proof, which was commu-
nicated to the authors by M. Somos [291]. We begin with the easily verified
identity

8(3 + 2x) = (x− 1)(x+ 1)5 − (x4 − 5)(x2 + 4x+ 5).

Setting x = g, recalling that g4 = 5, and multiplying both sides by 4, we
obtain the identity

25(3 + 2g) = (4g − 4)(g + 1)5.

Taking the fifth root of both sides and introducing the abbreviations a =
(3 + 2g)1/5 and b = (4g − 4)1/5, we have

a

b
=
g + 1

2
, or

a− b
b

=
g − 1

2
. (20.3.5)

Now g4 = 5 or g4 − 1 = 4, which we write in the factored form

(g − 1)(1 + g + g2 + g3) = 4,

or
4

g − 1
= 1 + g + g2 + g3. (20.3.6)

From (20.3.5) and (20.3.6), we find that

2b

a− b = 1 + g + g2 + g3.

Adding 1 to both sides yields

a+ b

a− b = 2 + g + g2 + g3,

which is the same as (20.3.1). ��
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We now state the remaining seven identities. Each of the first three can be
proved using the principle of componendo et dividendo; each of the seven can
be readily verified by rationalizing the denominator (if necessary) on the left-
hand side, multiplying the right-hand side by the rationalized denominator,
simplifying with the use of the given condition, solving for the nth root, raising
both sides to the nth power, and then simplifying once again with the use of
the auxiliary condition. We provide a proof of one of the identities using the
first method and a proof of one of the remaining identities using the second
method. Since the other identities can be proved in the same fashions, we
leave the remaining proofs as exercises. Although proofs are easily given, the
following fundamental question remains: How did Ramanujan discern these
identities? We have been unable to answer this obvious question.

Entry 20.3.2 (p. 344). We have

g5 = 2,

√
g + 3 +

√
5g − 5√

g + 3−
√
5g − 5

= g + g2, (20.3.7)

g5 = 2,

√
g2 + 1 +

√
4g − 3√

g2 + 1−
√
4g − 3

=
1

5

(
1 + g2 + g3 + g9

)2
, (20.3.8)

g5 = 3

√
g2 + 1 +

√
5g − 5√

g2 + 1−
√
5g − 5

=
1

g
+ g + g2 + g3,

g5 = 2,
√
1 + g2 =

g4 + g3 + g − 1√
5

,

g5 = 2,
√
4g − 3 =

g9 + g7 − g6 − 1√
5

,

g5 = 3, 3
√
2− g3 =

1 + g − g2
3
√
5

,

g5 = 2, 5
√
1 + g + g3 =

√
1 + g2

10
√
5
.

To the right of the penultimate identity above, Ramanujan writes g = 3,
and to the right of the last identity above, Ramanujan writes g5 + 5g3+
5g + 2 = 0.

First Proof of (20.3.7). Apply the principle of componendo et dividendo
with a =

√
g + 3, b =

√
5g − 5, 2c = 1 + g + g2, and 2d = −1 + g + g2.

Hence, (20.3.7) is equivalent to the identity
√
g + 3√
5g − 5

=
1 + g + g2

−1 + g + g2
,

which in turn is equivalent to

g + 3

5g − 5
=

(
1 + g + g2

−1 + g + g2

)2

. (20.3.9)
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We now observe that

(x+ 3)(−1 + x+ x2)2 − 5(x− 1)(1 + x+ x2)2 = −4(x5 − 2). (20.3.10)

Setting x = g in (20.3.10) and recalling that g5 = 2, we complete the proof.
��

Second Proof of (20.3.7). For a second proof, we offer M. Somos’s [291]
variation of the first proof. We first observe that

(x+ 3)(x2 + x− 1)2 = x5 + 5x4 + 5x3 − 5x2 − 5x+ 3. (20.3.11)

In order to obtain terms on the right-hand side that are all multiples of 5, we
add 4(x5 − 2) to both sides above to deduce that

(x+ 3)(x2 + x− 1)2 + 4(x5 − 2) = 5(x5 + x4 + x3 − x2 − x− 1)

= 5(x2 + x+ 1)2(x− 1). (20.3.12)

Thus, from (20.3.11) and (20.3.12), we deduce the identity

5(x− 1)(x2 + x+ 1)2 = (x+ 3)(x2 + x− 1)2 + 4(x5 − 2).

