

About This E-Book
EPUB is an open, industry-standard format for e-books. However, support for EPUB
and its many features varies across reading devices and applications. Use your device
or app settings to customize the presentation to your liking. Settings that you can
customize often include font, font size, single or double column, landscape or portrait
mode, and figures that you can click or tap to enlarge. For additional information
about the settings and features on your reading device or app, visit the device
manufacturer’s Web site.
Many titles include programming code or configuration examples. To optimize the
presentation of these elements, view the e-book in single-column, landscape mode
and adjust the font size to the smallest setting. In addition to presenting code and
configurations in the reflowable text format, we have included images of the code that
mimic the presentation found in the print book; therefore, where the reflowable
format may compromise the presentation of the code listing, you will see a “Click
here to view code image” link. Click the link to view the print-fidelity code image. To
return to the previous page viewed, click the Back button on your device or app.

The Go Programming Language

Alan A. A. Donovan
Google Inc.

Brian W. Kernighan
Princeton University

New York • Boston • Indianapolis • San Francisco
Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.
The authors and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.
For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com
or (800) 382-3419.
For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the United States, please contact
international@pearsoned.com.
Visit us on the Web: informit.com/aw
Library of Congress Control Number: 2015950709
Copyright © 2016 Alan A. A. Donovan & Brian W. Kernighan
All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. To
obtain permission to use material from this work, please submit a written request to
Pearson Education, Inc., Permissions Department, 200 Old Tappan Road, Old
Tappan, New Jersey 07675, or you may fax your request to (201) 236-3290.
Front cover: Millau Viaduct, Tarn valley, southern France. A paragon of simplicity in
modern engineering design, the viaduct replaced a convoluted path from capital to
coast with a direct route over the clouds. © Jean-Pierre Lescourret/Corbis.
Back cover: the original Go gopher. © 2009 Renée French. Used under Creative
Commons Attributions 3.0 license.
Typeset by the authors in Minion Pro, Lato, and Consolas, using Go, groff,

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com
http://informit.com/aw

ghostscript, and a host of other open-source Unix tools. Figures were created in
Google Drawings.
ISBN-13: 978-0-13-419044-0
ISBN-10: 0-13-419044-0
Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, Indiana.
Second printing, December 2015

For Leila and Meg

Contents
Preface

The Origins of Go
The Go Project
Organization of the Book
Where to Find More Information
Acknowledgments

1. Tutorial
1.1. Hello, World
1.2. Command-Line Arguments
1.3. Finding Duplicate Lines
1.4. Animated GIFs
1.5. Fetching a URL
1.6. Fetching URLs Concurrently
1.7. A Web Server
1.8. Loose Ends

2. Program Structure
2.1. Names
2.2. Declarations
2.3. Variables
2.4. Assignments
2.5. Type Declarations
2.6. Packages and Files
2.7. Scope

3. Basic Data Types
3.1. Integers

3.2. Floating-Point Numbers
3.3. Complex Numbers
3.4. Booleans
3.5. Strings
3.6. Constants

4. Composite Types
4.1. Arrays
4.2. Slices
4.3. Maps
4.4. Structs
4.5. JSON
4.6. Text and HTML Templates

5. Functions
5.1. Function Declarations
5.2. Recursion
5.3. Multiple Return Values
5.4. Errors
5.5. Function Values
5.6. Anonymous Functions
5.7. Variadic Functions
5.8. Deferred Function Calls
5.9. Panic
5.10. Recover

6. Methods
6.1. Method Declarations
6.2. Methods with a Pointer Receiver
6.3. Composing Types by Struct Embedding
6.4. Method Values and Expressions

6.5. Example: Bit Vector Type
6.6. Encapsulation

7. Interfaces
7.1. Interfaces as Contracts
7.2. Interface Types
7.3. Interface Satisfaction
7.4. Parsing Flags with flag.Value
7.5. Interface Values
7.6. Sorting with sort.Interface
7.7. The http.Handler Interface
7.8. The error Interface
7.9. Example: Expression Evaluator
7.10. Type Assertions
7.11. Discriminating Errors with Type Assertions
7.12. Querying Behaviors with Interface Type Assertions
7.13. Type Switches
7.14. Example: Token-Based XML Decoding
7.15. A Few Words of Advice

8. Goroutines and Channels
8.1. Goroutines
8.2. Example: Concurrent Clock Server
8.3. Example: Concurrent Echo Server
8.4. Channels
8.5. Looping in Parallel
8.6. Example: Concurrent Web Crawler
8.7. Multiplexing with select
8.8. Example: Concurrent Directory Traversal
8.9. Cancellation
8.10. Example: Chat Server

9. Concurrency with Shared Variables
9.1. Race Conditions
9.2. Mutual Exclusion: sync.Mutex
9.3. Read/Write Mutexes: sync.RWMutex
9.4. Memory Synchronization
9.5. Lazy Initialization: sync.Once
9.6. The Race Detector
9.7. Example: Concurrent Non-Blocking Cache
9.8. Goroutines and Threads

10. Packages and the Go Tool
10.1. Introduction
10.2. Import Paths
10.3. The Package Declaration
10.4. Import Declarations
10.5. Blank Imports
10.6. Packages and Naming
10.7. The Go Tool

11. Testing
11.1. The go test Tool
11.2. Test Functions
11.3. Coverage
11.4. Benchmark Functions
11.5. Profiling
11.6. Example Functions

12. Reflection
12.1. Why Reflection?
12.2. reflect.Type and reflect.Value
12.3. Display, a Recursive Value Printer

12.4. Example: Encoding S-Expressions
12.5. Setting Variables with reflect.Value
12.6. Example: Decoding S-Expressions
12.7. Accessing Struct Field Tags
12.8. Displaying the Methods of a Type
12.9. A Word of Caution

13. Low-Level Programming
13.1. unsafe.Sizeof, Alignof, and Offsetof
13.2. unsafe.Pointer
13.3. Example: Deep Equivalence
13.4. Calling C Code with cgo
13.5. Another Word of Caution

Preface
“Go is an open source programming language that makes it easy to build simple,
reliable, and efficient software.” (From the Go web site at golang.org)

Go was conceived in September 2007 by Robert Griesemer, Rob Pike, and Ken
Thompson, all at Google, and was announced in November 2009. The goals of the
language and its accompanying tools were to be expressive, efficient in both
compilation and execution, and effective in writing reliable and robust programs.
Go bears a surface similarity to C and, like C, is a tool for professional programmers,
achieving maximum effect with minimum means. But it is much more than an
updated version of C. It borrows and adapts good ideas from many other languages,
while avoiding features that have led to complexity and unreliable code. Its facilities
for concurrency are new and efficient, and its approach to data abstraction and
object-oriented programming is unusually flexible. It has automatic memory
management or garbage collection.
Go is especially well suited for building infrastructure like networked servers, and
tools and systems for programmers, but it is truly a general-purpose language and
finds use in domains as diverse as graphics, mobile applications, and machine
learning. It has become popular as a replacement for untyped scripting languages
because it balances expressiveness with safety: Go programs typically run faster than
programs written in dynamic languages and suffer far fewer crashes due to
unexpected type errors.
Go is an open-source project, so source code for its compiler, libraries, and tools is
freely available to anyone. Contributions to the project come from an active
worldwide community. Go runs on Unix-like systems—Linux, FreeBSD, OpenBSD,
Mac OS X—and on Plan 9 and Microsoft Windows. Programs written in one of these
environments generally work without modification on the others.
This book is meant to help you start using Go effectively right away and to use it
well, taking full advantage of Go’s language features and standard libraries to write
clear, idiomatic, and efficient programs.

The Origins of Go
Like biological species, successful languages beget offspring that incorporate the
advantages of their ancestors; interbreeding sometimes leads to surprising strengths;
and, very occasionally, a radical new feature arises without precedent. We can learn a
lot about why a language is the way it is and what environment it has been adapted
for by looking at these influences.
The figure below shows the most important influences of earlier programming
languages on the design of Go.

Go is sometimes described as a “C-like language,” or as “C for the 21st century.”
From C, Go inherited its expression syntax, control-flow statements, basic data types,
call-by-value parameter passing, pointers, and above all, C’s emphasis on programs

that compile to efficient machine code and cooperate naturally with the abstractions
of current operating systems.
But there are other ancestors in Go’s family tree. One major stream of influence
comes from languages by Niklaus Wirth, beginning with Pascal. Modula-2 inspired
the package concept. Oberon eliminated the distinction between module interface files
and module implementation files. Oberon-2 influenced the syntax for packages,
imports, and declarations, and Object Oberon provided the syntax for method
declarations.
Another lineage among Go’s ancestors, and one that makes Go distinctive among
recent programming languages, is a sequence of little-known research languages
developed at Bell Labs, all inspired by the concept of communicating sequential
processes (CSP) from Tony Hoare’s seminal 1978 paper on the foundations of
concurrency. In CSP, a program is a parallel composition of processes that have no
shared state; the processes communicate and synchronize using channels. But
Hoare’s CSP was a formal language for describing the fundamental concepts of
concurrency, not a programming language for writing executable programs.
Rob Pike and others began to experiment with CSP implementations as actual
languages. The first was called Squeak (“A language for communicating with mice”),
which provided a language for handling mouse and keyboard events, with statically
created channels. This was followed by Newsqueak, which offered C-like statement
and expression syntax and Pascal-like type notation. It was a purely functional
language with garbage collection, again aimed at managing keyboard, mouse, and
window events. Channels became first-class values, dynamically created and storable
in variables.
The Plan 9 operating system carried these ideas forward in a language called Alef.
Alef tried to make Newsqueak a viable system programming language, but its
omission of garbage collection made concurrency too painful.
Other constructions in Go show the influence of non-ancestral genes here and there;
for example iota is loosely from APL, and lexical scope with nested functions is
from Scheme (and most languages since). Here too we find novel mutations. Go’s
innovative slices provide dynamic arrays with efficient random access but also permit
sophisticated sharing arrangements reminiscent of linked lists. And the defer
statement is new with Go.

The Go Project
All programming languages reflect the programming philosophy of their creators,
which often includes a significant component of reaction to the perceived
shortcomings of earlier languages. The Go project was born of frustration with
several software systems at Google that were suffering from an explosion of
complexity. (This problem is by no means unique to Google.)
As Rob Pike put it, “complexity is multiplicative”: fixing a problem by making one
part of the system more complex slowly but surely adds complexity to other parts.
With constant pressure to add features and options and configurations, and to ship
code quickly, it’s easy to neglect simplicity, even though in the long run simplicity is
the key to good software.
Simplicity requires more work at the beginning of a project to reduce an idea to its
essence and more discipline over the lifetime of a project to distinguish good changes
from bad or pernicious ones. With sufficient effort, a good change can be
accommodated without compromising what Fred Brooks called the “conceptual
integrity” of the design but a bad change cannot, and a pernicious change trades
simplicity for its shallow cousin, convenience. Only through simplicity of design can a
system remain stable, secure, and coherent as it grows.
The Go project includes the language itself, its tools and standard libraries, and last
but not least, a cultural agenda of radical simplicity. As a recent high-level language,
Go has the benefit of hindsight, and the basics are done well: it has garbage collection,
a package system, first-class functions, lexical scope, a system call interface, and
immutable strings in which text is generally encoded in UTF-8. But it has
comparatively few features and is unlikely to add more. For instance, it has no
implicit numeric conversions, no constructors or destructors, no operator overloading,
no default parameter values, no inheritance, no generics, no exceptions, no macros,
no function annotations, and no thread-local storage. The language is mature and
stable, and guarantees backwards compatibility: older Go programs can be compiled
and run with newer versions of compilers and standard libraries.
Go has enough of a type system to avoid most of the careless mistakes that plague
programmers in dynamic languages, but it has a simpler type system than comparable
typed languages. This approach can sometimes lead to isolated pockets of “untyped”
programming within a broader framework of types, and Go programmers do not go to

the lengths that C++ or Haskell programmers do to express safety properties as type-
based proofs. But in practice Go gives programmers much of the safety and run-time
performance benefits of a relatively strong type system without the burden of a
complex one.
Go encourages an awareness of contemporary computer system design, particularly
the importance of locality. Its built-in data types and most library data structures are
crafted to work naturally without explicit initialization or implicit constructors, so
relatively few memory allocations and memory writes are hidden in the code. Go’s
aggregate types (structs and arrays) hold their elements directly, requiring less storage
and fewer allocations and pointer indirections than languages that use indirect fields.
And since the modern computer is a parallel machine, Go has concurrency features
based on CSP, as mentioned earlier. The variable-size stacks of Go’s lightweight
threads or goroutines are initially small enough that creating one goroutine is cheap
and creating a million is practical.
Go’s standard library, often described as coming with “batteries included,” provides
clean building blocks and APIs for I/O, text processing, graphics, cryptography,
networking, and distributed applications, with support for many standard file formats
and protocols. The libraries and tools make extensive use of convention to reduce the
need for configuration and explanation, thus simplifying program logic and making
diverse Go programs more similar to each other and thus easier to learn. Projects built
using the go tool use only file and identifier names and an occasional special
comment to determine all the libraries, executables, tests, benchmarks, examples,
platform-specific variants, and documentation for a project; the Go source itself
contains the build specification.

Organization of the Book
We assume that you have programmed in one or more other languages, whether
compiled like C, C++, and Java, or interpreted like Python, Ruby, and JavaScript, so
we won’t spell out everything as if for a total beginner. Surface syntax will be familiar,
as will variables and constants, expressions, control flow, and functions.
Chapter 1 is a tutorial on the basic constructs of Go, introduced through a dozen
programs for everyday tasks like reading and writing files, formatting text, creating
images, and communicating with Internet clients and servers.
Chapter 2 describes the structural elements of a Go program—declarations, variables,
new types, packages and files, and scope. Chapter 3 discusses numbers, booleans,
strings, and constants, and explains how to process Unicode. Chapter 4 describes
composite types, that is, types built up from simpler ones using arrays, maps, structs,
and slices, Go’s approach to dynamic lists. Chapter 5 covers functions and discusses
error handling, panic and recover, and the defer statement.

Chapters 1 through 5 are thus the basics, things that are part of any mainstream
imperative language. Go’s syntax and style sometimes differ from other languages,
but most programmers will pick them up quickly. The remaining chapters focus on
topics where Go’s approach is less conventional: methods, interfaces, concurrency,
packages, testing, and reflection.
Go has an unusual approach to object-oriented programming. There are no class
hierarchies, or indeed any classes; complex object behaviors are created from simpler
ones by composition, not inheritance. Methods may be associated with any user-
defined type, not just structures, and the relationship between concrete types and
abstract types (interfaces) is implicit, so a concrete type may satisfy an interface that
the type’s designer was unaware of. Methods are covered in Chapter 6 and interfaces
in Chapter 7.
Chapter 8 presents Go’s approach to concurrency, which is based on the idea of
communicating sequential processes (CSP), embodied by goroutines and channels.
Chapter 9 explains the more traditional aspects of concurrency based on shared
variables.
Chapter 10 describes packages, the mechanism for organizing libraries. This chapter
also shows how to make effective use of the go tool, which provides for compilation,

testing, benchmarking, program formatting, documentation, and many other tasks, all
within a single command.
Chapter 11 deals with testing, where Go takes a notably lightweight approach,
avoiding abstraction-laden frameworks in favor of simple libraries and tools. The
testing libraries provide a foundation atop which more complex abstractions can be
built if necessary.
Chapter 12 discusses reflection, the ability of a program to examine its own
representation during execution. Reflection is a powerful tool, though one to be used
carefully; this chapter explains finding the right balance by showing how it is used to
implement some important Go libraries. Chapter 13 explains the gory details of low-
level programming that uses the unsafe package to step around Go’s type system,
and when that is appropriate.
Each chapter has a number of exercises that you can use to test your understanding
of Go, and to explore extensions and alternatives to the examples from the book.
All but the most trivial code examples in the book are available for download from the
public Git repository at gopl.io. Each example is identified by its package import
path and may be conveniently fetched, built, and installed using the go get
command. You’ll need to choose a directory to be your Go workspace and set the
GOPATH environment variable to point to it. The go tool will create the directory if
necessary. For example:

Click here to view code image

$ export GOPATH=$HOME/gobook # choose
workspace directory
$ go get gopl.io/ch1/helloworld # fetch,
build, install
$ $GOPATH/bin/helloworld # run
Hello,

To run the examples, you will need at least version 1.5 of Go.
$ go version
go version go1.5 linux/amd64

Follow the instructions at https://golang.org/doc/install if the go tool
on your computer is older or missing.

Where to Find More Information
The best source for more information about Go is the official web site,
https://golang.org, which provides access to the documentation, including
the Go Programming Language Specification, standard packages, and the like.
There are also tutorials on how to write Go and how to write it well, and a wide
variety of online text and video resources that will be valuable complements to this
book. The Go Blog at blog.golang.org publishes some of the best writing on
Go, with articles on the state of the language, plans for the future, reports on
conferences, and in-depth explanations of a wide variety of Go-related topics.
One of the most useful aspects of online access to Go (and a regrettable limitation of
a paper book) is the ability to run Go programs from the web pages that describe
them. This functionality is provided by the Go Playground at play.golang.org,
and may be embedded within other pages, such as the home page at golang.org
or the documentation pages served by the godoc tool.

The Playground makes it convenient to perform simple experiments to check one’s
understanding of syntax, semantics, or library packages with short programs, and in
many ways takes the place of a read-eval-print loop (REPL) in other languages. Its
persistent URLs are great for sharing snippets of Go code with others, for reporting
bugs or making suggestions.
Built atop the Playground, the Go Tour at tour.golang.org is a sequence of
short interactive lessons on the basic ideas and constructions of Go, an orderly walk
through the language.
The primary shortcoming of the Playground and the Tour is that they allow only
standard libraries to be imported, and many library features—networking, for example
—are restricted for practical or security reasons. They also require access to the
Internet to compile and run each program. So for more elaborate experiments, you
will have to run Go programs on your own computer. Fortunately the download
process is straightforward, so it should not take more than a few minutes to fetch the
Go distribution from golang.org and start writing and running Go programs of
your own.
Since Go is an open-source project, you can read the code for any type or function in
the standard library online at https://golang.org/pkg; the same code is part
of the downloaded distribution. Use this to figure out how something works, or to

answer questions about details, or merely to see how experts write really good Go.

Acknowledgments
Rob Pike and Russ Cox, core members of the Go team, read the manuscript several
times with great care; their comments on everything from word choice to overall
structure and organization have been invaluable. While preparing the Japanese
translation, Yoshiki Shibata went far beyond the call of duty; his meticulous eye
spotted numerous inconsistencies in the English text and errors in the code. We
greatly appreciate thorough reviews and critical comments on the entire manuscript
from Brian Goetz, Corey Kosak, Arnold Robbins, Josh Bleecher Snyder, and Peter
Weinberger.
We are indebted to Sameer Ajmani, Ittai Balaban, David Crawshaw, Billy Donohue,
Jonathan Feinberg, Andrew Gerrand, Robert Griesemer, John Linderman, Minux Ma,
Bryan Mills, Bala Natarajan, Cosmos Nicolaou, Paul Staniforth, Nigel Tao, and
Howard Trickey for many helpful suggestions. We also thank David Brailsford and
Raph Levien for typesetting advice, and Chris Loper for explaining many mysteries of
e-book production.
Our editor Greg Doench at Addison-Wesley got the ball rolling originally and has been
continuously helpful ever since. The AW production team—John Fuller, Dayna Isley,
Julie Nahil, Chuti Prasertsith, and Barbara Wood—has been outstanding; authors
could not hope for better support.
Alan Donovan wishes to thank: Sameer Ajmani, Chris Demetriou, Walt Drummond,
and Reid Tatge at Google for allowing him time to write; Stephen Donovan, for his
advice and timely encouragement; and above all, his wife Leila Kazemi, for her
unhesitating enthusiasm and unwavering support for this project, despite the long
hours of distraction and absenteeism from family life that it entailed.
Brian Kernighan is deeply grateful to friends and colleagues for their patience and
forbearance as he moved slowly along the path to understanding, and especially to his
wife Meg, who has been unfailingly supportive of book-writing and so much else.