Substituting x = g := 21/5 above, we arrive at

5(g − 1)(g2 + g + 1)2 = (g + 3)(g2 + g − 1)2.

Rearrange this identity so that we can apply the principle of componendo et
dividendo with a =

√
g + 3, b =

√
5g − 5, c = g2 + g + 1, and d = g2 + g − 1.

The identity (20.3.7) now follows. ��

Proof of (20.3.8). Rationalizing the denominator on the left-hand side of
(20.3.8), we find that

√
g2 + 1 +

√
4g − 3√

g2 + 1−
√
4g − 3

=
g2 + 4g − 2 + 2

√
(g2 + 1)(4g − 3)

g2 − 4g + 4
. (20.3.13)

In view of (20.3.8), we thus wish to examine, with the use of the condition
g5 = 2,

1

5

(
1 + g2 + g3 + g9

)2
(g2 − 4g + 4) = (1 + 2g + 2g2 + 2g3 + g4)(g2 − 4g + 4)

= 6g + g2 + 2g3 − 2g4. (20.3.14)

Hence, from (20.3.8), (20.3.13), and (20.3.14), it suffices to show that

√
(g2 + 1)(4g − 3) = 1 + g + g3 − g4. (20.3.15)

Squaring both sides of (20.3.15) and using the condition g5 = 2 to simplify,
we easily establish the truth of (20.3.15). ��
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Lastly, Somos [291] provided the following explanation for the addenda
accompanying the last two entries in Entry 20.3.2. For the first, note that

(2− g3)− 1
5 (1 + g − g

2)3 = 1
5 (3 − g)(3− g

5).

Thus, g = 3 is a root of the left-hand side. For the second, note that

(1 + g + g3)2 − 1
5 (1 + g

2)5 = 1
5 (2− g

5)(2 + 5g + 5g3 + g5).

Thus, when g5+5g3+5g+2 = 0, we obtain the last equality of Entry 20.3.2.

20.4 More Radicals

At the bottom of page 344 in [269], Ramanujan offers four entries involving
equalities of radical expressions.

Entry 20.4.1 (p. 344). We have

3

√
1

3
+

3

√
5

3
=

√
3
√
5− 1

2− 3
√
5

3
√
3 =

3

√
3 + 3

√
5

3
√
5− 1

=
5

√
3 3
√
3 + 3

√
15

2− 3
√
5
. (20.4.1)

If a, b, and c are arbitrary numbers, then

{
3
√
(a+ b)(a2 + b2)− a

}{
3
√
(a+ b)(a2 + b2)− b

}

=
3
√
(a+ b)2 − 3

√
a2 + b2

3
√
(a+ b)2 + 3

√
a2 + b2

(a2 + ab+ b2), (20.4.2)

(
√
a2 + ab+ b2 − a)(

√
a2 + ab+ b2 − b)

a+ b−
√
a2 + ab+ b2

= a+ b, (20.4.3)

{
−a+

√
(c+ a)(a+ b)

}{
−b+

√
(a+ b)(b+ c)

}{
−c+

√
(b+ c)(c+ a)

}

= 2

(
ab+ bc+ ca√

a+ b+
√
b+ c+

√
c+ a

)2

. (20.4.4)

Proof. We provide a proof by Somos [291] of the first equality of (20.4.1),
which was incorrectly written by Ramanujan, who forgot the factor 3

√
3 under

the radical sign on the right-hand side. We emphasize that it is a simple matter
to verify each of the equalities in (20.4.1). We content ourselves with offering
only brief discussions of the remaining identities of Entry 20.4.1, since only
elementary algebra is involved.