New York
October 2015

1. Tutorial
This chapter is a tour of the basic components of Go. We hope to provide enough
information and examples to get you off the ground and doing useful things as quickly
as possible. The examples here, and indeed in the whole book, are aimed at tasks that
you might have to do in the real world. In this chapter we’ll try to give you a taste of
the diversity of programs that one might write in Go, ranging from simple file
processing and a bit of graphics to concurrent Internet clients and servers. We
certainly won’t explain everything in the first chapter, but studying such programs in a
new language can be an effective way to get started.
When you’re learning a new language, there’s a natural tendency to write code as you
would have written it in a language you already know. Be aware of this bias as you
learn Go and try to avoid it. We’ve tried to illustrate and explain how to write good
Go, so use the code here as a guide when you’re writing your own.

1.1 Hello, World
We’ll start with the now-traditional “hello, world” example, which appears at the
beginning of The C Programming Language, published in 1978. C is one of the most
direct influences on Go, and “hello, world” illustrates a number of central ideas.

Click here to view code image

gopl.io/ch1/helloworld
package main

import "fmt"

func main() {
 fmt.Println("Hello, ")
}

Go is a compiled language. The Go toolchain converts a source program and the
things it depends on into instructions in the native machine language of a computer.
These tools are accessed through a single command called go that has a number of
subcommands. The simplest of these subcommands is run, which compiles the
source code from one or more source files whose names end in .go, links it with
libraries, then runs the resulting executable file. (We will use $ as the command
prompt throughout the book.)

$ go run helloworld.go

Not surprisingly, this prints
Hello,

Go natively handles Unicode, so it can process text in all the world’s languages.
If the program is more than a one-shot experiment, it’s likely that you would want to
compile it once and save the compiled result for later use. That is done with go
build:

$ go build helloworld.go

This creates an executable binary file called helloworld that can be run any time
without further processing:

$./helloworld
Hello,

We have labeled each significant example as a reminder that you can obtain the code
from the book’s source code repository at gopl.io:

gopl.io/ch1/helloworld

If you run go get gopl.io/ch1/helloworld , it will fetch the source code
and place it in the corresponding directory. There’s more about this topic in
Section 2.6 and Section 10.7.
Let’s now talk about the program itself. Go code is organized into packages, which
are similar to libraries or modules in other languages. A package consists of one or
more .go source files in a single directory that define what the package does. Each
source file begins with a package declaration, here package main , that states
which package the file belongs to, followed by a list of other packages that it imports,
and then the declarations of the program that are stored in that file.
The Go standard library has over 100 packages for common tasks like input and
output, sorting, and text manipulation. For instance, the fmt package contains
functions for printing formatted output and scanning input. Println is one of the
basic output functions in fmt; it prints one or more values, separated by spaces, with
a newline character at the end so that the values appear as a single line of output.
Package main is special. It defines a standalone executable program, not a library.
Within package main the function main is also special—it’s where execution of the
program begins. Whatever main does is what the program does. Of course, main
will normally call upon functions in other packages to do much of the work, such as
the function fmt.Println.

We must tell the compiler what packages are needed by this source file; that’s the role
of the import declaration that follows the package declaration. The “hello,
world” program uses only one function from one other package, but most programs
will import more packages.
You must import exactly the packages you need. A program will not compile if there
are missing imports or if there are unnecessary ones. This strict requirement prevents
references to unused packages from accumulating as programs evolve.
The import declarations must follow the package declaration. After that, a
program consists of the declarations of functions, variables, constants, and types

(introduced by the keywords func, var, const, and type); for the most part, the
order of declarations does not matter. This program is about as short as possible since
it declares only one function, which in turn calls only one other function. To save
space, we will sometimes not show the package and import declarations when
presenting examples, but they are in the source file and must be there to compile the
code.
A function declaration consists of the keyword func, the name of the function, a
parameter list (empty for main), a result list (also empty here), and the body of the
function—the statements that define what it does—enclosed in braces. We’ll take a
closer look at functions in Chapter 5.
Go does not require semicolons at the ends of statements or declarations, except
where two or more appear on the same line. In effect, newlines following certain
tokens are converted into semicolons, so where newlines are placed matters to proper
parsing of Go code. For instance, the opening brace { of the function must be on the
same line as the end of the func declaration, not on a line by itself, and in the
expression x + y , a newline is permitted after but not before the + operator.

Go takes a strong stance on code formatting. The gofmt tool rewrites code into the
standard format, and the go tool’s fmt subcommand applies gofmt to all the files
in the specified package, or the ones in the current directory by default. All Go source
files in the book have been run through gofmt, and you should get into the habit of
doing the same for your own code. Declaring a standard format by fiat eliminates a
lot of pointless debate about trivia and, more importantly, enables a variety of
automated source code transformations that would be infeasible if arbitrary formatting
were allowed.
Many text editors can be configured to run gofmt each time you save a file, so that
your source code is always properly formatted. A related tool, goimports,
additionally manages the insertion and removal of import declarations as needed. It is
not part of the standard distribution but you can obtain it with this command:

Click here to view code image

$ go get golang.org/x/tools/cmd/goimports

For most users, the usual way to download and build packages, run their tests, show
their documentation, and so on, is with the go tool, which we’ll look at in
Section 10.7.

1.2 Command-Line Arguments
Most programs process some input to produce some output; that’s pretty much the
definition of computing. But how does a program get input data on which to operate?
Some programs generate their own data, but more often, input comes from an
external source: a file, a network connection, the output of another program, a user at
a keyboard, command-line arguments, or the like. The next few examples will discuss
some of these alternatives, starting with command-line arguments.
The os package provides functions and other values for dealing with the operating
system in a platform-independent fashion. Command-line arguments are available to a
program in a variable named Args that is part of the os package; thus its name
anywhere outside the os package is os.Args.

The variable os.Args is a slice of strings. Slices are a fundamental notion in Go,
and we’ll talk a lot more about them soon. For now, think of a slice as a dynamically
sized sequence s of array elements where individual elements can be accessed as
s[i] and a contiguous subsequence as s[m:n]. The number of elements is given
by len(s). As in most other programming languages, all indexing in Go uses half-
open intervals that include the first index but exclude the last, because it simplifies
logic. For example, the slice s[m:n], where 0 ≤ m ≤ n ≤ len(s), contains n-m
elements.
The first element of os.Args, os.Args[0], is the name of the command itself;
the other elements are the arguments that were presented to the program when it
started execution. A slice expression of the form s[m:n] yields a slice that refers to
elements m through n-1, so the elements we need for our next example are those in
the slice os.Args[1:len(os.Args)]. If m or n is omitted, it defaults to 0 or
len(s) respectively, so we can abbreviate the desired slice as os.Args[1:].

Here’s an implementation of the Unix echo command, which prints its command-
line arguments on a single line. It imports two packages, which are given as a
parenthesized list rather than as individual import declarations. Either form is legal,
but conventionally the list form is used. The order of imports doesn’t matter; the
gofmt tool sorts the package names into alphabetical order. (When there are several
versions of an example, we will often number them so you can be sure of which one
we’re talking about.)

Click here to view code image

gopl.io/ch1/echo1
// Echo1 prints its command-line arguments.
package main

import (
 "fmt"
 "os"
)

func main() {
 var s, sep string
 for i := 1; i < len(os.Args); i++ {
 s += sep + os.Args[i]
 sep = " "
 }
 fmt.Println(s)
}

Comments begin with //. All text from a // to the end of the line is commentary for
programmers and is ignored by the compiler. By convention, we describe each
package in a comment immediately preceding its package declaration; for a main
package, this comment is one or more complete sentences that describe the program
as a whole.
The var declaration declares two variables s and sep, of type string. A variable
can be initialized as part of its declaration. If it is not explicitly initialized, it is
implicitly initialized to the zero value for its type, which is 0 for numeric types and
the empty string "" for strings. Thus in this example, the declaration implicitly
initializes s and sep to empty strings. We’ll have more to say about variables and
declarations in Chapter 2.
For numbers, Go provides the usual arithmetic and logical operators. When applied to
strings, however, the + operator concatenates the values, so the expression

sep + os.Args[i]

represents the concatenation of the strings sep and os.Args[i]. The statement
we used in the program,

s += sep + os.Args[i]

is an assignment statement that concatenates the old value of s with sep and
os.Args[i] and assigns it back to s; it is equivalent to

s = s + sep + os.Args[i]

The operator += is an assignment operator. Each arithmetic and logical operator like
+ or * has a corresponding assignment operator.

The echo program could have printed its output in a loop one piece at a time, but
this version instead builds up a string by repeatedly appending new text to the end.
The string s starts life empty, that is, with value "", and each trip through the loop
adds some text to it; after the first iteration, a space is also inserted so that when the
loop is finished, there is one space between each argument. This is a quadratic
process that could be costly if the number of arguments is large, but for echo, that’s
unlikely. We’ll show a number of improved versions of echo in this chapter and the
next that will deal with any real inefficiency.
The loop index variable i is declared in the first part of the for loop. The :=
symbol is part of a short variable declaration, a statement that declares one or more
variables and gives them appropriate types based on the initializer values; there’s
more about this in the next chapter.
The increment statement i++ adds 1 to i; it’s equivalent to i += 1 which is in turn
equivalent to i = i + 1 . There’s a corresponding decrement statement i-- that
subtracts 1. These are statements, not expressions as they are in most languages in
the C family, so j = i++ is illegal, and they are postfix only, so --i is not legal
either.
The for loop is the only loop statement in Go. It has a number of forms, one of
which is illustrated here:

Click here to view code image

for initialization; condition; post {
 // zero or more statements
}

Parentheses are never used around the three components of a for loop. The braces
are mandatory, however, and the opening brace must be on the same line as the
post statement.

The optional initialization statement is executed before the loop starts. If it is
present, it must be a simple statement, that is, a short variable declaration, an
increment or assignment statement, or a function call. The condition is a boolean
expression that is evaluated at the beginning of each iteration of the loop; if it
evaluates to true, the statements controlled by the loop are executed. The post
statement is executed after the body of the loop, then the condition is evaluated again.
The loop ends when the condition becomes false.
Any of these parts may be omitted. If there is no initialization and no post,
the semicolons may also be omitted:

// a traditional "while" loop
for condition {
 // ...
}

If the condition is omitted entirely in any of these forms, for example in
// a traditional infinite loop
for {
 // ...
}

the loop is infinite, though loops of this form may be terminated in some other way,
like a break or return statement.

Another form of the for loop iterates over a range of values from a data type like a
string or a slice. To illustrate, here’s a second version of echo:

Click here to view code image

gopl.io/ch1/echo2
// Echo2 prints its command-line arguments.
package main

import (
 "fmt"
 "os"
)

func main() {
 s, sep := "", ""

 for _, arg := range os.Args[1:] {
 s += sep + arg
 sep = " "
 }
 fmt.Println(s)
}

In each iteration of the loop, range produces a pair of values: the index and the
value of the element at that index. In this example, we don’t need the index, but the
syntax of a range loop requires that if we deal with the element, we must deal with
the index too. One idea would be to assign the index to an obviously temporary
variable like temp and ignore its value, but Go does not permit unused local
variables, so this would result in a compilation error.
The solution is to use the blank identifier, whose name is _ (that is, an underscore).
The blank identifier may be used whenever syntax requires a variable name but
program logic does not, for instance to discard an unwanted loop index when we
require only the element value. Most Go programmers would likely use range and _
to write the echo program as above, since the indexing over os.Args is implicit,
not explicit, and thus easier to get right.
This version of the program uses a short variable declaration to declare and initialize
s and sep, but we could equally well have declared the variables separately. There
are several ways to declare a string variable; these are all equivalent:

s := ""
var s string
var s = ""
var s string = ""

Why should you prefer one form to another? The first form, a short variable
declaration, is the most compact, but it may be used only within a function, not for
package-level variables. The second form relies on default initialization to the zero
value for strings, which is "". The third form is rarely used except when declaring
multiple variables. The fourth form is explicit about the variable’s type, which is
redundant when it is the same as that of the initial value but necessary in other cases
where they are not of the same type. In practice, you should generally use one of the
first two forms, with explicit initialization to say that the initial value is important and
implicit initialization to say that the initial value doesn’t matter.
As noted above, each time around the loop, the string s gets completely new

contents. The += statement makes a new string by concatenating the old string, a
space character, and the next argument, then assigns the new string to s. The old
contents of s are no longer in use, so they will be garbage-collected in due course.

If the amount of data involved is large, this could be costly. A simpler and more
efficient solution would be to use the Join function from the strings package:

Click here to view code image

gopl.io/ch1/echo3
func main() {
 fmt.Println(strings.Join(os.Args[1:], " "))
}

Finally, if we don’t care about format but just want to see the values, perhaps for
debugging, we can let Println format the results for us:

fmt.Println(os.Args[1:])

The output of this statement is like what we would get from strings.Join, but
with surrounding brackets. Any slice may be printed this way.
Exercise 1.1: Modify the echo program to also print os.Args[0], the name of
the command that invoked it.
Exercise 1.2: Modify the echo program to print the index and value of each of its
arguments, one per line.
Exercise 1.3: Experiment to measure the difference in running time between our
potentially inefficient versions and the one that uses strings.Join. (Section 1.6
illustrates part of the time package, and Section 11.4 shows how to write
benchmark tests for systematic performance evaluation.)

1.3 Finding Duplicate Lines
Programs for file copying, printing, searching, sorting, counting, and the like all have a
similar structure: a loop over the input, some computation on each element, and
generation of output on the fly or at the end. We’ll show three variants of a program
called dup; it is partly inspired by the Unix uniq command, which looks for
adjacent duplicate lines. The structures and packages used are models that can be
easily adapted.
The first version of dup prints each line that appears more than once in the standard
input, preceded by its count. This program introduces the if statement, the map data
type, and the bufio package.

Click here to view code image

gopl.io/ch1/dup1
// Dup1 prints the text of each line that appears more
than
// once in the standard input, preceded by its count.
package main

import (
 "bufio"
 "fmt"
 "os"
)

func main() {
 counts := make(map[string]int)
 input := bufio.NewScanner(os.Stdin)
 for input.Scan() {
 counts[input.Text()]++
 }
 // NOTE: ignoring potential errors from
input.Err()
 for line, n := range counts {
 if n > 1 {
 fmt.Printf("%d\t%s\n", n, line)

 }
 }
}

As with for, parentheses are never used around the condition in an if statement,
but braces are required for the body. There can be an optional else part that is
executed if the condition is false.
A map holds a set of key/value pairs and provides constant-time operations to store,
retrieve, or test for an item in the set. The key may be of any type whose values can
be compared with ==, strings being the most common example; the value may be of
any type at all. In this example, the keys are strings and the values are ints. The
built-in function make creates a new empty map; it has other uses too. Maps are
discussed at length in Section 4.3.
Each time dup reads a line of input, the line is used as a key into the map and the
corresponding value is incremented. The statement counts[input.Text()]++
is equivalent to these two statements:

Click here to view code image

line := input.Text()
counts[line] = counts[line] + 1

It’s not a problem if the map doesn’t yet contain that key. The first time a new line is
seen, the expression counts[line] on the right-hand side evaluates to the zero
value for its type, which is 0 for int.

To print the results, we use another range-based for loop, this time over the
counts map. As before, each iteration produces two results, a key and the value of
the map element for that key. The order of map iteration is not specified, but in
practice it is random, varying from one run to another. This design is intentional, since
it prevents programs from relying on any particular ordering where none is
guaranteed.
Onward to the bufio package, which helps make input and output efficient and
convenient. One of its most useful features is a type called Scanner that reads input
and breaks it into lines or words; it’s often the easiest way to process input that comes
naturally in lines.
The program uses a short variable declaration to create a new variable input that
refers to a bufio.Scanner:

Click here to view code image

input := bufio.NewScanner(os.Stdin)

The scanner reads from the program’s standard input. Each call to input.Scan()
reads the next line and removes the newline character from the end; the result can be
retrieved by calling input.Text(). The Scan function returns true if there is a
line and false when there is no more input.

The function fmt.Printf, like printf in C and other languages, produces
formatted output from a list of expressions. Its first argument is a format string that
specifies how subsequent arguments should be formatted. The format of each
argument is determined by a conversion character, a letter following a percent sign.
For example, %d formats an integer operand using decimal notation, and %s expands
to the value of a string operand.
Printf has over a dozen such conversions, which Go programmers call verbs. This
table is far from a complete specification but illustrates many of the features that are
available:

View table image

%d decimal integer
%x, %o, %b integer in hexadecimal, octal, binary
%f, %g, %e floating-point number: 3.141593 3.141592653589793 3.141593e+00
%t boolean: true or false
%c rune (Unicode code point)
%s string
%q quoted string "abc" or rune 'c'
%v any value in a natural format
%T type of any value
%% literal percent sign (no operand)

The format string in dup1 also contains a tab \t and a newline \n. String literals
may contain such escape sequences for representing otherwise invisible characters.
Printf does not write a newline by default. By convention, formatting functions
whose names end in f, such as log.Printf and fmt.Errorf, use the
formatting rules of fmt.Printf, whereas those whose names end in ln follow
Println, formatting their arguments as if by %v, followed by a newline.

Many programs read either from their standard input, as above, or from a sequence
of named files. The next version of dup can read from the standard input or handle a
list of file names, using os.Open to open each one:

Click here to view code image

gopl.io/ch1/dup2
// Dup2 prints the count and text of lines that appear
more than once
// in the input. It reads from stdin or from a list
of named files.
package main

import (
 "bufio"
 "fmt"
 "os"
)

func main() {
 counts := make(map[string]int)
 files := os.Args[1:]
 if len(files) == 0 {
 countLines(os.Stdin, counts)
 } else {
 for _, arg := range files {
 f, err := os.Open(arg)
 if err != nil {
 fmt.Fprintf(os.Stderr, "dup2: %v\n",
err)
 continue
 }
 countLines(f, counts)
 f.Close()
 }
 }
 for line, n := range counts {
 if n > 1 {
 fmt.Printf("%d\t%s\n", n, line)

 }
 }
}

func countLines(f *os.File, counts map[string]int) {
 input := bufio.NewScanner(f)
 for input.Scan() {
 counts[input.Text()]++
 }
 // NOTE: ignoring potential errors from
input.Err()
}

The function os.Open returns two values. The first is an open file (*os.File)
that is used in subsequent reads by the Scanner.

The second result of os.Open is a value of the built-in error type. If err equals
the special built-in value nil, the file was opened successfully. The file is read, and
when the end of the input is reached, Close closes the file and releases any
resources. On the other hand, if err is not nil, something went wrong. In that
case, the error value describes the problem. Our simple-minded error handling prints a
message on the standard error stream using Fprintf and the verb %v, which
displays a value of any type in a default format, and dup then carries on with the
next file; the continue statement goes to the next iteration of the enclosing for
loop.
In the interests of keeping code samples to a reasonable size, our early examples are
intentionally somewhat cavalier about error handling. Clearly we must check for an
error from os.Open; however, we are ignoring the less likely possibility that an error
could occur while reading the file with input.Scan. We will note places where
we’ve skipped error checking, and we will go into the details of error handling in
Section 5.4.
Notice that the call to countLines precedes its declaration. Functions and other
package-level entities may be declared in any order.
A map is a reference to the data structure created by make. When a map is passed to
a function, the function receives a copy of the reference, so any changes the called
function makes to the underlying data structure will be visible through the caller’s
map reference too. In our example, the values inserted into the counts map by

countLines are seen by main.

The versions of dup above operate in a “streaming” mode in which input is read and
broken into lines as needed, so in principle these programs can handle an arbitrary
amount of input. An alternative approach is to read the entire input into memory in
one big gulp, split it into lines all at once, then process the lines. The following
version, dup3, operates in that fashion. It introduces the function ReadFile (from
the io/ioutil package), which reads the entire contents of a named file, and
strings.Split, which splits a string into a slice of substrings. (Split is the
opposite of strings.Join, which we saw earlier.)

We’ve simplified dup3 somewhat. First, it only reads named files, not the standard
input, since ReadFile requires a file name argument. Second, we moved the
counting of the lines back into main, since it is now needed in only one place.

Click here to view code image

gopl.io/ch1/dup3
package main

import (
 "fmt"
 "io/ioutil"
 "os"
 "strings"
)

func main() {
 counts := make(map[string]int)
 for _, filename := range os.Args[1:] {
 data, err := ioutil.ReadFile(filename)
 if err != nil {
 fmt.Fprintf(os.Stderr, "dup3: %v\n", err)
 continue
 }
 for _, line := range
strings.Split(string(data), "\n") {
 counts[line]++
 }

 }
 for line, n := range counts {
 if n > 1 {
 fmt.Printf("%d\t%s\n", n, line)
 }
 }
}

ReadFile returns a byte slice that must be converted into a string so it can be
split by strings.Split. We will discuss strings and byte slices at length in
Section 3.5.4.
Under the covers, bufio.Scanner, ioutil.ReadFile, and
ioutil.WriteFile use the Read and Write methods of *os.File, but it’s
rare that most programmers need to access those lower-level routines directly. The
higher-level functions like those from bufio and io/ioutil are easier to use.

Exercise 1.4: Modify dup2 to print the names of all files in which each duplicated
line occurs.

1.4 Animated GIFs
The next program demonstrates basic usage of Go’s standard image packages, which
we’ll use to create a sequence of bit-mapped images and then encode the sequence as
a GIF animation. The images, called Lissajous figures, were a staple visual effect in
sci-fi films of the 1960s. They are the parametric curves produced by harmonic
oscillation in two dimensions, such as two sine waves fed into the x and y inputs of an
oscilloscope. Figure 1.1 shows some examples.

Figure 1.1. Four Lissajous figures.

There are several new constructs in this code, including const declarations, struct
types, and composite literals. Unlike most of our examples, this one also involves
floating-point computations. We’ll discuss these topics only briefly here, pushing most
details off to later chapters, since the primary goal right now is to give you an idea of
what Go looks like and the kinds of things that can be done easily with the language
and its libraries.

Click here to view code image

gopl.io/ch1/lissajous
// Lissajous generates GIF animations of random
Lissajous figures.
package main

import (
 "image"
 "image/color"
 "image/gif"
 "io"

 "math"
 "math/rand"
 "os"
)

var palette = []color.Color{color.White, color.Black}

const (
 whiteIndex = 0 // first color in palette
 blackIndex = 1 // next color in palette
)

func main() {
 lissajous(os.Stdout)
}

func lissajous(out io.Writer) {
 const (
 cycles = 5 // number of complete x
oscillator revolutions
 res = 0.001 // angular resolution
 size = 100 // image canvas covers [-
size..+size]
 nframes = 64 // number of animation frames
 delay = 8 // delay between frames in
10ms units
)
 freq := rand.Float64() * 3.0 // relative frequency
of y oscillator
 anim := gif.GIF{LoopCount: nframes}
 phase := 0.0 // phase difference
 for i := 0; i < nframes; i++ {
 rect := image.Rect(0, 0, 2*size+1, 2*size+1)
 img := image.NewPaletted(rect, palette)
 for t := 0.0; t < cycles*2*math.Pi; t += res {
 x := math.Sin(t)
 y := math.Sin(t*freq + phase)
 img.SetColorIndex(size+int(x*size+0.5),
size+int(y*size+0.5),

 blackIndex)
 }
 phase += 0.1
 anim.Delay = append(anim.Delay, delay)
 anim.Image = append(anim.Image, img)
 }
 gif.EncodeAll(out, &anim) // NOTE: ignoring
encoding errors
}

After importing a package whose path has multiple components, like
image/color, we refer to the package with a name that comes from the last
component. Thus the variable color.White belongs to the image/color
package and gif.GIF belongs to image/gif.

A const declaration (§3.6) gives names to constants, that is, values that are fixed at
compile time, such as the numerical parameters for cycles, frames, and delay. Like
var declarations, const declarations may appear at package level (so the names are
visible throughout the package) or within a function (so the names are visible only
within that function). The value of a constant must be a number, string, or boolean.
The expressions []color.Color{...} and gif.GIF{...} are composite
literals (§4.2, §4.4.1), a compact notation for instantiating any of Go’s composite
types from a sequence of element values. Here, the first one is a slice and the second
one is a struct.
The type gif.GIF is a struct type (§4.4). A struct is a group of values called fields,
often of different types, that are collected together in a single object that can be
treated as a unit. The variable anim is a struct of type gif.GIF. The struct literal
creates a struct value whose LoopCount field is set to nframes; all other fields
have the zero value for their type. The individual fields of a struct can be accessed
using dot notation, as in the final two assignments which explicitly update the Delay
and Image fields of anim.

The lissajous function has two nested loops. The outer loop runs for 64
iterations, each producing a single frame of the animation. It creates a new 201×201
image with a palette of two colors, white and black. All pixels are initially set to the
palette’s zero value (the zeroth color in the palette), which we set to white. Each pass
through the inner loop generates a new image by setting some pixels to black. The
result is appended, using the built-in append function (§4.2.1), to a list of frames in

anim, along with a specified delay of 80ms. Finally the sequence of frames and
delays is encoded into GIF format and written to the output stream out. The type of
out is io.Writer, which lets us write to a wide range of possible destinations, as
we’ll show soon.
The inner loop runs the two oscillators. The x oscillator is just the sine function. The
y oscillator is also a sinusoid, but its frequency relative to the x oscillator is a random
number between 0 and 3, and its phase relative to the x oscillator is initially zero but
increases with each frame of the animation. The loop runs until the x oscillator has
completed five full cycles. At each step, it calls SetColorIndex to color the pixel
corresponding to (x, y) black, which is at position 1 in the palette.
The main function calls the lissajous function, directing it to write to the
standard output, so this command produces an animated GIF with frames like those
in Figure 1.1:

Click here to view code image

$ go build gopl.io/ch1/lissajous
$./lissajous >out.gif

Exercise 1.5: Change the Lissajous program’s color palette to green on black, for
added authenticity. To create the web color #RRGGBB, use color.RGBA{0xRR,
0xGG, 0xBB, 0xff} , where each pair of hexadecimal digits represents the
intensity of the red, green, or blue component of the pixel.
Exercise 1.6: Modify the Lissajous program to produce images in multiple colors by
adding more values to palette and then displaying them by changing the third
argument of SetColorIndex in some interesting way.

1.5 Fetching a URL
For many applications, access to information from the Internet is as important as
access to the local file system. Go provides a collection of packages, grouped under
net, that make it easy to send and receive information through the Internet, make
low-level network connections, and set up servers, for which Go’s concurrency
features (introduced in Chapter 8) are particularly useful.
To illustrate the minimum necessary to retrieve information over HTTP, here’s a
simple program called fetch that fetches the content of each specified URL and
prints it as uninterpreted text; it’s inspired by the invaluable utility curl. Obviously
one would usually do more with such data, but this shows the basic idea. We will use
this program frequently in the book.

Click here to view code image

gopl.io/ch1/fetch
// Fetch prints the content found at a URL.
package main

import (
 "fmt"
 "io/ioutil"
 "net/http"
 "os"
)

func main() {
 for _, url := range os.Args[1:] {
 resp, err := http.Get(url)
 if err != nil {
 fmt.Fprintf(os.Stderr, "fetch: %v\n", err)
 os.Exit(1)
 }
 b, err := ioutil.ReadAll(resp.Body)
 resp.Body.Close()
 if err != nil {
 fmt.Fprintf(os.Stderr, "fetch: reading %s:

%v\n", url, err)
 os.Exit(1)
 }
 fmt.Printf("%s", b)
 }
}

This program introduces functions from two packages, net/http and
io/ioutil. The http.Get function makes an HTTP request and, if there is no
error, returns the result in the response struct resp. The Body field of resp
contains the server response as a readable stream. Next, ioutil.ReadAll reads
the entire response; the result is stored in b. The Body stream is closed to avoid
leaking resources, and Printf writes the response to the standard output.

Click here to view code image

$ go build gopl.io/ch1/fetch
$./fetch http://gopl.io
<html>
<head>
<title>The Go Programming Language</title>
...

If the HTTP request fails, fetch reports the failure instead:

Click here to view code image

$./fetch http://bad.gopl.io
fetch: Get http://bad.gopl.io: dial tcp: lookup
bad.gopl.io: no such host

In either error case, os.Exit(1) causes the process to exit with a status code of 1.

Exercise 1.7: The function call io.Copy(dst, src) reads from src and writes
to dst. Use it instead of ioutil.ReadAll to copy the response body to
os.Stdout without requiring a buffer large enough to hold the entire stream. Be
sure to check the error result of io.Copy.

Exercise 1.8: Modify fetch to add the prefix http:// to each argument URL if it
is missing. You might want to use strings.HasPrefix.

Exercise 1.9: Modify fetch to also print the HTTP status code, found in
resp.Status.

1.6 Fetching URLs Concurrently
One of the most interesting and novel aspects of Go is its support for concurrent
programming. This is a large topic, to which Chapter 8 and Chapter 9 are devoted, so
for now we’ll give you just a taste of Go’s main concurrency mechanisms, goroutines
and channels.
The next program, fetchall, does the same fetch of a URL’s contents as the
previous example, but it fetches many URLs, all concurrently, so that the process will
take no longer than the longest fetch rather than the sum of all the fetch times. This
version of fetchall discards the responses but reports the size and elapsed time
for each one:

Click here to view code image

gopl.io/ch1/fetchall
// Fetchall fetches URLs in parallel and reports their
times and sizes.
package main

import (
 "fmt"
 "io"
 "io/ioutil"
 "net/http"
 "os"
 "time"
)

func main() {
 start := time.Now()
 ch := make(chan string)
 for _, url := range os.Args[1:] {
 go fetch(url, ch) // start a goroutine
 }
 for range os.Args[1:] {
 fmt.Println(<-ch) // receive from channel ch
 }

 fmt.Printf("%.2fs elapsed\n",
time.Since(start).Seconds())
}

func fetch(url string, ch chan<- string) {
 start := time.Now()
 resp, err := http.Get(url)
 if err != nil {
 ch <- fmt.Sprint(err) // send to channel ch
 return
 }

 nbytes, err := io.Copy(ioutil.Discard, resp.Body)
 resp.Body.Close() // don't leak resources
 if err != nil {
 ch <- fmt.Sprintf("while reading %s: %v", url,
err)
 return
 }
 secs := time.Since(start).Seconds()
 ch <- fmt.Sprintf("%.2fs %7d %s", secs, nbytes,
url)
}

Here’s an example:

Click here to view code image

$ go build gopl.io/ch1/fetchall
$./fetchall https://golang.org http://gopl.io
https://godoc.org
0.14s 6852 https://godoc.org
0.16s 7261 https://golang.org
0.48s 2475 http://gopl.io
0.48s elapsed

A goroutine is a concurrent function execution. A channel is a communication
mechanism that allows one goroutine to pass values of a specified type to another
goroutine. The function main runs in a goroutine and the go statement creates
additional goroutines.

The main function creates a channel of strings using make. For each command-line
argument, the go statement in the first range loop starts a new goroutine that calls
fetch asynchronously to fetch the URL using http.Get. The io.Copy function
reads the body of the response and discards it by writing to the ioutil.Discard
output stream. Copy returns the byte count, along with any error that occurred. As
each result arrives, fetch sends a summary line on the channel ch. The second
range loop in main receives and prints those lines.

When one goroutine attempts a send or receive on a channel, it blocks until another
goroutine attempts the corresponding receive or send operation, at which point the
value is transferred and both goroutines proceed. In this example, each fetch sends
a value (ch <- expression) on the channel ch, and main receives all of them (<-
ch). Having main do all the printing ensures that output from each goroutine is
processed as a unit, with no danger of interleaving if two goroutines finish at the same
time.
Exercise 1.10: Find a web site that produces a large amount of data. Investigate
caching by running fetchall twice in succession to see whether the reported time
changes much. Do you get the same content each time? Modify fetchall to print
its output to a file so it can be examined.
Exercise 1.11: Try fetchall with longer argument lists, such as samples from the
top million web sites available at alexa.com. How does the program behave if a
web site just doesn’t respond? (Section 8.9 describes mechanisms for coping in such
cases.)

1.7 A Web Server
Go’s libraries makes it easy to write a web server that responds to client requests like
those made by fetch. In this section, we’ll show a minimal server that returns the
path component of the URL used to access the server. That is, if the request is for
http://localhost:8000/hello, the response will be URL.Path =
"/hello".

Click here to view code image

gopl.io/ch1/server1
// Server1 is a minimal "echo" server.
package main

import (
 "fmt"
 "log"
 "net/http"
)

func main() {
 http.HandleFunc("/", handler) // each request
calls handler
 log.Fatal(http.ListenAndServe("localhost:8000",
nil))
}

// handler echoes the Path component of the requested
URL.
func handler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "URL.Path = %q\n", r.URL.Path)
}

The program is only a handful of lines long because library functions do most of the
work. The main function connects a handler function to incoming URLs whose path
begins with /, which is all URLs, and starts a server listening for incoming requests
on port 8000. A request is represented as a struct of type http.Request, which

contains a number of related fields, one of which is the URL of the incoming request.
When a request arrives, it is given to the handler function, which extracts the path
component (/hello) from the request URL and sends it back as the response, using
fmt.Fprintf. Web servers will be explained in detail in Section 7.7.

Let’s start the server in the background. On Mac OS X or Linux, add an ampersand
(&) to the command; on Microsoft Windows, you will need to run the command
without the ampersand in a separate command window.

Click here to view code image

$ go run src/gopl.io/ch1/server1/main.go &

We can then make client requests from the command line:

Click here to view code image

$ go build gopl.io/ch1/fetch
$./fetch http://localhost:8000
URL.Path = "/"
$./fetch http://localhost:8000/help
URL.Path = "/help"

Alternatively, we can access the server from a web browser, as shown in Figure 1.2.

Figure 1.2. A response from the echo server.

It’s easy to add features to the server. One useful addition is a specific URL that
returns a status of some sort. For example, this version does the same echo but also
counts the number of requests; a request to the URL /count returns the count so
far, excluding /count requests themselves:

Click here to view code image

gopl.io/ch1/server2
// Server2 is a minimal "echo" and counter server.

package main

import (
 "fmt"
 "log"
 "net/http"
 "sync"
)

var mu sync.Mutex
var count int

func main() {
 http.HandleFunc("/", handler)
 http.HandleFunc("/count", counter)
 log.Fatal(http.ListenAndServe("localhost:8000",
nil))
}

// handler echoes the Path component of the requested
URL.
func handler(w http.ResponseWriter, r *http.Request) {
 mu.Lock()
 count++
 mu.Unlock()
 fmt.Fprintf(w, "URL.Path = %q\n", r.URL.Path)
}

// counter echoes the number of calls so far.
func counter(w http.ResponseWriter, r *http.Request) {
 mu.Lock()
 fmt.Fprintf(w, "Count %d\n", count)
 mu.Unlock()
}

The server has two handlers, and the request URL determines which one is called: a
request for /count invokes counter and all others invoke handler. A handler
pattern that ends with a slash matches any URL that has the pattern as a prefix.
Behind the scenes, the server runs the handler for each incoming request in a separate

goroutine so that it can serve multiple requests simultaneously. However, if two
concurrent requests try to update count at the same time, it might not be
incremented consistently; the program would have a serious bug called a race
condition (§9.1). To avoid this problem, we must ensure that at most one goroutine
accesses the variable at a time, which is the purpose of the mu.Lock() and
mu.Unlock() calls that bracket each access of count. We’ll look more closely at
concurrency with shared variables in Chapter 9.
As a richer example, the handler function can report on the headers and form data
that it receives, making the server useful for inspecting and debugging requests:

Click here to view code image

gopl.io/ch1/server3
// handler echoes the HTTP request.
func handler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "%s %s %s\n", r.Method, r.URL,
r.Proto)
 for k, v := range r.Header {
 fmt.Fprintf(w, "Header[%q] = %q\n", k, v)
 }
 fmt.Fprintf(w, "Host = %q\n", r.Host)
 fmt.Fprintf(w, "RemoteAddr = %q\n", r.RemoteAddr)
 if err := r.ParseForm(); err != nil {
 log.Print(err)
 }
 for k, v := range r.Form {
 fmt.Fprintf(w, "Form[%q] = %q\n", k, v)
 }
}

This uses the fields of the http.Request struct to produce output like this:

Click here to view code image

GET /?q=query HTTP/1.1
Header["Accept-Encoding"] = ["gzip, deflate, sdch"]
Header["Accept-Language"] = ["en-US,en;q=0.8"]
Header["Connection"] = ["keep-alive"]
Header["Accept"] =
["text/html,application/xhtml+xml,application/xml;..."]

Header["User-Agent"] = ["Mozilla/5.0 (Macintosh; Intel
Mac OS X 10_7_5)..."]
Host = "localhost:8000"
RemoteAddr = "127.0.0.1:59911"
Form["q"] = ["query"]

Notice how the call to ParseForm is nested within an if statement. Go allows a
simple statement such as a local variable declaration to precede the if condition,
which is particularly useful for error handling as in this example. We could have
written it as

err := r.ParseForm()
if err != nil {
 log.Print(err)
}

but combining the statements is shorter and reduces the scope of the variable err,
which is good practice. We’ll define scope in Section 2.7.
In these programs, we’ve seen three very different types used as output streams. The
fetch program copied HTTP response data to os.Stdout, a file, as did the
lissajous program. The fetchall program threw the response away (while
counting its length) by copying it to the trivial sink ioutil.Discard. And the
web server above used fmt.Fprintf to write to an http.ResponseWriter
representing the web browser.
Although these three types differ in the details of what they do, they all satisfy a
common interface, allowing any of them to be used wherever an output stream is
needed. That interface, called io.Writer, is discussed in Section 7.1.