404 20 Elementary Results

Following Somos [291], we consider

(x− 2)(x+ 1)2 = x3 − 3x− 2,

and add 3(x − 1) to both sides to make the coefficient of x equal to zero,
to wit,

(x− 2)(x+ 1)2 + 3(x− 1) = x3 − 5.

Substituting x = g := 51/3, we find that

(g − 2)(g + 1)2 = 3(1− g), or (g + 1)2 =
3(g − 1)

2− g .

Taking the square root of each side, we have

1 + g =

√
3(g − 1)

2− g .

Dividing both sides by 31/3, we obtain the first equality of (20.4.1).
The identity (20.4.2) is a beautiful identity, which is not difficult to verify

by crossmultiplication. However, this is clearly not how Ramanujan discovered
it. More insight is needed.

The identity (20.4.3) can be checked by crossmultiplication in a matter of
seconds.

The last identity (20.4.4) is exquisite. In [269], Ramanujan expressed the
right-hand side of (20.4.4) in terms of the reciprocal of the quotient. It appears
that one would need computer algebra to check (20.4.4), but on crossmulti-
plication, we see that there are only four different kinds of terms to check,
and so the use of symmetry substantially shortens the task with therefore no
computer algebra needed. Hirschhorn has devised a clever proof of (20.4.4) by
setting a+ b = 4C2, b+ c = 4A2, and c+ a = 4B2. Then it is easily checked
that both sides are equal to 8(A − B + C)2(A + B − C)2(A − B − C)2. But
still, a more natural proof of (20.4.4) is desired. ��

20.5 Powers of 2

Page 345 in [269] is devoted to a single table, with no explanation for it. All
of the entries in the table are of the form

231
∏

j∈{1,2,4,8,16}

(
1 +

1

2j

)
.

We augment the table with an additional column to the right providing the
decimal representation of the product on the left. An examination of these
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numbers reveals that Ramanujan has listed the numbers in decreasing order,
which, with a little thought, is also clear from an inspection of Ramanujan’s
table.