Go’s interface mechanism is the topic of Chapter 7, but to give an idea of what it’s
capable of, let’s see how easy it is to combine the web server with the lissajous
function so that animated GIFs are written not to the standard output, but to the
HTTP client. Just add these lines to the web server:

Click here to view code image

handler := func(w http.ResponseWriter, r
*http.Request) {
 lissajous(w)
}

http.HandleFunc("/", handler)

or equivalently:

Click here to view code image

http.HandleFunc("/", func(w http.ResponseWriter, r
*http.Request) {
 lissajous(w)
})

The second argument to the HandleFunc function call immediately above is a
function literal, that is, an anonymous function defined at its point of use. We will
explain it further in Section 5.6.
Once you’ve made this change, visit http://localhost:8000 in your
browser. Each time you load the page, you’ll see a new animation like the one in
Figure 1.3.
Exercise 1.12: Modify the Lissajous server to read parameter values from the URL.
For example, you might arrange it so that a URL like
http://localhost:8000/?cycles=20 sets the number of cycles to 20
instead of the default 5. Use the strconv.Atoi function to convert the string
parameter into an integer. You can see its documentation with go doc
strconv.Atoi.

Figure 1.3. Animated Lissajous figures in a browser.

1.8 Loose Ends
There is a lot more to Go than we’ve covered in this quick introduction. Here are
some topics we’ve barely touched upon or omitted entirely, with just enough
discussion that they will be familiar when they make brief appearances before the full
treatment.
Control flow: We covered the two fundamental control-flow statements, if and
for, but not the switch statement, which is a multi-way branch. Here’s a small
example:

Click here to view code image

switch coinflip() {
case "heads":
 heads++
case "tails":
 tails++
default:
 fmt.Println("landed on edge!")
}

The result of calling coinflip is compared to the value of each case. Cases are
evaluated from top to bottom, so the first matching one is executed. The optional
default case matches if none of the other cases does; it may be placed anywhere.
Cases do not fall through from one to the next as in C-like languages (though there is
a rarely used fallthrough statement that overrides this behavior).

A switch does not need an operand; it can just list the cases, each of which is a
boolean expression:

func Signum(x int) int {
 switch {
 case x > 0:
 return +1
 default:
 return 0
 case x < 0:
 return -1
 }

}

This form is called a tagless switch; it’s equivalent to switch true .

Like the for and if statements, a switch may include an optional simple
statement—a short variable declaration, an increment or assignment statement, or a
function call—that can be used to set a value before it is tested.
The break and continue statements modify the flow of control. A break
causes control to resume at the next statement after the innermost for, switch, or
select statement (which we’ll see later), and as we saw in Section 1.3, a
continue causes the innermost for loop to start its next iteration. Statements may
be labeled so that break and continue can refer to them, for instance to break
out of several nested loops at once or to start the next iteration of the outermost loop.
There is even a goto statement, though it’s intended for machine-generated code,
not regular use by programmers.
Named types: A type declaration makes it possible to give a name to an existing
type. Since struct types are often long, they are nearly always named. A familiar
example is the definition of a Point type for a 2-D graphics system:

type Point struct {
 X, Y int
}
var p Point

Type declarations and named types are covered in Chapter 2.
Pointers: Go provides pointers, that is, values that contain the address of a variable.
In some languages, notably C, pointers are relatively unconstrained. In other
languages, pointers are disguised as “references,” and there’s not much that can be
done with them except pass them around. Go takes a position somewhere in the
middle. Pointers are explicitly visible. The & operator yields the address of a variable,
and the * operator retrieves the variable that the pointer refers to, but there is no
pointer arithmetic. We’ll explain pointers in Section 2.3.2.
Methods and interfaces: A method is a function associated with a named type; Go is
unusual in that methods may be attached to almost any named type. Methods are
covered in Chapter 6. Interfaces are abstract types that let us treat different concrete
types in the same way based on what methods they have, not how they are
represented or implemented. Interfaces are the subject of Chapter 7.
Packages: Go comes with an extensive standard library of useful packages, and the

Go community has created and shared many more. Programming is often more about
using existing packages than about writing original code of one’s own. Throughout the
book, we will point out a couple of dozen of the most important standard packages,
but there are many more we don’t have space to mention, and we cannot provide
anything remotely like a complete reference for any package.
Before you embark on any new program, it’s a good idea to see if packages already
exist that might help you get your job done more easily. You can find an index of the
standard library packages at https://golang.org/pkg and the packages
contributed by the community at https://godoc.org. The go doc tool makes
these documents easily accessible from the command line:

Click here to view code image

$ go doc http.ListenAndServe
package http // import "net/http"

func ListenAndServe(addr string, handler Handler)
error

 ListenAndServe listens on the TCP network address
addr and then
 calls Serve with handler to handle requests on
incoming connections.
...

Comments: We have already mentioned documentation comments at the beginning of
a program or package. It’s also good style to write a comment before the declaration
of each function to specify its behavior. These conventions are important, because
they are used by tools like go doc and godoc to locate and display documentation
(§10.7.4).
For comments that span multiple lines or appear within an expression or statement,
there is also the /* ... */ notation familiar from other languages. Such comments
are sometimes used at the beginning of a file for a large block of explanatory text to
avoid a // on every line. Within a comment, // and /* have no special meaning, so
comments do not nest.

2. Program Structure
In Go, as in any other programming language, one builds large programs from a small
set of basic constructs. Variables store values. Simple expressions are combined into
larger ones with operations like addition and subtraction. Basic types are collected into
aggregates like arrays and structs. Expressions are used in statements whose execution
order is determined by control-flow statements like if and for. Statements are
grouped into functions for isolation and reuse. Functions are gathered into source files
and packages.
We saw examples of most of these in the previous chapter. In this chapter, we’ll go
into more detail about the basic structural elements of a Go program. The example
programs are intentionally simple, so we can focus on the language without getting
sidetracked by complicated algorithms or data structures.

2.1 Names
The names of Go functions, variables, constants, types, statement labels, and
packages follow a simple rule: a name begins with a letter (that is, anything that
Unicode deems a letter) or an underscore and may have any number of additional
letters, digits, and underscores. Case matters: heapSort and Heapsort are
different names.
Go has 25 keywords like if and switch that may be used only where the syntax
permits; they can’t be used as names.

Click here to view code image

break default func interface
select
case defer go map
struct
chan else goto package
switch
const fallthrough if range
type
continue for import return
var

In addition, there are about three dozen predeclared names like int and true for
built-in constants, types, and functions:

Constants: true false iota nil
 Types: int int8 int16 int32 int64

uint uint8 uint16 uint32 uint64
uintptr
float32 float64 complex128 complex64
bool byte rune string error

Functions: make len cap new append copy

close delete
complex real imag
panic recover

These names are not reserved, so you may use them in declarations. We’ll see a
handful of places where redeclaring one of them makes sense, but beware of the
potential for confusion.
If an entity is declared within a function, it is local to that function. If declared
outside of a function, however, it is visible in all files of the package to which it
belongs. The case of the first letter of a name determines its visibility across package
boundaries. If the name begins with an upper-case letter, it is exported, which means
that it is visible and accessible outside of its own package and may be referred to by
other parts of the program, as with Printf in the fmt package. Package names
themselves are always in lower case.
There is no limit on name length, but convention and style in Go programs lean
toward short names, especially for local variables with small scopes; you are much
more likely to see variables named i than theLoopIndex. Generally, the larger the
scope of a name, the longer and more meaningful it should be.
Stylistically, Go programmers use “camel case” when forming names by combining
words; that is, interior capital letters are preferred over interior underscores. Thus the
standard libraries have functions with names like QuoteRuneToASCII and
parseRequestLine but never quote_rune_to_ASCII or
parse_request_line. The letters of acronyms and initialisms like ASCII and
HTML are always rendered in the same case, so a function might be called
htmlEscape, HTMLEscape, or escapeHTML, but not escapeHtml.

2.2 Declarations
A declaration names a program entity and specifies some or all of its properties.
There are four major kinds of declarations: var, const, type, and func. We’ll
talk about variables and types in this chapter, constants in Chapter 3, and functions in
Chapter 5.
A Go program is stored in one or more files whose names end in .go. Each file
begins with a package declaration that says what package the file is part of. The
package declaration is followed by any import declarations, and then a sequence
of package-level declarations of types, variables, constants, and functions, in any
order. For example, this program declares a constant, a function, and a couple of
variables:

Click here to view code image

gopl.io/ch2/boiling
// Boiling prints the boiling point of water.
package main

import "fmt"

const boilingF = 212.0

func main() {
 var f = boilingF
 var c = (f - 32) * 5 / 9
 fmt.Printf("boiling point = %g°F or %g°C\n", f, c)
 // Output:
 // boiling point = 212°F or 100°C
}

The constant boilingF is a package-level declaration (as is main), whereas the
variables f and c are local to the function main. The name of each package-level
entity is visible not only throughout the source file that contains its declaration, but
throughout all the files of the package. By contrast, local declarations are visible only
within the function in which they are declared and perhaps only within a small part of
it.

A function declaration has a name, a list of parameters (the variables whose values
are provided by the function’s callers), an optional list of results, and the function
body, which contains the statements that define what the function does. The result list
is omitted if the function does not return anything. Execution of the function begins
with the first statement and continues until it encounters a return statement or reaches
the end of a function that has no results. Control and any results are then returned to
the caller.
We’ve seen a fair number of functions already and there are lots more to come,
including an extensive discussion in Chapter 5, so this is only a sketch. The function
fToC below encapsulates the temperature conversion logic so that it is defined only
once but may be used from multiple places. Here main calls it twice, using the
values of two different local constants:

Click here to view code image

gopl.io/ch2/ftoc
// Ftoc prints two Fahrenheit-to-Celsius conversions.
package main

import "fmt"

func main() {
 const freezingF, boilingF = 32.0, 212.0
 fmt.Printf("%g°F = %g°C\n", freezingF,
fToC(freezingF)) // "32°F = 0°C"
 fmt.Printf("%g°F = %g°C\n", boilingF,
fToC(boilingF)) // "212°F = 100°C"
}

func fToC(f float64) float64 {
 return (f - 32) * 5 / 9
}

2.3 Variables
A var declaration creates a variable of a particular type, attaches a name to it, and
sets its initial value. Each declaration has the general form

var name type = expression

Either the type or the = expression part may be omitted, but not both. If the type
is omitted, it is determined by the initializer expression. If the expression is omitted,
the initial value is the zero value for the type, which is 0 for numbers, false for
booleans, "" for strings, and nil for interfaces and reference types (slice, pointer,
map, channel, function). The zero value of an aggregate type like an array or a struct
has the zero value of all of its elements or fields.
The zero-value mechanism ensures that a variable always holds a well-defined value
of its type; in Go there is no such thing as an uninitialized variable. This simplifies
code and often ensures sensible behavior of boundary conditions without extra work.
For example,

var s string
fmt.Println(s) // ""

prints an empty string, rather than causing some kind of error or unpredictable
behavior. Go programmers often go to some effort to make the zero value of a more
complicated type meaningful, so that variables begin life in a useful state.
It is possible to declare and optionally initialize a set of variables in a single
declaration, with a matching list of expressions. Omitting the type allows declaration
of multiple variables of different types:

Click here to view code image

var i, j, k int // int, int, int
var b, f, s = true, 2.3, "four" // bool, float64,
string

Initializers may be literal values or arbitrary expressions. Package-level variables are
initialized before main begins (§2.6.2), and local variables are initialized as their
declarations are encountered during function execution.
A set of variables can also be initialized by calling a function that returns multiple
values:

Click here to view code image

var f, err = os.Open(name) // os.Open returns a file
and an error

2.3.1 Short Variable Declarations

Within a function, an alternate form called a short variable declaration may be used
to declare and initialize local variables. It takes the form name := expression,
and the type of name is determined by the type of expression. Here are three of
the many short variable declarations in the lissajous function (§1.4):

Click here to view code image

anim := gif.GIF{LoopCount: nframes}
freq := rand.Float64() * 3.0
t := 0.0

Because of their brevity and flexibility, short variable declarations are used to declare
and initialize the majority of local variables. A var declaration tends to be reserved
for local variables that need an explicit type that differs from that of the initializer
expression, or for when the variable will be assigned a value later and its initial value
is unimportant.

Click here to view code image

i := 100 // an int
var boiling float64 = 100 // a float64

var names []string
var err error
var p Point

As with var declarations, multiple variables may be declared and initialized in the
same short variable declaration,

i, j := 0, 1

but declarations with multiple initializer expressions should be used only when they
help readability, such as for short and natural groupings like the initialization part of a

for loop.

Keep in mind that := is a declaration, whereas = is an assignment. A multi-variable
declaration should not be confused with a tuple assignment (§2.4.1), in which each
variable on the left-hand side is assigned the corresponding value from the right-hand
side:

Click here to view code image

i, j = j, i // swap values of i and j

Like ordinary var declarations, short variable declarations may be used for calls to
functions like os.Open that return two or more values:

f, err := os.Open(name)
if err != nil {
 return err
}
// ...use f...
f.Close()

One subtle but important point: a short variable declaration does not necessarily
declare all the variables on its left-hand side. If some of them were already declared
in the same lexical block (§2.7), then the short variable declaration acts like an
assignment to those variables.
In the code below, the first statement declares both in and err. The second
declares out but only assigns a value to the existing err variable.

in, err := os.Open(infile)
// ...
out, err := os.Create(outfile)

A short variable declaration must declare at least one new variable, however, so this
code will not compile:

Click here to view code image

f, err := os.Open(infile)
// ...
f, err := os.Create(outfile) // compile error: no new
variables

The fix is to use an ordinary assignment for the second statement.

A short variable declaration acts like an assignment only to variables that were already
declared in the same lexical block; declarations in an outer block are ignored. We’ll
see examples of this at the end of the chapter.

2.3.2 Pointers

A variable is a piece of storage containing a value. Variables created by declarations
are identified by a name, such as x, but many variables are identified only by
expressions like x[i] or x.f. All these expressions read the value of a variable,
except when they appear on the left-hand side of an assignment, in which case a new
value is assigned to the variable.
A pointer value is the address of a variable. A pointer is thus the location at which a
value is stored. Not every value has an address, but every variable does. With a
pointer, we can read or update the value of a variable indirectly, without using or
even knowing the name of the variable, if indeed it has a name.
If a variable is declared var x int , the expression &x (“address of x”) yields a
pointer to an integer variable, that is, a value of type *int, which is pronounced
“pointer to int.” If this value is called p, we say “p points to x,” or equivalently “p
contains the address of x.” The variable to which p points is written *p. The
expression *p yields the value of that variable, an int, but since *p denotes a
variable, it may also appear on the left-hand side of an assignment, in which case the
assignment updates the variable.

Click here to view code image

x := 1
p := &x // p, of type *int, points to x
fmt.Println(*p) // "1"
*p = 2 // equivalent to x = 2
fmt.Println(x) // "2"

Each component of a variable of aggregate type—a field of a struct or an element of
an array—is also a variable and thus has an address too.
Variables are sometimes described as addressable values. Expressions that denote
variables are the only expressions to which the address-of operator & may be applied.

The zero value for a pointer of any type is nil. The test p != nil is true if p
points to a variable. Pointers are comparable; two pointers are equal if and only if
they point to the same variable or both are nil.

Click here to view code image

var x, y int
fmt.Println(&x == &x, &x == &y, &x == nil) // "true
false false"

It is perfectly safe for a function to return the address of a local variable. For
instance, in the code below, the local variable v created by this particular call to f will
remain in existence even after the call has returned, and the pointer p will still refer to
it:

var p = f()

func f() *int {
 v := 1
 return &v
}

Each call of f returns a distinct value:

Click here to view code image

fmt.Println(f() == f()) // "false"

Because a pointer contains the address of a variable, passing a pointer argument to a
function makes it possible for the function to update the variable that was indirectly
passed. For example, this function increments the variable that its argument points to
and returns the new value of the variable so it may be used in an expression:

Click here to view code image

func incr(p *int) int {
 *p++ // increments what p points to; does not
change p
 return *p
}

v := 1
incr(&v) // side effect: v is now 2

fmt.Println(incr(&v)) // "3" (and v is 3)

Each time we take the address of a variable or copy a pointer, we create new aliases
or ways to identify the same variable. For example, *p is an alias for v. Pointer
aliasing is useful because it allows us to access a variable without using its name, but
this is a double-edged sword: to find all the statements that access a variable, we have
to know all its aliases. It’s not just pointers that create aliases; aliasing also occurs
when we copy values of other reference types like slices, maps, and channels, and
even structs, arrays, and interfaces that contain these types.
Pointers are key to the flag package, which uses a program’s command-line
arguments to set the values of certain variables distributed throughout the program.
To illustrate, this variation on the earlier echo command takes two optional flags: -n
causes echo to omit the trailing newline that would normally be printed, and -s
sep causes it to separate the output arguments by the contents of the string sep
instead of the default single space. Since this is our fourth version, the package is
called gopl.io/ch2/echo4.

Click here to view code image

gopl.io/ch2/echo4
// Echo4 prints its command-line arguments.
package main

import (
 "flag"
 "fmt"
 "strings"
)

var n = flag.Bool("n", false, "omit trailing newline")
var sep = flag.String("s", " ", "separator")

func main() {
 flag.Parse()
 fmt.Print(strings.Join(flag.Args(), *sep))
 if !*n {
 fmt.Println()
 }
}

The function flag.Bool creates a new flag variable of type bool. It takes three
arguments: the name of the flag ("n"), the variable’s default value (false), and a
message that will be printed if the user provides an invalid argument, an invalid flag,
or -h or -help. Similarly, flag.String takes a name, a default value, and a
message, and creates a string variable. The variables sep and n are pointers to
the flag variables, which must be accessed indirectly as *sep and *n.

When the program is run, it must call flag.Parse before the flags are used, to
update the flag variables from their default values. The non-flag arguments are
available from flag.Args() as a slice of strings. If flag.Parse encounters an
error, it prints a usage message and calls os.Exit(2) to terminate the program.

Let’s run some test cases on echo:

Click here to view code image

$ go build gopl.io/ch2/echo4
$./echo4 a bc def
a bc def
$./echo4 -s / a bc def
a/bc/def
$./echo4 -n a bc def
a bc def$
$./echo4 -help
Usage of ./echo4:
 -n omit trailing newline
 -s string
 separator (default " ")

2.3.3 The new Function

Another way to create a variable is to use the built-in function new. The expression
new(T) creates an unnamed variable of type T, initializes it to the zero value of T,
and returns its address, which is a value of type *T.

Click here to view code image

p := new(int) // p, of type *int, points to an

unnamed int variable
fmt.Println(*p) // "0"
*p = 2 // sets the unnamed int to 2
fmt.Println(*p) // "2"

A variable created with new is no different from an ordinary local variable whose
address is taken, except that there’s no need to invent (and declare) a dummy name,
and we can use new(T) in an expression. Thus new is only a syntactic convenience,
not a fundamental notion: the two newInt functions below have identical behaviors.

Click here to view code image

func newInt() *int { func newInt() *int {
 return new(int) var dummy int
} return &dummy
 }

Each call to new returns a distinct variable with a unique address:
p := new(int)
q := new(int)
fmt.Println(p == q) // "false"

There is one exception to this rule: two variables whose type carries no information
and is therefore of size zero, such as struct{} or [0]int, may, depending on
the implementation, have the same address.
The new function is relatively rarely used because the most common unnamed
variables are of struct types, for which the struct literal syntax (§4.4.1) is more
flexible.
Since new is a predeclared function, not a keyword, it’s possible to redefine the name
for something else within a function, for example:

Click here to view code image

func delta(old, new int) int { return new - old }

Of course, within delta, the built-in new function is unavailable.

2.3.4 Lifetime of Variables

The lifetime of a variable is the interval of time during which it exists as the program
executes. The lifetime of a package-level variable is the entire execution of the
program. By contrast, local variables have dynamic lifetimes: a new instance is
created each time the declaration statement is executed, and the variable lives on until
it becomes unreachable, at which point its storage may be recycled. Function
parameters and results are local variables too; they are created each time their
enclosing function is called.
For example, in this excerpt from the Lissajous program of Section 1.4,

Click here to view code image

for t := 0.0; t < cycles*2*math.Pi; t += res {
 x := math.Sin(t)
 y := math.Sin(t*freq + phase)
 img.SetColorIndex(size+int(x*size+0.5),
size+int(y*size+0.5),
 blackIndex)
}

the variable t is created each time the for loop begins, and new variables x and y
are created on each iteration of the loop.
How does the garbage collector know that a variable’s storage can be reclaimed? The
full story is much more detailed than we need here, but the basic idea is that every
package-level variable, and every local variable of each currently active function, can
potentially be the start or root of a path to the variable in question, following pointers
and other kinds of references that ultimately lead to the variable. If no such path
exists, the variable has become unreachable, so it can no longer affect the rest of the
computation.
Because the lifetime of a variable is determined only by whether or not it is reachable,
a local variable may outlive a single iteration of the enclosing loop. It may continue to
exist even after its enclosing function has returned.
A compiler may choose to allocate local variables on the heap or on the stack but,
perhaps surprisingly, this choice is not determined by whether var or new was used
to declare the variable.

Click here to view code image

var global *int

func f() { func g() {
 var x int y := new(int)
 x = 1 *y = 1
 global = &x }
}

Here, x must be heap-allocated because it is still reachable from the variable global
after f has returned, despite being declared as a local variable; we say x escapes from
f. Conversely, when g returns, the variable *y becomes unreachable and can be
recycled. Since *y does not escape from g, it’s safe for the compiler to allocate *y
on the stack, even though it was allocated with new. In any case, the notion of
escaping is not something that you need to worry about in order to write correct code,
though it’s good to keep in mind during performance optimization, since each variable
that escapes requires an extra memory allocation.
Garbage collection is a tremendous help in writing correct programs, but it does not
relieve you of the burden of thinking about memory. You don’t need to explicitly
allocate and free memory, but to write efficient programs you still need to be aware of
the lifetime of variables. For example, keeping unnecessary pointers to short-lived
objects within long-lived objects, especially global variables, will prevent the garbage
collector from reclaiming the short-lived objects.

2.4 Assignments
The value held by a variable is updated by an assignment statement, which in its
simplest form has a variable on the left of the = sign and an expression on the right.

Click here to view code image

x = 1 // named variable
*p = true // indirect variable
person.name = "bob" // struct field
count[x] = count[x] * scale // array or slice or map
element

Each of the arithmetic and bitwise binary operators has a corresponding assignment
operator allowing, for example, the last statement to be rewritten as

count[x] *= scale

which saves us from having to repeat (and re-evaluate) the expression for the
variable.
Numeric variables can also be incremented and decremented by ++ and --
statements:

Click here to view code image

v := 1
v++ // same as v = v + 1; v becomes 2
v-- // same as v = v - 1; v becomes 1 again

2.4.1 Tuple Assignment

Another form of assignment, known as tuple assignment, allows several variables to
be assigned at once. All of the right-hand side expressions are evaluated before any of
the variables are updated, making this form most useful when some of the variables
appear on both sides of the assignment, as happens, for example, when swapping the
values of two variables:

x, y = y, x

a[i], a[j] = a[j], a[i]

or when computing the greatest common divisor (GCD) of two integers:
func gcd(x, y int) int {
 for y != 0 {
 x, y = y, x%y
 }
 return x
}

or when computing the n-th Fibonacci number iteratively:
func fib(n int) int {
 x, y := 0, 1
 for i := 0; i < n; i++ {
 x, y = y, x+y
 }
 return x
}

Tuple assignment can also make a sequence of trivial assignments more compact,
i, j, k = 2, 3, 5

though as a matter of style, avoid the tuple form if the expressions are complex; a
sequence of separate statements is easier to read.
Certain expressions, such as a call to a function with multiple results, produce several
values. When such a call is used in an assignment statement, the left-hand side must
have as many variables as the function has results.

Click here to view code image

f, err = os.Open("foo.txt") // function call returns
two values

Often, functions use these additional results to indicate some kind of error, either by
returning an error as in the call to os.Open, or a bool, usually called ok. As
we’ll see in later chapters, there are three operators that sometimes behave this way
too. If a map lookup (§4.3), type assertion (§7.10), or channel receive (§8.4.2)
appears in an assignment in which two results are expected, each produces an
additional boolean result:

Click here to view code image

v, ok = m[key] // map lookup
v, ok = x.(T) // type assertion
v, ok = <-ch // channel receive

As with variable declarations, we can assign unwanted values to the blank identifier:

Click here to view code image

_, err = io.Copy(dst, src) // discard byte count
_, ok = x.(T) // check type but discard
result

2.4.2 Assignability

Assignment statements are an explicit form of assignment, but there are many places
in a program where an assignment occurs implicitly: a function call implicitly assigns
the argument values to the corresponding parameter variables; a return statement
implicitly assigns the return operands to the corresponding result variables; and a
literal expression for a composite type (§4.2) such as this slice:

Click here to view code image

medals := []string{"gold", "silver", "bronze"}

implicitly assigns each element, as if it had been written like this:
medals[0] = "gold"
medals[1] = "silver"
medals[2] = "bronze"

The elements of maps and channels, though not ordinary variables, are also subject to
similar implicit assignments.
An assignment, explicit or implicit, is always legal if the left-hand side (the variable)
and the right-hand side (the value) have the same type. More generally, the
assignment is legal only if the value is assignable to the type of the variable.
The rule for assignability has cases for various types, so we’ll explain the relevant
case as we introduce each new type. For the types we’ve discussed so far, the rules
are simple: the types must exactly match, and nil may be assigned to any variable of

interface or reference type. Constants (§3.6) have more flexible rules for assignability
that avoid the need for most explicit conversions.
Whether two values may be compared with == and != is related to assignability: in
any comparison, the first operand must be assignable to the type of the second
operand, or vice versa. As with assignability, we’ll explain the relevant cases for
comparability when we present each new type.

2.5 Type Declarations
The type of a variable or expression defines the characteristics of the values it may
take on, such as their size (number of bits or number of elements, perhaps), how they
are represented internally, the intrinsic operations that can be performed on them, and
the methods associated with them.
In any program there are variables that share the same representation but signify very
different concepts. For instance, an int could be used to represent a loop index, a
timestamp, a file descriptor, or a month; a float64 could represent a velocity in
meters per second or a temperature in one of several scales; and a string could
represent a password or the name of a color.
A type declaration defines a new named type that has the same underlying type as
an existing type. The named type provides a way to separate different and perhaps
incompatible uses of the underlying type so that they can’t be mixed unintentionally.

type name underlying-type

Type declarations most often appear at package level, where the named type is visible
throughout the package, and if the name is exported (it starts with an upper-case
letter), it’s accessible from other packages as well.
To illustrate type declarations, let’s turn the different temperature scales into different
types:

Click here to view code image

gopl.io/ch2/tempconv0
// Package tempconv performs Celsius and Fahrenheit
temperature computations.
package tempconv

import "fmt"

type Celsius float64
type Fahrenheit float64

const (
 AbsoluteZeroC Celsius = -273.15

 FreezingC Celsius = 0
 BoilingC Celsius = 100
)

func CToF(c Celsius) Fahrenheit { return
Fahrenheit(c*9/5 + 32) }

func FToC(f Fahrenheit) Celsius { return Celsius((f -
32) * 5 / 9) }

This package defines two types, Celsius and Fahrenheit, for the two units of
temperature. Even though both have the same underlying type, float64, they are
not the same type, so they cannot be compared or combined in arithmetic
expressions. Distinguishing the types makes it possible to avoid errors like
inadvertently combining temperatures in the two different scales; an explicit type
conversion like Celsius(t) or Fahrenheit(t) is required to convert from a
float64. Celsius(t) and Fahrenheit(t) are conversions, not function
calls. They don’t change the value or representation in any way, but they make the
change of meaning explicit. On the other hand, the functions CToF and FToC
convert between the two scales; they do return different values.
For every type T, there is a corresponding conversion operation T(x) that converts
the value x to type T. A conversion from one type to another is allowed if both have
the same underlying type, or if both are unnamed pointer types that point to variables
of the same underlying type; these conversions change the type but not the
representation of the value. If x is assignable to T, a conversion is permitted but is
usually redundant,
Conversions are also allowed between numeric types, and between string and some
slice types, as we will see in the next chapter. These conversions may change the
representation of the value. For instance, converting a floating-point number to an
integer discards any fractional part, and converting a string to a []byte slice
allocates a copy of the string data. In any case, a conversion never fails at run time.
The underlying type of a named type determines its structure and representation, and
also the set of intrinsic operations it supports, which are the same as if the underlying
type had been used directly. That means that arithmetic operators work the same for
Celsius and Fahrenheit as they do for float64, as you might expect.

Click here to view code image

fmt.Printf("%g\n", BoilingC-FreezingC) // "100" °C
boilingF := CToF(BoilingC)
fmt.Printf("%g\n", boilingF-CToF(FreezingC)) // "180"
°F
fmt.Printf("%g\n", boilingF-FreezingC) //
compile error: type mismatch

Comparison operators like == and < can also be used to compare a value of a named
type to another of the same type, or to a value of the underlying type. But two values
of different named types cannot be compared directly:

Click here to view code image

var c Celsius
var f Fahrenheit
fmt.Println(c == 0) // "true"
fmt.Println(f >= 0) // "true"
fmt.Println(c == f) // compile error: type
mismatch
fmt.Println(c == Celsius(f)) // "true"!

Note the last case carefully. In spite of its name, the type conversion Celsius(f)
does not change the value of its argument, just its type. The test is true because c and
f are both zero.

A named type may provide notational convenience if it helps avoid writing out
complex types over and over again. The advantage is small when the underlying type
is simple like float64, but big for complicated types, as we will see when we
discuss structs.
Named types also make it possible to define new behaviors for values of the type.
These behaviors are expressed as a set of functions associated with the type, called
the type’s methods. We’ll look at methods in detail in Chapter 6 but will give a taste
of the mechanism here.
The declaration below, in which the Celsius parameter c appears before the
function name, associates with the Celsius type a method named String that
returns c’s numeric value followed by °C:

Click here to view code image

func (c Celsius) String() string { return

fmt.Sprintf("%g°C", c) }

Many types declare a String method of this form because it controls how values of
the type appear when printed as a string by the fmt package, as we will see in
Section 7.1.

Click here to view code image

c := FToC(212.0)
fmt.Println(c.String()) // "100°C"
fmt.Printf("%v\n", c) // "100°C"; no need to call
String explicitly
fmt.Printf("%s\n", c) // "100°C"
fmt.Println(c) // "100°C"
fmt.Printf("%g\n", c) // "100"; does not call String
fmt.Println(float64(c)) // "100"; does not call String

2.6 Packages and Files
Packages in Go serve the same purposes as libraries or modules in other languages,
supporting modularity, encapsulation, separate compilation, and reuse. The source
code for a package resides in one or more .go files, usually in a directory whose
name ends with the import path; for instance, the files of the
gopl.io/ch1/helloworld package are stored in directory
$GOPATH/src/gopl.io/ch1/helloworld.

Each package serves as a separate name space for its declarations. Within the image
package, for example, the identifier Decode refers to a different function than does
the same identifier in the unicode/utf16 package. To refer to a function from
outside its package, we must qualify the identifier to make explicit whether we mean
image.Decode or utf16.Decode.

Packages also let us hide information by controlling which names are visible outside
the package, or exported. In Go, a simple rule governs which identifiers are exported
and which are not: exported identifiers start with an upper-case letter.
To illustrate the basics, suppose that our temperature conversion software has
become popular and we want to make it available to the Go community as a new
package. How do we do that?
Let’s create a package called gopl.io/ch2/tempconv, a variation on the
previous example. (Here we’ve made an exception to our usual rule of numbering
examples in sequence, so that the package path can be more realistic.) The package
itself is stored in two files to show how declarations in separate files of a package are
accessed; in real life, a tiny package like this would need only one file.
We have put the declarations of the types, their constants, and their methods in
tempconv.go:

Click here to view code image

gopl.io/ch2/tempconv
// Package tempconv performs Celsius and Fahrenheit
conversions.
package tempconv

import "fmt"

type Celsius float64
type Fahrenheit float64

const (
 AbsoluteZeroC Celsius = -273.15
 FreezingC Celsius = 0
 BoilingC Celsius = 100
)

func (c Celsius) String() string { return
fmt.Sprintf("%g°C", c) }
func (f Fahrenheit) String() string { return
fmt.Sprintf("%g°F", f) }

and the conversion functions in conv.go:

Click here to view code image

package tempconv

// CToF converts a Celsius temperature to Fahrenheit.
func CToF(c Celsius) Fahrenheit { return
Fahrenheit(c*9/5 + 32) }

// FToC converts a Fahrenheit temperature to Celsius.
func FToC(f Fahrenheit) Celsius { return Celsius((f -
32) * 5 / 9) }

Each file starts with a package declaration that defines the package name. When
the package is imported, its members are referred to as tempconv.CToF and so
on. Package-level names like the types and constants declared in one file of a package
are visible to all the other files of the package, as if the source code were all in a
single file. Note that tempconv.go imports fmt, but conv.go does not, because
it does not use anything from fmt.

Because the package-level const names begin with upper-case letters, they too are
accessible with qualified names like tempconv.AbsoluteZeroC:

Click here to view code image

fmt.Printf("Brrrr! %v\n", tempconv.AbsoluteZeroC) //
"Brrrr! -273.15°C"

To convert a Celsius temperature to Fahrenheit in a package that imports
gopl.io/ch2/tempconv, we can write the following code:

Click here to view code image

fmt.Println(tempconv.CToF(tempconv.BoilingC)) //
"212°F"

The doc comment (§10.7.4) immediately preceding the package declaration
documents the package as a whole. Conventionally, it should start with a summary
sentence in the style illustrated. Only one file in each package should have a package
doc comment. Extensive doc comments are often placed in a file of their own,
conventionally called doc.go.

Exercise 2.1: Add types, constants, and functions to tempconv for processing
temperatures in the Kelvin scale, where zero Kelvin is −273.15°C and a difference of
1K has the same magnitude as 1°C.

2.6.1 Imports

Within a Go program, every package is identified by a unique string called its import
path. These are the strings that appear in an import declaration like
"gopl.io/ch2/tempconv". The language specification doesn’t define where
these strings come from or what they mean; it’s up to the tools to interpret them.
When using the go tool (Chapter 10), an import path denotes a directory containing
one or more Go source files that together make up the package.
In addition to its import path, each package has a package name, which is the short
(and not necessarily unique) name that appears in its package declaration. By
convention, a package’s name matches the last segment of its import path, making it
easy to predict that the package name of gopl.io/ch2/tempconv is
tempconv.

To use gopl.io/ch2/tempconv, we must import it:

Click here to view code image

gopl.io/ch2/cf
// Cf converts its numeric argument to Celsius and
Fahrenheit.
package main

import (
 "fmt"
 "os"
 "strconv"

 "gopl.io/ch2/tempconv"
)

func main() {
 for _, arg := range os.Args[1:] {
 t, err := strconv.ParseFloat(arg, 64)
 if err != nil {
 fmt.Fprintf(os.Stderr, "cf: %v\n", err)
 os.Exit(1)
 }
 f := tempconv.Fahrenheit(t)
 c := tempconv.Celsius(t)
 fmt.Printf("%s = %s, %s = %s\n",
 f, tempconv.FToC(f), c, tempconv.CToF(c))
 }
}

The import declaration binds a short name to the imported package that may be used
to refer to its contents throughout the file. The import above lets us refer to names
within gopl.io/ch2/tempconv by using a qualified identifier like
tempconv.CToF. By default, the short name is the package name—tempconv in
this case—but an import declaration may specify an alternative name to avoid a
conflict (§10.3).
The cf program converts a single numeric command-line argument to its value in
both Celsius and Fahrenheit:

$ go build gopl.io/ch2/cf
$./cf 32
32°F = 0°C, 32°C = 89.6°F

$./cf 212
212°F = 100°C, 212°C = 413.6°F
$./cf -40
-40°F = -40°C, -40°C = -40°F

It is an error to import a package and then not refer to it. This check helps eliminate
dependencies that become unnecessary as the code evolves, although it can be a
nuisance during debugging, since commenting out a line of code like
log.Print("got here!") may remove the sole reference to the package
name log, causing the compiler to emit an error. In this situation, you need to
comment out or delete the unnecessary import.

Better still, use the golang.org/x/tools/cmd/goimports tool, which
automatically inserts and removes packages from the import declaration as necessary;
most editors can be configured to run goimports each time you save a file. Like
the gofmt tool, it also pretty-prints Go source files in the canonical format.

Exercise 2.2: Write a general-purpose unit-conversion program analogous to cf that
reads numbers from its command-line arguments or from the standard input if there
are no arguments, and converts each number into units like temperature in Celsius
and Fahrenheit, length in feet and meters, weight in pounds and kilograms, and the
like.

2.6.2 Package Initialization

Package initialization begins by initializing package-level variables in the order in
which they are declared, except that dependencies are resolved first:

Click here to view code image

var a = b + c // a initialized third, to 3
var b = f() // b initialized second, to 2, by
calling f
var c = 1 // c initialized first, to 1

func f() int { return c + 1 }

If the package has multiple .go files, they are initialized in the order in which the
files are given to the compiler; the go tool sorts .go files by name before invoking

the compiler.
Each variable declared at package level starts life with the value of its initializer
expression, if any, but for some variables, like tables of data, an initializer expression
may not be the simplest way to set its initial value. In that case, the init function
mechanism may be simpler. Any file may contain any number of functions whose
declaration is just

func init() { /* ... */ }

Such init functions can’t be called or referenced, but otherwise they are normal
functions. Within each file, init functions are automatically executed when the
program starts, in the order in which they are declared.
One package is initialized at a time, in the order of imports in the program,
dependencies first, so a package p importing q can be sure that q is fully initialized
before p’s initialization begins. Initialization proceeds from the bottom up; the main
package is the last to be initialized. In this manner, all packages are fully initialized
before the application’s main function begins.

The package below defines a function PopCount that returns the number of set
bits, that is, bits whose value is 1, in a uint64 value, which is called its population
count. It uses an init function to precompute a table of results, pc, for each
possible 8-bit value so that the PopCount function needn’t take 64 steps but can
just return the sum of eight table lookups. (This is definitely not the fastest algorithm
for counting bits, but it’s convenient for illustrating init functions, and for showing
how to precompute a table of values, which is often a useful programming technique.)

Click here to view code image

gopl.io/ch2/popcount
package popcount

// pc[i] is the population count of i.
var pc [256]byte

func init() {
 for i := range pc {
 pc[i] = pc[i/2] + byte(i&1)
 }
}

// PopCount returns the population count (number of
set bits) of x.
func PopCount(x uint64) int {
 return int(pc[byte(x>>(0*8))] +
 pc[byte(x>>(1*8))] +
 pc[byte(x>>(2*8))] +
 pc[byte(x>>(3*8))] +
 pc[byte(x>>(4*8))] +
 pc[byte(x>>(5*8))] +
 pc[byte(x>>(6*8))] +
 pc[byte(x>>(7*8))])
}

Note that the range loop in init uses only the index; the value is unnecessary and
thus need not be included. The loop could also have been written as

for i, _ := range pc {

We’ll see other uses of init functions in the next section and in Section 10.5.