232 = 4,294,967,296

231(1 + 1
2 )(1 +

1
22 )(1 +

1
24 )(1 +

1
28 )(1 +

1
216 ) = 4,294,967,295

231(1 + 1
2 )(1 +

1
22 )(1 +

1
24 )(1 +

1
28 ) = 4,294,901,760

231(1 + 1
2 )(1 +

1
22 )(1 +

1
24 )(1 +

1
216 ) = 4,278,255,360

231(1 + 1
2 )(1 +

1
22 )(1 +

1
24 ) = 4,278,190,080

231(1 + 1
2 )(1 +

1
22 )(1 +

1
28 )(1 +

1
216 ) = 4,042,322,160

231(1 + 1
2 )(1 +

1
22 )(1 +

1
28 ) = 4,042,260,480

231(1 + 1
2 )(1 +

1
22 )(1 +

1
216 ) = 4,026,593,280

231(1 + 1
2 )(1 +

1
22 ) = 4,026,531,840

231(1 + 1
2 )(1 +

1
24 )(1 +

1
28 )(1 +

1
216 ) = 3,435,973,836

231(1 + 1
2 )(1 +

1
24 )(1 +

1
28 ) = 3,435,921,408

231(1 + 1
2 )(1 +

1
24 )(1 +

1
216 ) = 3,422,604,288

231(1 + 1
2 )(1 +

1
24 ) = 3,422,552,064

231(1 + 1
2 )(1 +

1
28 )(1 +

1
216 ) = 3,233,857,728

231(1 + 1
2 )(1 +

1
28 ) = 3,233,808,384

231(1 + 1
2 )(1 +

1
216 ) = 3,221,274,624

231(1 + 1
2 ) = 3,221,225,472

231(1 + 1
22 )(1 +

1
24 )(1 +

1
28 )(1 +

1
216 ) = 2,863,311,530

231(1 + 1
22 )(1 +

1
24 )(1 +

1
28 ) = 2,863,267,840

231(1 + 1
22 )(1 +

1
24 )(1 +

1
216 ) = 2,852,170,240

231(1 + 1
22 )(1 +

1
24 ) = 2,852,126,720

231(1 + 1
22 )(1 +

1
28 )(1 +

1
216 ) = 2,694,881,440

231(1 + 1
22 )(1 +

1
28 ) = 2,694,840,320

231(1 + 1
22 )(1 +

1
216 ) = 2,684,395,520

231(1 + 1
22 ) = 2,684,354,560

231(1 + 1
24 )(1 +

1
28 )(1 +

1
216 ) = 2,290,649,224

231(1 + 1
24 )(1 +

1
28 ) = 2,290,614,272

231(1 + 1
24 )(1 +

1
216 ) = 2,281,736,192

231(1 + 1
24 ) = 2,281,701,376

231(1 + 1
28 )(1 +

1
216 ) = 2,155,905,152
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231(1 + 1
28 ) = 2,155,872,256

231(1 + 1
216 ) = 2,147,516,416

231 = 2,147,483,648

20.6 An Elementary Approximation to π

Entry 20.6.1 (p. 370).

9

5
+

√
9

5
= 3.14164 · · · = π + 0.00005 . . . .

The truth of this approximation to π is easily checked. We do not know
how Ramanujan discovered it. However, M. Somos noted that

6

5

(√
5 + 1

2

)2

=
9

5
+

√
9

5
.

Thus, Ramanujan might have taken π, divided it by the square of the golden
ratio, and observed that it was close to 6

5 .
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A Strange, Enigmatic Partial Manuscript

21.1 Introduction

The partial manuscript on pages 257 and 258 of [269] is an assorted collection
of claims, many of which are wrong and, at times, outrageous. In fact,
some claims are so flagrant that one has to conclude that Ramanujan
must have intended something different from what he wrote. We might also
conjecture that this manuscript arises from his teenage years, as he was just
beginning to think about theoretical analysis and analytic number theory.
We quote Ramanujan throughout, with our remarks put in square brackets,
as is our custom.

21.2 A Strange Manuscript

All variables considered in the following results are positive. a1+a2+ · · ·+an
can be expressed in terms of n with an error of O(max an −min an). Perhaps
we may go even as far as ascertaining the maximum and the minimum of O
and it is not possible to go beyond that. For example,

n∑

k=1

d(k) = n(2γ − 1 + logn) +O(max d(n)) (21.2.1)

= n(2γ − 1 + logn) +O

(
2
O

(
logn

log log n

))
. (21.2.2)

[Clearly, some conditions must be placed on the sequence {an} in order
for Ramanujan’s opening statement to have validity. If we assume the truth of
(21.2.1), then (21.2.2) follows from a result of Ramanujan [251, Eq. (20)], [267,
p. 46]. However, by a famous theorem of G.H. Hardy [145], the error term
equals Ω(n1/4), which is incompatible with (21.2.1).]

G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook:
Part IV, DOI 10.1007/978-1-4614-4081-9 21,
© Springer Science+Business Media New York 2013
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log 2 + log 3 + log 5 + log 7 + log 11 + · · · to n terms can be expressed in
terms of n with an error of o(1) or even O(n−1/2+ε); for

O(max log pn −min log pn) +O(n
−1/2+ε).

[Here pn denotes the nth prime. These last claims are obviously wrong.
Ramanujan must have possessed some (unorthodox) interpretation for his
claims, but we are clueless about his intent.]

The maximum order of an = max r
√
(average order of arn) (21.2.3)

for the variable r. For example,

(i) max d(n) can be shown to be 2
logn

log log n (1+ε)
,

(ii) The maximum order of π(p) = Li(p) + max r
√
average order of (p− p′)r,

where p′ is the prime just less than the prime p.

[As previously indicated, the assertion (i) is correct. By the prime number
theorem, the average order of p − p′ is log p. However, then Ramanujan’s
statement (ii) reads

The maximum order of π(p) = Li(p) + log p,

which is incorrect by the prime number theorem. Thus, Ramanujan may have
had a different meaning of average order than is customarily accepted today.]

If bn is steadily increasing and if max an > bn, and if
∞∑

k=1

ake
−kx −

∞∑

k=1

bke
−kx = O(1) (21.2.4)

as x→ 0, then
m∑

k=1

ake
−kx −

m∑

k=1

bke
−kx = O(max an −min an). (21.2.5)

If in (21.2.5) an also is steadily increasing, then

an ∼ bn. (21.2.6)

[Ramanujan evidently uses steadily increasing to mean strictly
monotonically increasing. The hypothesis max an > bn is unclear. Evidently,
Ramanujan means that max an is larger than bn for all n, 1 ≤ n < ∞.
The conclusion (21.2.5) is not generally valid. For example, suppose that
ak ≡ 1 and bk = 1 − 1/k2, k ≥ 1. Then the hypothesis max an > bn is
satisfied. Moreover,

m∑

k=1

(ak − bk)e−kx →
m∑

k=1

1

k2
�= max an −min an = 0.

In regard to the hypotheses (21.2.4), we can apply a Tauberian theorem found
in Hardy’s book Divergent Series [148, p. 153, Theorem 89] to conclude the
following corollary.
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Corollary 21.2.1. If

S(x) :=
∞∑

k=1

(ak − bk)e−kx

is convergent for x > 0, S(x) → s as x→ 0, and

ak − bk = o

(
1

k

)
,

as k → ∞, then

∞∑

k=1

(ak − bk)

converges to s.

Since hypotheses on an and bn are given at the beginning of the claim,
it is difficult to ascertain what is meant by a conclusion about an and bn
in the asymptotic formula (21.2.6), which is the last statement on page 257.
On page 258, there are three paragraphs numbered 5–7. On page 257, there
is a faint 1 before the third paragraph, and so evidently some pages of this
partial manuscript are missing. Ramanujan indicates that the two-line state-
ment under paragraph 5 is to be moved to the end of paragraph 6, and we
have done that. The next three statements are designated (i)–(iii) and do not
seem to have any connection with the other claims on these two pages.]

6. If an and bn are steadily increasing and if

∞∑

n=1

1

asn
and

∞∑

n=1

1

bsn

are both convergent when s > k and both are divergent when s = k and if
the difference between the two series be O(1) when s = k, then

an ∼ bn. (21.2.7)

5. Analogous results in case of

∞∑

n=1

an
ns
.

[Harold Diamond has kindly shown us that the conclusions in assertions
numbered 6 and 5 are incorrect. We define two Dirichlet series that converge
absolutely for Re s > 1. Define, for N even,

an = 2N , 2N ≤ n < 2N+1,

bn =
1

n
, 2N ≤ n < 2N+1,
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while for odd N , define

bn = 2N , 2N ≤ n < 2N+1,

an =
1

n
, 2N ≤ n < 2N+1.

We note that if N is even,

2N+1−1∑

n=2N

1

an
=

2N+1−1∑

n=2N

1

2N
= 1

and

2N+1−1∑

n=2N

1

bn
=

2N+1−1∑

n=2N

1

n
∼ log 2, N → ∞.

If N is odd, similar formulas exist, but with the roles of an and bn reversed.
Clearly, all of the hypotheses of Assertions 5 and 6 hold. However, it is also
clear that an � bn as n→ ∞, contradicting Ramanujan’s claim.]