Exercise 2.3: Rewrite PopCount to use a loop instead of a single expression.
Compare the performance of the two versions. (Section 11.4 shows how to compare
the performance of different implementations systematically.)
Exercise 2.4: Write a version of PopCount that counts bits by shifting its argument
through 64 bit positions, testing the rightmost bit each time. Compare its performance
to the table-lookup version.
Exercise 2.5: The expression x&(x-1) clears the rightmost non-zero bit of x. Write
a version of PopCount that counts bits by using this fact, and assess its
performance.

2.7 Scope
A declaration associates a name with a program entity, such as a function or a
variable. The scope of a declaration is the part of the source code where a use of the
declared name refers to that declaration.
Don’t confuse scope with lifetime. The scope of a declaration is a region of the
program text; it is a compile-time property. The lifetime of a variable is the range of
time during execution when the variable can be referred to by other parts of the
program; it is a run-time property.
A syntactic block is a sequence of statements enclosed in braces like those that
surround the body of a function or loop. A name declared inside a syntactic block is
not visible outside that block. The block encloses its declarations and determines their
scope. We can generalize this notion of blocks to include other groupings of
declarations that are not explicitly surrounded by braces in the source code; we’ll call
them all lexical blocks. There is a lexical block for the entire source code, called the
universe block; for each package; for each file; for each for, if, and switch
statement; for each case in a switch or select statement; and, of course, for
each explicit syntactic block.
A declaration’s lexical block determines its scope, which may be large or small. The
declarations of built-in types, functions, and constants like int, len, and true are
in the universe block and can be referred to throughout the entire program.
Declarations outside any function, that is, at package level, can be referred to from
any file in the same package. Imported packages, such as fmt in the tempconv
example, are declared at the file level, so they can be referred to from the same file,
but not from another file in the same package without another import. Many
declarations, like that of the variable c in the tempconv.CToF function, are local,
so they can be referred to only from within the same function or perhaps just a part
of it.
The scope of a control-flow label, as used by break, continue, and goto
statements, is the entire enclosing function.
A program may contain multiple declarations of the same name so long as each
declaration is in a different lexical block. For example, you can declare a local variable
with the same name as a package-level variable. Or, as shown in Section 2.3.3, you
can declare a function parameter called new, even though a function of this name is

predeclared in the universe block. Don’t overdo it, though; the larger the scope of the
redeclaration, the more likely you are to surprise the reader.
When the compiler encounters a reference to a name, it looks for a declaration,
starting with the innermost enclosing lexical block and working up to the universe
block. If the compiler finds no declaration, it reports an “undeclared name” error. If a
name is declared in both an outer block and an inner block, the inner declaration will
be found first. In that case, the inner declaration is said to shadow or hide the outer
one, making it inaccessible:

Click here to view code image

func f() {}

var g = "g"

func main() {
 f := "f"
 fmt.Println(f) // "f"; local var f shadows
package-level func f
 fmt.Println(g) // "g"; package-level var
 fmt.Println(h) // compile error: undefined: h
}

Within a function, lexical blocks may be nested to arbitrary depth, so one local
declaration can shadow another. Most blocks are created by control-flow constructs
like if statements and for loops. The program below has three different variables
called x because each declaration appears in a different lexical block. (This example
illustrates scope rules, not good style!)

Click here to view code image

func main() {
 x := "hello!"
 for i := 0; i < len(x); i++ {
 x := x[i]
 if x != '!' {
 x := x + 'A' - 'a'
 fmt.Printf("%c", x) // "HELLO" (one letter
per iteration)
 }

 }
}

The expressions x[i] and x + 'A' - 'a' each refer to a declaration of x from
an outer block; we’ll explain that in a moment. (Note that the latter expression is not
equivalent to unicode.ToUpper.)

As mentioned above, not all lexical blocks correspond to explicit brace-delimited
sequences of statements; some are merely implied. The for loop above creates two
lexical blocks: the explicit block for the loop body, and an implicit block that
additionally encloses the variables declared by the initialization clause, such as i. The
scope of a variable declared in the implicit block is the condition, post-statement
(i++), and body of the for statement.

The example below also has three variables named x, each declared in a different
block—one in the function body, one in the for statement’s block, and one in the
loop body—but only two of the blocks are explicit:

Click here to view code image

func main() {
 x := "hello"
 for _, x := range x {
 x := x + 'A' - 'a'
 fmt.Printf("%c", x) // "HELLO" (one letter per
iteration)
 }
}

Like for loops, if statements and switch statements also create implicit blocks in
addition to their body blocks. The code in the following if-else chain shows the
scope of x and y:

Click here to view code image

if x := f(); x == 0 {
 fmt.Println(x)
} else if y := g(x); x == y {
 fmt.Println(x, y)
} else {
 fmt.Println(x, y)
}

fmt.Println(x, y) // compile error: x and y are not
visible here

The second if statement is nested within the first, so variables declared within the
first statement’s initializer are visible within the second. Similar rules apply to each
case of a switch statement: there is a block for the condition and a block for each case
body.
At the package level, the order in which declarations appear has no effect on their
scope, so a declaration may refer to itself or to another that follows it, letting us
declare recursive or mutually recursive types and functions. The compiler will report
an error if a constant or variable declaration refers to itself, however.
In this program:

Click here to view code image

if f, err := os.Open(fname); err != nil { // compile
error: unused: f
 return err
}
f.ReadByte() // compile error: undefined f
f.Close() // compile error: undefined f

the scope of f is just the if statement, so f is not accessible to the statements that
follow, resulting in compiler errors. Depending on the compiler, you may get an
additional error reporting that the local variable f was never used.

Thus it is often necessary to declare f before the condition so that it is accessible
after:

f, err := os.Open(fname)
if err != nil {
 return err
}
f.ReadByte()
f.Close()

You may be tempted to avoid declaring f and err in the outer block by moving the
calls to ReadByte and Close inside an else block:

Click here to view code image

if f, err := os.Open(fname); err != nil {

 return err
} else {
 // f and err are visible here too
 f.ReadByte()
 f.Close()
}

but normal practice in Go is to deal with the error in the if block and then return, so
that the successful execution path is not indented.
Short variable declarations demand an awareness of scope. Consider the program
below, which starts by obtaining its current working directory and saving it in a
package-level variable. This could be done by calling os.Getwd in function main,
but it might be better to separate this concern from the primary logic, especially if
failing to get the directory is a fatal error. The function log.Fatalf prints a
message and calls os.Exit(1).

Click here to view code image

var cwd string

func init() {
 cwd, err := os.Getwd() // compile error: unused:
cwd
 if err != nil {
 log.Fatalf("os.Getwd failed: %v", err)
 }
}

Since neither cwd nor err is already declared in the init function’s block, the :=
statement declares both of them as local variables. The inner declaration of cwd
makes the outer one inaccessible, so the statement does not update the package-level
cwd variable as intended.

Current Go compilers detect that the local cwd variable is never used and report this
as an error, but they are not strictly required to perform this check. Furthermore, a
minor change, such as the addition of a logging statement that refers to the local cwd
would defeat the check.

Click here to view code image

var cwd string

func init() {
 cwd, err := os.Getwd() // NOTE: wrong!
 if err != nil {
 log.Fatalf("os.Getwd failed: %v", err)
 }
 log.Printf("Working directory = %s", cwd)
}

The global cwd variable remains uninitialized, and the apparently normal log output
obfuscates the bug.
There are a number of ways to deal with this potential problem. The most direct is to
avoid := by declaring err in a separate var declaration:

Click here to view code image

var cwd string

func init() {
 var err error
 cwd, err = os.Getwd()
 if err != nil {
 log.Fatalf("os.Getwd failed: %v", err)
 }
}

We’ve now seen how packages, files, declarations, and statements express the
structure of programs. In the next two chapters, we’ll look at the structure of data.

3. Basic Data Types
It’s all bits at the bottom, of course, but computers operate fundamentally on fixed-
size numbers called words, which are interpreted as integers, floating-point numbers,
bit sets, or memory addresses, then combined into larger aggregates that represent
packets, pixels, portfolios, poetry, and everything else. Go offers a variety of ways to
organize data, with a spectrum of data types that at one end match the features of the
hardware and at the other end provide what programmers need to conveniently
represent complicated data structures.
Go’s types fall into four categories: basic types, aggregate types, reference types, and
interface types. Basic types, the topic of this chapter, include numbers, strings, and
booleans. Aggregate types—arrays (§4.1) and structs (§4.4)—form more complicated
data types by combining values of several simpler ones. Reference types are a diverse
group that includes pointers (§2.3.2), slices (§4.2), maps (§4.3), functions
(Chapter 5), and channels (Chapter 8), but what they have in common is that they all
refer to program variables or state indirectly, so that the effect of an operation
applied to one reference is observed by all copies of that reference. Finally, we’ll talk
about interface types in Chapter 7.

3.1 Integers
Go’s numeric data types include several sizes of integers, floating-point numbers, and
complex numbers. Each numeric type determines the size and signedness of its
values. Let’s begin with integers.
Go provides both signed and unsigned integer arithmetic. There are four distinct sizes
of signed integers—8, 16, 32, and 64 bits—represented by the types int8, int16,
int32, and int64, and corresponding unsigned versions uint8, uint16,
uint32, and uint64.

There are also two types called just int and uint that are the natural or most
efficient size for signed and unsigned integers on a particular platform; int is by far
the most widely used numeric type. Both these types have the same size, either 32 or
64 bits, but one must not make assumptions about which; different compilers may
make different choices even on identical hardware.
The type rune is a synonym for int32 and conventionally indicates that a value is
a Unicode code point. The two names may be used interchangeably. Similarly, the
type byte is a synonym for uint8, and emphasizes that the value is a piece of raw
data rather than a small numeric quantity.
Finally, there is an unsigned integer type uintptr, whose width is not specified but
is sufficient to hold all the bits of a pointer value. The uintptr type is used only for
low-level programming, such as at the boundary of a Go program with a C library or
an operating system. We’ll see examples of this when we deal with the unsafe
package in Chapter 13.
Regardless of their size, int, uint, and uintptr are different types from their
explicitly sized siblings. Thus int is not the same type as int32, even if the natural
size of integers is 32 bits, and an explicit conversion is required to use an int value
where an int32 is needed, and vice versa.

Signed numbers are represented in 2’s-complement form, in which the high-order bit
is reserved for the sign of the number and the range of values of an n-bit number is
from −2n−1 to 2n−1−1. Unsigned integers use the full range of bits for non-negative
values and thus have the range 0 to 2n−1. For instance, the range of int8 is −128 to
127, whereas the range of uint8 is 0 to 255.

Go’s binary operators for arithmetic, logic, and comparison are listed here in order of
decreasing precedence:

Click here to view code image

* / % << >> & &^
+ - | ^
== != < <= > >=
&&
||

There are only five levels of precedence for binary operators. Operators at the same
level associate to the left, so parentheses may be required for clarity, or to make the
operators evaluate in the intended order in an expression like mask & (1 << 28) .

Each operator in the first two lines of the table above, for instance +, has a
corresponding assignment operator like += that may be used to abbreviate an
assignment statement.
The integer arithmetic operators +, -, *, and / may be applied to integer, floating-
point, and complex numbers, but the remainder operator % applies only to integers.
The behavior of % for negative numbers varies across programming languages. In Go,
the sign of the remainder is always the same as the sign of the dividend, so -5%3 and
-5%-3 are both -2. The behavior of / depends on whether its operands are
integers, so 5.0/4.0 is 1.25, but 5/4 is 1 because integer division truncates the
result toward zero.
If the result of an arithmetic operation, whether signed or unsigned, has more bits
than can be represented in the result type, it is said to overflow. The high-order bits
that do not fit are silently discarded. If the original number is a signed type, the result
could be negative if the leftmost bit is a 1, as in the int8 example here:

Click here to view code image

var u uint8 = 255
fmt.Println(u, u+1, u*u) // "255 0 1"

var i int8 = 127
fmt.Println(i, i+1, i*i) // "127 -128 1"

Two integers of the same type may be compared using the binary comparison
operators below; the type of a comparison expression is a boolean.

== equal to
!= not equal to
< less than
<= less than or equal to
> greater than
>= greater than or equal to

In fact, all values of basic type—booleans, numbers, and strings—are comparable,
meaning that two values of the same type may be compared using the == and !=
operators. Furthermore, integers, floating-point numbers, and strings are ordered by
the comparison operators. The values of many other types are not comparable, and
no other types are ordered. As we encounter each type, we’ll present the rules
governing the comparability of its values.
There are also unary addition and subtraction operators:
+ unary positive (no effect)
- unary negation

For integers, +x is a shorthand for 0+x and -x is a shorthand for 0-x; for floating-
point and complex numbers, +x is just x and -x is the negation of x.

Go also provides the following bitwise binary operators, the first four of which treat
their operands as bit patterns with no concept of arithmetic carry or sign:
& bitwise AND
| bitwise OR
^ bitwise XOR
&^ bit clear (AND NOT)
<< left shift
>> right shift

The operator ^ is bitwise exclusive OR (XOR) when used as a binary operator, but
when used as a unary prefix operator it is bitwise negation or complement; that is, it
returns a value with each bit in its operand inverted. The &^ operator is bit clear
(AND NOT): in the expression z = x &^ y , each bit of z is 0 if the corresponding
bit of y is 1; otherwise it equals the corresponding bit of x.

The code below shows how bitwise operations can be used to interpret a uint8
value as a compact and efficient set of 8 independent bits. It uses Printf’s %b verb

to print a number’s binary digits; 08 modifies %b (an adverb!) to pad the result with
zeros to exactly 8 digits.

Click here to view code image

var x uint8 = 1<<1 | 1<<5
var y uint8 = 1<<1 | 1<<2

fmt.Printf("%08b\n", x) // "00100010", the set {1,
5}
fmt.Printf("%08b\n", y) // "00000110", the set {1,
2}

fmt.Printf("%08b\n", x&y) // "00000010", the
intersection {1}
fmt.Printf("%08b\n", x|y) // "00100110", the union
{1, 2, 5}
fmt.Printf("%08b\n", x^y) // "00100100", the
symmetric difference {2, 5}
fmt.Printf("%08b\n", x&^y) // "00100000", the
difference {5}

for i := uint(0); i < 8; i++ {
 if x&(1<<i) != 0 { // membership test
 fmt.Println(i) // "1", "5"
 }
}

fmt.Printf("%08b\n", x<<1) // "01000100", the set {2,
6}
fmt.Printf("%08b\n", x>>1) // "00010001", the set {0,
4}

(Section 6.5 shows an implementation of integer sets that can be much bigger than a
byte.)
In the shift operations x<<n and x>>n, the n operand determines the number of bit
positions to shift and must be unsigned; the x operand may be unsigned or signed.
Arithmetically, a left shift x<<n is equivalent to multiplication by 2n and a right shift
x>>n is equivalent to the floor of division by 2n.

Left shifts fill the vacated bits with zeros, as do right shifts of unsigned numbers, but
right shifts of signed numbers fill the vacated bits with copies of the sign bit. For this
reason, it is important to use unsigned arithmetic when you’re treating an integer as a
bit pattern.
Although Go provides unsigned numbers and arithmetic, we tend to use the signed
int form even for quantities that can’t be negative, such as the length of an array,
though uint might seem a more obvious choice. Indeed, the built-in len function
returns a signed int, as in this loop which announces prize medals in reverse order:

Click here to view code image

medals := []string{"gold", "silver", "bronze"}
for i := len(medals) - 1; i >= 0; i-- {
 fmt.Println(medals[i]) // "bronze", "silver",
"gold"
}

The alternative would be calamitous. If len returned an unsigned number, then i too
would be a uint, and the condition i >= 0 would always be true by definition.
After the third iteration, in which i == 0 , the i-- statement would cause i to
become not −1, but the maximum uint value (for example, 264−1), and the
evaluation of medals[i] would fail at run time, or panic (§5.9), by attempting to
access an element outside the bounds of the slice.
For this reason, unsigned numbers tend to be used only when their bitwise operators
or peculiar arithmetic operators are required, as when implementing bit sets, parsing
binary file formats, or for hashing and cryptography. They are typically not used for
merely non-negative quantities.
In general, an explicit conversion is required to convert a value from one type to
another, and binary operators for arithmetic and logic (except shifts) must have
operands of the same type. Although this occasionally results in longer expressions, it
also eliminates a whole class of problems and makes programs easier to understand.
As an example familiar from other contexts, consider this sequence:

Click here to view code image

var apples int32 = 1
var oranges int16 = 2
var compote int = apples + oranges // compile error

Attempting to compile these three declarations produces an error message:

Click here to view code image

invalid operation: apples + oranges (mismatched types
int32 and int16)

This type mismatch can be fixed in several ways, most directly by converting
everything to a common type:

Click here to view code image

var compote = int(apples) + int(oranges)

As described in Section 2.5, for every type T, the conversion operation T(x)
converts the value x to type T if the conversion is allowed. Many integer-to-integer
conversions do not entail any change in value; they just tell the compiler how to
interpret a value. But a conversion that narrows a big integer into a smaller one, or a
conversion from integer to floating-point or vice versa, may change the value or lose
precision:

Click here to view code image

f := 3.141 // a float64
i := int(f)
fmt.Println(f, i) // "3.141 3"
f = 1.99
fmt.Println(int(f)) // "1"

Float to integer conversion discards any fractional part, truncating toward zero. You
should avoid conversions in which the operand is out of range for the target type,
because the behavior depends on the implementation:

Click here to view code image

f := 1e100 // a float64
i := int(f) // result is implementation-dependent

Integer literals of any size and type can be written as ordinary decimal numbers, or as
octal numbers if they begin with 0, as in 0666, or as hexadecimal if they begin with
0x or 0X, as in 0xdeadbeef. Hex digits may be upper or lower case. Nowadays
octal numbers seem to be used for exactly one purpose—file permissions on POSIX
systems—but hexadecimal numbers are widely used to emphasize the bit pattern of a

number over its numeric value.
When printing numbers using the fmt package, we can control the radix and format
with the %d, %o, and %x verbs, as shown in this example:

Click here to view code image

o := 0666
fmt.Printf("%d %[1]o %#[1]o\n", o) // "438 666 0666"
x := int64(0xdeadbeef)
fmt.Printf("%d %[1]x %#[1]x %#[1]X\n", x)
// Output:
// 3735928559 deadbeef 0xdeadbeef 0XDEADBEEF

Note the use of two fmt tricks. Usually a Printf format string containing multiple
% verbs would require the same number of extra operands, but the [1] “adverbs”
after % tell Printf to use the first operand over and over again. Second, the #
adverb for %o or %x or %X tells Printf to emit a 0 or 0x or 0X prefix respectively.

Rune literals are written as a character within single quotes. The simplest example is
an ASCII character like 'a', but it’s possible to write any Unicode code point either
directly or with numeric escapes, as we will see shortly.
Runes are printed with %c, or with %q if quoting is desired:

Click here to view code image

ascii := 'a'
unicode := ' '
newline := '\n'
fmt.Printf("%d %[1]c %[1]q\n", ascii) // "97 a 'a'"
fmt.Printf("%d %[1]c %[1]q\n", unicode) // "22269 '
'"
fmt.Printf("%d %[1]q\n", newline) // "10 '\n'"

3.2 Floating-Point Numbers
Go provides two sizes of floating-point numbers, float32 and float64. Their
arithmetic properties are governed by the IEEE 754 standard implemented by all
modern CPUs.
Values of these numeric types range from tiny to huge. The limits of floating-point
values can be found in the math package. The constant math.MaxFloat32, the
largest float32, is about 3.4e38, and math.MaxFloat64 is about 1.8e308.
The smallest positive values are near 1.4e-45 and 4.9e-324, respectively.

A float32 provides approximately six decimal digits of precision, whereas a
float64 provides about 15 digits; float64 should be preferred for most
purposes because float32 computations accumulate error rapidly unless one is
quite careful, and the smallest positive integer that cannot be exactly represented as a
float32 is not large:

Click here to view code image

var f float32 = 16777216 // 1 << 24
fmt.Println(f == f+1) // "true"!

Floating-point numbers can be written literally using decimals, like this:

Click here to view code image

const e = 2.71828 // (approximately)

Digits may be omitted before the decimal point (.707) or after it (1.). Very small or
very large numbers are better written in scientific notation, with the letter e or E
preceding the decimal exponent:

Click here to view code image

const Avogadro = 6.02214129e23
const Planck = 6.62606957e-34

Floating-point values are conveniently printed with Printf’s %g verb, which
chooses the most compact representation that has adequate precision, but for tables
of data, the %e (exponent) or %f (no exponent) forms may be more appropriate. All
three verbs allow field width and numeric precision to be controlled.

Click here to view code image

for x := 0; x < 8; x++ {
 fmt.Printf("x = %d ex = %8.3f\n", x,
math.Exp(float64(x)))
}

The code above prints the powers of e with three decimal digits of precision, aligned
in an eight-character field:

x = 0 ex = 1.000
x = 1 ex = 2.718
x = 2 ex = 7.389
x = 3 ex = 20.086
x = 4 ex = 54.598
x = 5 ex = 148.413
x = 6 ex = 403.429
x = 7 ex = 1096.633

In addition to a large collection of the usual mathematical functions, the math
package has functions for creating and detecting the special values defined by IEEE
754: the positive and negative infinities, which represent numbers of excessive
magnitude and the result of division by zero; and NaN (“not a number”), the result of
such mathematically dubious operations as 0/0 or Sqrt(-1).

Click here to view code image

var z float64
fmt.Println(z, -z, 1/z, -1/z, z/z) // "0 -0 +Inf -Inf
NaN"

The function math.IsNaN tests whether its argument is a not-a-number value, and
math.NaN returns such a value. It’s tempting to use NaN as a sentinel value in a
numeric computation, but testing whether a specific computational result is equal to
NaN is fraught with peril because any comparison with NaN always yields false:

Click here to view code image

nan := math.NaN()
fmt.Println(nan == nan, nan < nan, nan > nan) //

"false false false"

If a function that returns a floating-point result might fail, it’s better to report the
failure separately, like this:

Click here to view code image

func compute() (value float64, ok bool) {
 // ...
 if failed {
 return 0, false
 }
 return result, true
}

The next program illustrates floating-point graphics computation. It plots a function of
two variables z = f(x, y) as a wire mesh 3-D surface, using Scalable Vector
Graphics (SVG), a standard XML notation for line drawings. Figure 3.1 shows an
example of its output for the function sin(r)/r, where r is sqrt(x*x+y*y).

Figure 3.1. A surface plot of the function sin(r)/r.

Click here to view code image

gopl.io/ch3/surface
// Surface computes an SVG rendering of a 3-D surface
function.
package main

import (
 "fmt"
 "math"
)

const (
 width, height = 600, 320 // canvas size
in pixels
 cells = 100 // number of
grid cells
 xyrange = 30.0 // axis ranges
(-xyrange..+xyrange)
 xyscale = width / 2 / xyrange // pixels per
x or y unit
 zscale = height * 0.4 // pixels per
z unit
 angle = math.Pi / 6 // angle of x,
y axes (=30°)
)

var sin30, cos30 = math.Sin(angle), math.Cos(angle) //
sin(30°), cos(30°)

func main() {
 fmt.Printf("<svg
xmlns='http://www.w3.org/2000/svg' "+
 "style='stroke: grey; fill: white; stroke-
width: 0.7' "+
 "width='%d' height='%d'>", width, height)
 for i := 0; i < cells; i++ {
 for j := 0; j < cells; j++ {
 ax, ay := corner(i+1, j)
 bx, by := corner(i, j)
 cx, cy := corner(i, j+1)

 dx, dy := corner(i+1, j+1)
 fmt.Printf("<polygon points='%g,%g %g,%g
%g,%g %g,%g'/>\n",
 ax, ay, bx, by, cx, cy, dx, dy)
 }
 }
 fmt.Println("</svg>")
}

func corner(i, j int) (float64, float64) {
 // Find point (x,y) at corner of cell (i,j).
 x := xyrange * (float64(i)/cells - 0.5)
 y := xyrange * (float64(j)/cells - 0.5)

 // Compute surface height z.
 z := f(x, y)

 // Project (x,y,z) isometrically onto 2-D SVG
canvas (sx,sy).
 sx := width/2 + (x-y)*cos30*xyscale
 sy := height/2 + (x+y)*sin30*xyscale - z*zscale
 return sx, sy
}

func f(x, y float64) float64 {
 r := math.Hypot(x, y) // distance from (0,0)
 return math.Sin(r) / r
}

Notice that the function corner returns two values, the coordinates of the corner of
the cell.
The explanation of how the program works requires only basic geometry, but it’s fine
to skip over it, since the point is to illustrate floating-point computation. The essence
of the program is mapping between three different coordinate systems, shown in
Figure 3.2. The first is a 2-D grid of 100×100 cells identified by integer coordinates
(i, j), starting at (0, 0) in the far back corner. We plot from the back to the front so
that background polygons may be obscured by foreground ones.

Figure 3.2. Three different coordinate systems.

The second coordinate system is a mesh of 3-D floating-point coordinates (x, y, z),
where x and y are linear functions of i and j, translated so that the origin is in the
center, and scaled by the constant xyrange. The height z is the value of the surface
function f (x, y).
The third coordinate system is the 2-D image canvas, with (0, 0) in the top left
corner. Points in this plane are denoted (sx, sy). We use an isometric projection to
map each 3-D point (x, y, z) onto the 2-D canvas. A point appears farther to the right
on the canvas the greater its x value or the smaller its y value. And a point appears
farther down the canvas the greater its x value or y value, and the smaller its z value.
The vertical and horizontal scale factors for x and y are derived from the sine and
cosine of a 30° angle. The scale factor for z, 0.4, is an arbitrary parameter.
For each cell in the 2-D grid, the main function computes the coordinates on the
image canvas of the four corners of the polygon ABCD, where B corresponds to (i, j)
and A, C, and D are its neighbors, then prints an SVG instruction to draw it.
Exercise 3.1: If the function f returns a non-finite float64 value, the SVG file will
contain invalid <polygon> elements (although many SVG renderers handle this
gracefully). Modify the program to skip invalid polygons.
Exercise 3.2: Experiment with visualizations of other functions from the math
package. Can you produce an egg box, moguls, or a saddle?
Exercise 3.3: Color each polygon based on its height, so that the peaks are colored
red (#ff0000) and the valleys blue (#0000ff).

Exercise 3.4: Following the approach of the Lissajous example in Section 1.7,
construct a web server that computes surfaces and writes SVG data to the client. The

server must set the Content-Type header like this:

Click here to view code image

w.Header().Set("Content-Type", "image/svg+xml")

(This step was not required in the Lissajous example because the server uses standard
heuristics to recognize common formats like PNG from the first 512 bytes of the
response, and generates the proper header.) Allow the client to specify values like
height, width, and color as HTTP request parameters.

3.3 Complex Numbers
Go provides two sizes of complex numbers, complex64 and complex128,
whose components are float32 and float64 respectively. The built-in function
complex creates a complex number from its real and imaginary components, and
the built-in real and imag functions extract those components:

Click here to view code image

var x complex128 = complex(1, 2) // 1+2i
var y complex128 = complex(3, 4) // 3+4i
fmt.Println(x*y) // "(-5+10i)"
fmt.Println(real(x*y)) // "-5"
fmt.Println(imag(x*y)) // "10"

If a floating-point literal or decimal integer literal is immediately followed by i, such
as 3.141592i or 2i, it becomes an imaginary literal, denoting a complex number
with a zero real component:

Click here to view code image

fmt.Println(1i * 1i) // "(-1+0i)", i² = -1

Under the rules for constant arithmetic, complex constants can be added to other
numeric constants (integer or floating point, real or imaginary), allowing us to write
complex numbers naturally, like 1+2i or, equivalently, 2i+1. The declarations of x
and y above can be simplified:

x := 1 + 2i
y := 3 + 4i

Complex numbers may be compared for equality with == and !=. Two complex
numbers are equal if their real parts are equal and their imaginary parts are equal.
The math/cmplx package provides library functions for working with complex
numbers, such as the complex square root and exponentiation functions.

Click here to view code image

fmt.Println(cmplx.Sqrt(-1)) // "(0+1i)"

The following program uses complex128 arithmetic to generate a Mandelbrot set.

Click here to view code image

gopl.io/ch3/mandelbrot
// Mandelbrot emits a PNG image of the Mandelbrot
fractal.
package main

import (
 "image"
 "image/color"
 "image/png"
 "math/cmplx"
 "os"
)

func main() {
 const (
 xmin, ymin, xmax, ymax = -2, -2, +2, +2
 width, height = 1024, 1024
)

 img := image.NewRGBA(image.Rect(0, 0, width,
height))
 for py := 0; py < height; py++ {
 y := float64(py)/height*(ymax-ymin) + ymin
 for px := 0; px < width; px++ {
 x := float64(px)/width*(xmax-xmin) + xmin
 z := complex(x, y)
 // Image point (px, py) represents complex
value z.
 img.Set(px, py, mandelbrot(z))
 }
 }
 png.Encode(os.Stdout, img) // NOTE: ignoring
errors
}

func mandelbrot(z complex128) color.Color {
 const iterations = 200

 const contrast = 15

 var v complex128
 for n := uint8(0); n < iterations; n++ {
 v = v*v + z
 if cmplx.Abs(v) > 2 {
 return color.Gray{255 - contrast*n}
 }
 }
 return color.Black
}

The two nested loops iterate over each point in a 1024×1024 grayscale raster image
representing the −2 to +2 portion of the complex plane. The program tests whether
repeatedly squaring and adding the number that point represents eventually “escapes”
the circle of radius 2. If so, the point is shaded by the number of iterations it took to
escape. If not, the value belongs to the Mandelbrot set, and the point remains black.
Finally, the program writes to its standard output the PNG-encoded image of the
iconic fractal, shown in Figure 3.3.
Exercise 3.5: Implement a full-color Mandelbrot set using the function
image.NewRGBA and the type color.RGBA or color.YCbCr.

Exercise 3.6: Supersampling is a technique to reduce the effect of pixelation by
computing the color value at several points within each pixel and taking the average.
The simplest method is to divide each pixel into four “subpixels.” Implement it.
Exercise 3.7: Another simple fractal uses Newton’s method to find complex solutions
to a function such as z4−1 = 0. Shade each starting point by the number of iterations
required to get close to one of the four roots. Color each point by the root it
approaches.

Figure 3.3. The Mandelbrot set.

Exercise 3.8: Rendering fractals at high zoom levels demands great arithmetic
precision. Implement the same fractal using four different representations of numbers:
complex64, complex128, big.Float, and big.Rat. (The latter two types
are found in the math/big package. Float uses arbitrary but bounded-precision
floating-point; Rat uses unbounded-precision rational numbers.) How do they
compare in performance and memory usage? At what zoom levels do rendering
artifacts become visible?
Exercise 3.9: Write a web server that renders fractals and writes the image data to the
client. Allow the client to specify the x, y, and zoom values as parameters to the
HTTP request.

3.4 Booleans
A value of type bool, or boolean, has only two possible values, true and false.
The conditions in if and for statements are booleans, and comparison operators
like == and < produce a boolean result. The unary operator ! is logical negation, so
!true is false, or, one might say, (!true==false)==true, although as a
matter of style, we always simplify redundant boolean expressions like x==true to
x.

Boolean values can be combined with the && (AND) and || (OR) operators, which
have short-circuit behavior: if the answer is already determined by the value of the
left operand, the right operand is not evaluated, making it safe to write expressions
like this:

s != "" && s[0] == 'x'

where s[0] would panic if applied to an empty string.

Since && has higher precedence than || (mnemonic: && is boolean multiplication,
|| is boolean addition), no parentheses are required for conditions of this form:

Click here to view code image

if 'a' <= c && c <= 'z' ||
 'A' <= c && c <= 'Z' ||
 '0' <= c && c <= '9' {
 // ...ASCII letter or digit...
}

There is no implicit conversion from a boolean value to a numeric value like 0 or 1,
or vice versa. It’s necessary to use an explicit if, as in

i := 0
if b {
 i = 1
}

It might be worth writing a conversion function if this operation were needed often:

Click here to view code image

// btoi returns 1 if b is true and 0 if false.

func btoi(b bool) int {
 if b {
 return 1
 }
 return 0
}

The inverse operation is so simple that it doesn’t warrant a function, but for
symmetry here it is:

Click here to view code image

// itob reports whether i is non-zero.
func itob(i int) bool { return i != 0 }

3.5 Strings
A string is an immutable sequence of bytes. Strings may contain arbitrary data,
including bytes with value 0, but usually they contain human-readable text. Text
strings are conventionally interpreted as UTF-8-encoded sequences of Unicode code
points (runes), which we’ll explore in detail very soon.
The built-in len function returns the number of bytes (not runes) in a string, and the
index operation s[i] retrieves the i-th byte of string s, where 0 ≤ i < len(s).

Click here to view code image

s := "hello, world"
fmt.Println(len(s)) // "12"
fmt.Println(s[0], s[7]) // "104 119" ('h' and 'w')

Attempting to access a byte outside this range results in a panic:

Click here to view code image

c := s[len(s)] // panic: index out of range

The i-th byte of a string is not necessarily the i-th character of a string, because the
UTF-8 encoding of a non-ASCII code point requires two or more bytes. Working
with characters is discussed shortly.
The substring operation s[i:j] yields a new string consisting of the bytes of the
original string starting at index i and continuing up to, but not including, the byte at
index j. The result contains j-i bytes.

fmt.Println(s[0:5]) // "hello"

Again, a panic results if either index is out of bounds or if j is less than i.

Either or both of the i and j operands may be omitted, in which case the default
values of 0 (the start of the string) and len(s) (its end) are assumed, respectively.

Click here to view code image

fmt.Println(s[:5]) // "hello"
fmt.Println(s[7:]) // "world"
fmt.Println(s[:]) // "hello, world"

The + operator makes a new string by concatenating two strings:

Click here to view code image

fmt.Println("goodbye" + s[5:]) // "goodbye, world"

Strings may be compared with comparison operators like == and <; the comparison is
done byte by byte, so the result is the natural lexicographic ordering.
String values are immutable: the byte sequence contained in a string value can never
be changed, though of course we can assign a new value to a string variable. To
append one string to another, for instance, we can write

s := "left foot"
t := s
s += ", right foot"

This does not modify the string that s originally held but causes s to hold the new
string formed by the += statement; meanwhile, t still contains the old string.

Click here to view code image

fmt.Println(s) // "left foot, right foot"
fmt.Println(t) // "left foot"

Since strings are immutable, constructions that try to modify a string’s data in place
are not allowed:

Click here to view code image

s[0] = 'L' // compile error: cannot assign to s[0]

Immutability means that it is safe for two copies of a string to share the same
underlying memory, making it cheap to copy strings of any length. Similarly, a string
s and a substring like s[7:] may safely share the same data, so the substring
operation is also cheap. No new memory is allocated in either case. Figure 3.4
illustrates the arrangement of a string and two of its substrings sharing the same
underlying byte array.

Figure 3.4. The string "hello, world" and two substrings.

3.5.1 String Literals

A string value can be written as a string literal, a sequence of bytes enclosed in
double quotes:

"Hello, "

Because Go source files are always encoded in UTF-8 and Go text strings are
conventionally interpreted as UTF-8, we can include Unicode code points in string
literals.
Within a double-quoted string literal, escape sequences that begin with a backslash \
can be used to insert arbitrary byte values into the string. One set of escapes handles
ASCII control codes like newline, carriage return, and tab:
\a “alert” or bell
\b backspace
\f form feed
\n newline
\r carriage return
\t tab
\v vertical tab
\' single quote (only in the rune literal '\'')
\" double quote (only within "..." literals)
\\ backslash

Arbitrary bytes can also be included in literal strings using hexadecimal or octal

escapes. A hexadecimal escape is written \xhh, with exactly two hexadecimal digits
h (in upper or lower case). An octal escape is written \ooo with exactly three octal
digits o (0 through 7) not exceeding \377. Both denote a single byte with the
specified value. Later, we’ll see how to encode Unicode code points numerically in
string literals.
A raw string literal is written `...`, using backquotes instead of double quotes.
Within a raw string literal, no escape sequences are processed; the contents are taken
literally, including backslashes and newlines, so a raw string literal may spread over
several lines in the program source. The only processing is that carriage returns are
deleted so that the value of the string is the same on all platforms, including those that
conventionally put carriage returns in text files.
Raw string literals are a convenient way to write regular expressions, which tend to
have lots of backslashes. They are also useful for HTML templates, JSON literals,
command usage messages, and the like, which often extend over multiple lines.

Click here to view code image

const GoUsage = `Go is a tool for managing Go source
code.

Usage:
 go command [arguments]
...`

3.5.2 Unicode

Long ago, life was simple and there was, at least in a parochial view, only one
character set to deal with: ASCII, the American Standard Code for Information
Interchange. ASCII, or more precisely US-ASCII, uses 7 bits to represent 128
“characters”: the upper- and lower-case letters of English, digits, and a variety of
punctuation and device-control characters. For much of the early days of computing,
this was adequate, but it left a very large fraction of the world’s population unable to
use their own writing systems in computers. With the growth of the Internet, data in
myriad languages has become much more common. How can this rich variety be
dealt with at all and, if possible, efficiently?

The answer is Unicode (unicode.org), which collects all of the characters in all
of the world’s writing systems, plus accents and other diacritical marks, control codes
like tab and carriage return, and plenty of esoterica, and assigns each one a standard
number called a Unicode code point or, in Go terminology, a rune.
Unicode version 8 defines code points for over 120,000 characters in well over 100
languages and scripts. How are these represented in computer programs and data?
The natural data type to hold a single rune is int32, and that’s what Go uses; it has
the synonym rune for precisely this purpose.

We could represent a sequence of runes as a sequence of int32 values. In this
representation, which is called UTF-32 or UCS-4, the encoding of each Unicode code
point has the same size, 32 bits. This is simple and uniform, but it uses much more
space than necessary since most computer-readable text is in ASCII, which requires
only 8 bits or 1 byte per character. All the characters in widespread use still number
fewer than 65,536, which would fit in 16 bits. Can we do better?

3.5.3 UTF-8

UTF-8 is a variable-length encoding of Unicode code points as bytes. UTF-8 was
invented by Ken Thompson and Rob Pike, two of the creators of Go, and is now a
Unicode standard. It uses between 1 and 4 bytes to represent each rune, but only 1
byte for ASCII characters, and only 2 or 3 bytes for most runes in common use. The
high-order bits of the first byte of the encoding for a rune indicate how many bytes
follow. A high-order 0 indicates 7-bit ASCII, where each rune takes only 1 byte, so it
is identical to conventional ASCII. A high-order 110 indicates that the rune takes 2
bytes; the second byte begins with 10. Larger runes have analogous encodings.