7. If an and bn are steadily increasing and if

∞∑

n=1

e−anx ∼
∞∑

n=1

e−bnx (21.2.8)

as x→ 0,

[The conclusion of the claim in paragraph 7 is not provided, since the next
page in Ramanujan’s partial manuscript is missing.]

(i) The number of numbers of the form 2m3n such as 1, 2, 3, 4, 6, 8, 9, 12, . . .
less than x

=
1

2
· log(2x)

log 2
· log(3x)

log 3
+O(1). (21.2.9)

(ii) The number of numbers of the form a2 + b2 less than x

= C

∫
dx√
log x

+O(x1/2+ε), (21.2.10)

where

C =

√

2

(
1− 1

32

)(
1− 1

72

)(
1− 1

112

)(
1− 1

192

)

×

√(
1− 1

232

)(
1− 1

312

)(
1− 1

432

)
· · · . (21.2.11)
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√

2

(
1− 1

32

)(
1− 1

72

)(
1− 1

112

)(
1− 1

192

)

=

(
1 +

1

7

)(
1 +

1

11

)(
1 +

1

19

)
. (21.2.12)

(iii) The number of numbers of the form a2b3 such as 1, 4, 8, 9, 16, 25, 27, 32,
36, . . . less than x

=
√
4.723034x− 3

√
3.10227x+O(x1/6+ε). (21.2.13)

[Ramanujan’s assertion (i) is incorrect as it stands. However, if interpreted
as an asymptotic formula, the claim is correct and can be found in his first
letter to Hardy [267, p. xxiv], [64, p. 23]. It is a special case of the more general
problem of finding an asymptotic formula for those numbers ≤x of the form
ambn, with a and b fixed. This problem is thoroughly examined by Hardy
in his book [147, Chap. 5]. It is also mentioned by Ramanujan on page 309
in his second notebook [268], [40, pp. 66–67]. A thorough discussion of (i)
(in corrected form) is given in [40, pp. 62–69].

The claim (21.2.10) with the incorrect error term has a long history dating
back to Ramanujan’s first letter to Hardy [147, pp. xxiv, xxviii]. Strangely,
the constant given in (21.2.11) is also incorrect; the correct constant is the
reciprocal of that given in (21.2.11). The claim (21.2.10) is also found on
page 307 in Ramanujan’s second notebook [268]. For detailed discussions of
(21.2.10) and correct versions, see Hardy’s book [147, pp. 60–63] and Berndt’s
book [40, pp. 60–62].

The curious identity (21.2.12) was observed by Ramanujan before
departing for England. It is found twice in his notebooks, on page 309 in the
second notebook and page 363 in the third notebook [268]. A brief discussion
of (21.2.12) can be found in [40, p. 20].

The constants multiplying
√
x and 3

√
x in (21.2.13) are difficult to interpret

in [269]. Unless we are gravely misreading or misinterpreting them, they are
incorrect. In fact, on page 324 in his earlier second notebook, Ramanujan gives
the correct result [40, p. 73]

∑

a2b3≤x

1 = ζ

(
3

2

)√
x+ ζ

(
2

3

)
3
√
x+O(x1/5)

= 2.6123753
√
x− 3.6009377 3

√
x+O(x1/5).

Although there is some suspicion that he had a bona fide proof, Ramanujan’s
error term in (21.2.13) is superior to that given in his second notebook.
But whether he had a proof or not, the error term is indeed correct.
For example, H.-E. Richert [272] has established an error term of O(x2/15).

More generally, E. Landau [207], [208, p. 24] proved the following
elementary result.
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Theorem 21.2.1. Let α and β be fixed positive numbers such that α �= β.
Then

∑

aαbβ≤x

1 = ζ

(
β

α

)
x1/α + ζ

(
α

β

)
x1/β +Δ(α, β;x),

where Δ(α, β;x) = O(x1/(α+β)), as x→ ∞.

The exact order of the error term Δ(α, β;x) is not known, but
improvements on Landau’s initial theorem can be found in Richert’s paper
[272] and E. Krätzel’s book [200, pp. 221–227].]
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Pages 193–194
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Page 196
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G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook:
Part IV, DOI 10.1007/978-1-4614-4081-9,
© Springer Science+Business Media New York 2013

413



414 Location Guide

Page 200

Entries 5.1.1, 5.1.2

Page 203

Entry 18.5.1

Page 214

Entries 4.9.1–4.9.4

Page 215

Entries 4.9.4, 4.9.5

Pages 219–220

Chapter 13

Pages 221–222

Sections 14.2, 14.3

Pages 223–227

Chapter 15

Pages 228–232

Chapter 11

Page 250

Section 13.6

Page 253

Entries 3.1.1, 3.3.1–3.3.3

Page 254

Entries 3.4.1–3.4.5

Page 255

Section 9.5

Page 256

Entries 19.8.1–19.8.3
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Pages 257, 258

Chapter 21

Pages 259, 260

Section 8.9

Pages 262–265

Section 7.2

Pages 266, 267

Section 7.3

Pages 270, 271

Sections 9.2, 9.3

Page 272

Entries 9.4.3–9.4.5

Page 273

Entries 9.4.1, 9.4.2

Page 274

Entries 6.2.1, 6.2.2

Page 275

Entries 6.2.3, 6.3.1, 6.3.2

Page 276

Entry 6.4.1

Pages 278, 279

Section 9.6

Pages 313–317

Chapter 16

Pages 318–321

Chapter 12
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Pages 322–325

Chapter 17

Page 326

Entries 8.6.1, 8.7.1, 8.8.1

Page 327

Entries 5.1.3–5.1.5, 5.5.1

Page 332

Entries 8.3.1, 8.3.2

Page 335

Entries 2.1.1, 2.1.2

Page 336

Entries 19.2.1, 19.2.2

Page 337

Entries 8.1.1, 8.2.1

Page 338

Entry 8.4.1

Page 339

Entry 4.5.1

Page 340

Entries 20.2.1–20.2.4

Page 341

Entries 8.5.1–8.5.3

Page 343

Section 7.4

Page 344

Entries 20.3.1, 20.3.2, 20.4.1
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Page 345

Section 20.5

Page 346

Entries 19.10.1, 19.10.2

Page 368

Entries 9.7.1–9.7.4
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Entries 19.9.1, 19.9.2, 20.6.1
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279. O. Schlömilch, Ueber einige unendliche Reihen, Ber. Verh. K. Sachs. Gesell.
Wiss. Leipzig 29 (1877), 101–105.
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316. S. Wigert, Sur une extension de la série de Lambert, Arkiv Mat. Astron. Fys. 19
(1925), 13 pp.

317. S. Wigert, Sur une nouvelle fonction entière et son application à la théorie des
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Ivić, A., 206, 230

Jacobi’s formula, 12
Jacobi, C.G.J., 12
Journal of the Indian Mathematical

Society, 2, 111, 118, 153, 157, 175,
370, 389, 393

Kanemitsu, S., 95, 191, 279
Kang, S.-Y., 2, 133, 151
Karatsuba, E.A., 2, 111, 118–120, 127
Katsurada, M., 191, 279
Kerner, S., 184
Kim, S., 1, 2, 4, 12, 14, 15, 163, 164
Klusch, D., 191
Knopp, M.I., 219
Kober, H., 97
Koecher, M., 157
Komori, Y., 279
Koornwinder, T.H., 135, 137
Koshliakov’s formula, 94, 95, 100, 101,

108
analogues, 108

Koshliakov, N.S., 2, 4, 5, 93, 108, 277,
295, 309

Koumandos, S., 154, 155
Krätzel, E., 209, 412
Krishnaiah, P.V., 270
Krishnamachary, C., 118
Krishnan, K.S., 112
Krishnaswami Aiyangar, A.A., 175
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