View table image

0xxxxxx runes 0–127
110xxxxx 10xxxxxx 128–2047
1110xxxx 10xxxxxx 10xxxxxx 2048–65535
11110xxx 10xxxxxx 10xxxxxx 10xxxxxx 65536–0x10ffff

A variable-length encoding precludes direct indexing to access the n-th character of a
string, but UTF-8 has many desirable properties to compensate. The encoding is
compact, compatible with ASCII, and self-synchronizing: it’s possible to find the

beginning of a character by backing up no more than three bytes. It’s also a prefix
code, so it can be decoded from left to right without any ambiguity or lookahead. No
rune’s encoding is a substring of any other, or even of a sequence of others, so you
can search for a rune by just searching for its bytes, without worrying about the
preceding context. The lexicographic byte order equals the Unicode code point order,
so sorting UTF-8 works naturally. There are no embedded NUL (zero) bytes, which
is convenient for programming languages that use NUL to terminate strings.
Go source files are always encoded in UTF-8, and UTF-8 is the preferred encoding
for text strings manipulated by Go programs. The unicode package provides
functions for working with individual runes (such as distinguishing letters from
numbers, or converting an upper-case letter to a lower-case one), and the
unicode/utf8 package provides functions for encoding and decoding runes as
bytes using UTF-8.
Many Unicode characters are hard to type on a keyboard or to distinguish visually
from similar-looking ones; some are even invisible. Unicode escapes in Go string
literals allow us to specify them by their numeric code point value. There are two
forms, \uhhhh for a 16-bit value and \Uhhhhhhhh for a 32-bit value, where each h
is a hexadecimal digit; the need for the 32-bit form arises very infrequently. Each
denotes the UTF-8 encoding of the specified code point. Thus, for example, the
following string literals all represent the same six-byte string:

" "
"\xe4\xb8\x96\xe7\x95\x8c"
"\u4e16\u754c"
"\U00004e16\U0000754c"

The three escape sequences above provide alternative notations for the first string,
but the values they denote are identical.
Unicode escapes may also be used in rune literals. These three literals are equivalent:

' ' '\u4e16' '\U00004e16'

A rune whose value is less than 256 may be written with a single hexadecimal escape,
such as '\x41' for 'A', but for higher values, a \u or \U escape must be used.
Consequently, '\xe4\xb8\x96' is not a legal rune literal, even though those three
bytes are a valid UTF-8 encoding of a single code point.
Thanks to the nice properties of UTF-8, many string operations don’t require
decoding. We can test whether one string contains another as a prefix:

Click here to view code image

func HasPrefix(s, prefix string) bool {
 return len(s) >= len(prefix) && s[:len(prefix)] ==
prefix
}

or as a suffix:

Click here to view code image

func HasSuffix(s, suffix string) bool {
 return len(s) >= len(suffix) && s[len(s)-
len(suffix):] == suffix
}

or as a substring:

Click here to view code image

func Contains(s, substr string) bool {
 for i := 0; i < len(s); i++ {
 if HasPrefix(s[i:], substr) {
 return true
 }
 }
 return false
}

using the same logic for UTF-8-encoded text as for raw bytes. This is not true for
other encodings. (The functions above are drawn from the strings package,
though its implementation of Contains uses a hashing technique to search more
efficiently.)
On the other hand, if we really care about the individual Unicode characters, we have
to use other mechanisms. Consider the string from our very first example, which
includes two East Asian characters. Figure 3.5 illustrates its representation in memory.
The string contains 13 bytes, but interpreted as UTF-8, it encodes only nine code
points or runes:

Figure 3.5. A range loop decodes a UTF-8-encoded string.

Click here to view code image

import "unicode/utf8"

s := "Hello, "
fmt.Println(len(s)) // "13"
fmt.Println(utf8.RuneCountInString(s)) // "9"

To process those characters, we need a UTF-8 decoder. The unicode/utf8
package provides one that we can use like this:

Click here to view code image

for i := 0; i < len(s); {
 r, size := utf8.DecodeRuneInString(s[i:])
 fmt.Printf("%d\t%c\n", i, r)
 i += size
}

Each call to DecodeRuneInString returns r, the rune itself, and size, the
number of bytes occupied by the UTF-8 encoding of r. The size is used to update
the byte index i of the next rune in the string. But this is clumsy, and we need loops
of this kind all the time. Fortunately, Go’s range loop, when applied to a string,

performs UTF-8 decoding implicitly. The output of the loop below is also shown in
Figure 3.5; notice how the index jumps by more than 1 for each non-ASCII rune.

Click here to view code image

for i, r := range "Hello, " {
 fmt.Printf("%d\t%q\t%d\n", i, r, r)
}

We could use a simple range loop to count the number of runes in a string, like this:
n := 0
for _, _ = range s {
 n++
}

As with the other forms of range loop, we can omit the variables we don’t need:
n := 0
for range s {
 n++
}

Or we can just call utf8.RuneCountInString(s).

We mentioned earlier that it is mostly a matter of convention in Go that text strings
are interpreted as UTF-8-encoded sequences of Unicode code points, but for correct
use of range loops on strings, it’s more than a convention, it’s a necessity. What
happens if we range over a string containing arbitrary binary data or, for that matter,
UTF-8 data containing errors?
Each time a UTF-8 decoder, whether explicit in a call to
utf8.DecodeRuneInString or implicit in a range loop, consumes an
unexpected input byte, it generates a special Unicode replacement character,
'\uFFFD', which is usually printed as a white question mark inside a black
hexagonal or diamond-like shape . When a program encounters this rune value, it’s
often a sign that some upstream part of the system that generated the string data has
been careless in its treatment of text encodings.
UTF-8 is exceptionally convenient as an interchange format but within a program
runes may be more convenient because they are of uniform size and are thus easily
indexed in arrays and slices.
A []rune conversion applied to a UTF-8-encoded string returns the sequence of

Unicode code points that the string encodes:

Click here to view code image

// "program" in Japanese katakana
s := " "
fmt.Printf("% x\n", s) // "e3 83 97 e3 83 ad e3 82 b0
e3 83 a9 e3 83 a0"
r := []rune(s)
fmt.Printf("%x\n", r) // "[30d7 30ed 30b0 30e9 30e0]"

(The verb % x in the first Printf inserts a space between each pair of hex digits.)

If a slice of runes is converted to a string, it produces the concatenation of the UTF-8
encodings of each rune:

Click here to view code image

fmt.Println(string(r)) // " "

Converting an integer value to a string interprets the integer as a rune value, and
yields the UTF-8 representation of that rune:

Click here to view code image

fmt.Println(string(65)) // "A", not "65"
fmt.Println(string(0x4eac)) // " "

If the rune is invalid, the replacement character is substituted:

Click here to view code image

fmt.Println(string(1234567)) // " "

3.5.4 Strings and Byte Slices

Four standard packages are particularly important for manipulating strings: bytes,
strings, strconv, and unicode. The strings package provides many
functions for searching, replacing, comparing, trimming, splitting, and joining strings.
The bytes package has similar functions for manipulating slices of bytes, of type
[]byte, which share some properties with strings. Because strings are immutable,

building up strings incrementally can involve a lot of allocation and copying. In such
cases, it’s more efficient to use the bytes.Buffer type, which we’ll show in a
moment.
The strconv package provides functions for converting boolean, integer, and
floating-point values to and from their string representations, and functions for
quoting and unquoting strings.
The unicode package provides functions like IsDigit, IsLetter, IsUpper,
and IsLower for classifying runes. Each function takes a single rune argument and
returns a boolean. Conversion functions like ToUpper and ToLower convert a
rune into the given case if it is a letter. All these functions use the Unicode standard
categories for letters, digits, and so on. The strings package has similar functions,
also called ToUpper and ToLower, that return a new string with the specified
transformation applied to each character of the original string.
The basename function below was inspired by the Unix shell utility of the same
name. In our version, basename(s) removes any prefix of s that looks like a file
system path with components separated by slashes, and it removes any suffix that
looks like a file type:

Click here to view code image

fmt.Println(basename("a/b/c.go")) // "c"
fmt.Println(basename("c.d.go")) // "c.d"
fmt.Println(basename("abc")) // "abc"

The first version of basename does all the work without the help of libraries:

Click here to view code image

gopl.io/ch3/basename1
// basename removes directory components and a
.suffix.
// e.g., a => a, a.go => a, a/b/c.go => c, a/b.c.go =>
b.c
func basename(s string) string {
 // Discard last '/' and everything before.
 for i := len(s) - 1; i >= 0; i-- {
 if s[i] == '/' {
 s = s[i+1:]

 break
 }
 }
 // Preserve everything before last '.'.
 for i := len(s) - 1; i >= 0; i-- {
 if s[i] == '.' {
 s = s[:i]
 break
 }
 }
 return s
}

A simpler version uses the strings.LastIndex library function:

Click here to view code image

gopl.io/ch3/basename2
func basename(s string) string {
 slash := strings.LastIndex(s, "/") // -1 if "/"
not found
 s = s[slash+1:]
 if dot := strings.LastIndex(s, "."); dot >= 0 {
 s = s[:dot]
 }
 return s
}

The path and path/filepath packages provide a more general set of functions
for manipulating hierarchical names. The path package works with slash-delimited
paths on any platform. It shouldn’t be used for file names, but it is appropriate for
other domains, like the path component of a URL. By contrast, path/filepath
manipulates file names using the rules for the host platform, such as /foo/bar for
POSIX or c:\foo\bar on Microsoft Windows.

Let’s continue with another substring example. The task is to take a string
representation of an integer, such as "12345", and insert commas every three
places, as in "12,345". This version only works for integers; handling floating-
point numbers is left as a exercise.

Click here to view code image

gopl.io/ch3/comma
// comma inserts commas in a non-negative decimal
integer string.
func comma(s string) string {
 n := len(s)
 if n <= 3 {
 return s
 }
 return comma(s[:n-3]) + "," + s[n-3:]
}

The argument to comma is a string. If its length is less than or equal to 3, no comma
is necessary. Otherwise, comma calls itself recursively with a substring consisting of
all but the last three characters, and appends a comma and the last three characters to
the result of the recursive call.
A string contains an array of bytes that, once created, is immutable. By contrast, the
elements of a byte slice can be freely modified.
Strings can be converted to byte slices and back again:

s := "abc"
b := []byte(s)
s2 := string(b)

Conceptually, the []byte(s) conversion allocates a new byte array holding a copy
of the bytes of s, and yields a slice that references the entirety of that array. An
optimizing compiler may be able to avoid the allocation and copying in some cases,
but in general copying is required to ensure that the bytes of s remain unchanged
even if those of b are subsequently modified. The conversion from byte slice back to
string with string(b) also makes a copy, to ensure immutability of the resulting
string s2.

To avoid conversions and unnecessary memory allocation, many of the utility
functions in the bytes package directly parallel their counterparts in the strings
package. For example, here are half a dozen functions from strings:

Click here to view code image

func Contains(s, substr string) bool
func Count(s, sep string) int
func Fields(s string) []string

func HasPrefix(s, prefix string) bool
func Index(s, sep string) int
func Join(a []string, sep string) string

and the corresponding ones from bytes:

Click here to view code image

func Contains(b, subslice []byte) bool
func Count(s, sep []byte) int
func Fields(s []byte) [][]byte
func HasPrefix(s, prefix []byte) bool
func Index(s, sep []byte) int
func Join(s [][]byte, sep []byte) []byte

The only difference is that strings have been replaced by byte slices.
The bytes package provides the Buffer type for efficient manipulation of byte
slices. A Buffer starts out empty but grows as data of types like string, byte,
and []byte are written to it. As the example below shows, a bytes.Buffer
variable requires no initialization because its zero value is usable:

Click here to view code image

gopl.io/ch3/printints
// intsToString is like fmt.Sprint(values) but adds
commas.
func intsToString(values []int) string {
 var buf bytes.Buffer
 buf.WriteByte('[')
 for i, v := range values {
 if i > 0 {
 buf.WriteString(", ")
 }
 fmt.Fprintf(&buf, "%d", v)
 }
 buf.WriteByte(']')
 return buf.String()
}

func main() {

 fmt.Println(intsToString([]int{1, 2, 3})) // "[1,
2, 3]"
}

When appending the UTF-8 encoding of an arbitrary rune to a bytes.Buffer, it’s
best to use bytes.Buffer’s WriteRune method, but WriteByte is fine for
ASCII characters such as '[' and ']'.

The bytes.Buffer type is extremely versatile, and when we discuss interfaces in
Chapter 7, we’ll see how it may be used as a replacement for a file whenever an I/O
function requires a sink for bytes (io.Writer) as Fprintf does above, or a
source of bytes (io.Reader).

Exercise 3.10: Write a non-recursive version of comma, using bytes.Buffer
instead of string concatenation.
Exercise 3.11: Enhance comma so that it deals correctly with floating-point numbers
and an optional sign.
Exercise 3.12: Write a function that reports whether two strings are anagrams of each
other, that is, they contain the same letters in a different order.

3.5.5 Conversions between Strings and Numbers

In addition to conversions between strings, runes, and bytes, it’s often necessary to
convert between numeric values and their string representations. This is done with
functions from the strconv package.

To convert an integer to a string, one option is to use fmt.Sprintf; another is to
use the function strconv.Itoa (“integer to ASCII”):

Click here to view code image

x := 123
y := fmt.Sprintf("%d", x)
fmt.Println(y, strconv.Itoa(x)) // "123 123"

FormatInt and FormatUint can be used to format numbers in a different base:

Click here to view code image

fmt.Println(strconv.FormatInt(int64(x), 2)) //
"1111011"

The fmt.Printf verbs %b, %d, %u, and %x are often more convenient than
Format functions, especially if we want to include additional information besides the
number:

Click here to view code image

s := fmt.Sprintf("x=%b", x) // "x=1111011"

To parse a string representing an integer, use the strconv functions Atoi or
ParseInt, or ParseUint for unsigned integers:

Click here to view code image

x, err := strconv.Atoi("123") // x is an
int
y, err := strconv.ParseInt("123", 10, 64) // base 10,
up to 64 bits

The third argument of ParseInt gives the size of the integer type that the result
must fit into; for example, 16 implies int16, and the special value of 0 implies int.
In any case, the type of the result y is always int64, which you can then convert to
a smaller type.
Sometimes fmt.Scanf is useful for parsing input that consists of orderly mixtures
of strings and numbers all on a single line, but it can be inflexible, especially when
handling incomplete or irregular input.

3.6 Constants
Constants are expressions whose value is known to the compiler and whose
evaluation is guaranteed to occur at compile time, not at run time. The underlying
type of every constant is a basic type: boolean, string, or number.
A const declaration defines named values that look syntactically like variables but
whose value is constant, which prevents accidental (or nefarious) changes during
program execution. For instance, a constant is more appropriate than a variable for a
mathematical constant like pi, since its value won’t change:

Click here to view code image

const pi = 3.14159 // approximately; math.Pi is a
better approximation

As with variables, a sequence of constants can appear in one declaration; this would
be appropriate for a group of related values:

Click here to view code image

const (
 e =
2.71828182845904523536028747135266249775724709369995957496696763

 pi =
3.14159265358979323846264338327950288419716939937510582097494459

)

Many computations on constants can be completely evaluated at compile time,
reducing the work necessary at run time and enabling other compiler optimizations.
Errors ordinarily detected at run time can be reported at compile time when their
operands are constants, such as integer division by zero, string indexing out of
bounds, and any floating-point operation that would result in a non-finite value.
The results of all arithmetic, logical, and comparison operations applied to constant
operands are themselves constants, as are the results of conversions and calls to
certain built-in functions such as len, cap, real, imag, complex, and
unsafe.Sizeof (§13.1).

Since their values are known to the compiler, constant expressions may appear in
types, specifically as the length of an array type:

Click here to view code image

const IPv4Len = 4

// parseIPv4 parses an IPv4 address (d.d.d.d).
func parseIPv4(s string) IP {
 var p [IPv4Len]byte
 // ...
}

A constant declaration may specify a type as well as a value, but in the absence of an
explicit type, the type is inferred from the expression on the right-hand side. In the
following, time.Duration is a named type whose underlying type is int64, and
time.Minute is a constant of that type. Both of the constants declared below thus
have the type time.Duration as well, as revealed by %T:

Click here to view code image

const noDelay time.Duration = 0
const timeout = 5 * time.Minute
fmt.Printf("%T %[1]v\n", noDelay) //
"time.Duration 0"
fmt.Printf("%T %[1]v\n", timeout) //
"time.Duration 5m0s"
fmt.Printf("%T %[1]v\n", time.Minute) //
"time.Duration 1m0s"

When a sequence of constants is declared as a group, the right-hand side expression
may be omitted for all but the first of the group, implying that the previous expression
and its type should be used again. For example:

Click here to view code image

const (
 a = 1
 b
 c = 2
 d
)

fmt.Println(a, b, c, d) // "1 1 2 2"

This is not very useful if the implicitly copied right-hand side expression always
evaluates to the same thing. But what if it could vary? This brings us to iota.

3.6.1 The Constant Generator iota

A const declaration may use the constant generator iota, which is used to create
a sequence of related values without spelling out each one explicitly. In a const
declaration, the value of iota begins at zero and increments by one for each item in
the sequence.
Here’s an example from the time package, which defines named constants of type
Weekday for the days of the week, starting with zero for Sunday. Types of this
kind are often called enumerations, or enums for short.

type Weekday int

const (
 Sunday Weekday = iota
 Monday
 Tuesday
 Wednesday
 Thursday
 Friday
 Saturday
)

This declares Sunday to be 0, Monday to be 1, and so on.

We can use iota in more complex expressions too, as in this example from the net
package where each of the lowest 5 bits of an unsigned integer is given a distinct
name and boolean interpretation:

Click here to view code image

type Flags uint

const (

 FlagUp Flags = 1 << iota // is up
 FlagBroadcast // supports broadcast
access capability
 FlagLoopback // is a loopback
interface
 FlagPointToPoint // belongs to a point-to-
point link
 FlagMulticast // supports multicast
access capability
)

As iota increments, each constant is assigned the value of 1 << iota , which
evaluates to successive powers of two, each corresponding to a single bit. We can use
these constants within functions that test, set, or clear one or more of these bits:

Click here to view code image

gopl.io/ch3/netflag
func IsUp(v Flags) bool { return v&FlagUp ==
FlagUp }
func TurnDown(v *Flags) { *v &^= FlagUp }
func SetBroadcast(v *Flags) { *v |= FlagBroadcast }
func IsCast(v Flags) bool { return v&
(FlagBroadcast|FlagMulticast) != 0 }

func main() {
 var v Flags = FlagMulticast | FlagUp
 fmt.Printf("%b %t\n", v, IsUp(v)) // "10001 true"
 TurnDown(&v)
 fmt.Printf("%b %t\n", v, IsUp(v)) // "10000 false"
 SetBroadcast(&v)
 fmt.Printf("%b %t\n", v, IsUp(v)) // "10010
false"
 fmt.Printf("%b %t\n", v, IsCast(v)) // "10010
true"
}

As a more complex example of iota, this declaration names the powers of 1024:

Click here to view code image

const (
 _ = 1 << (10 * iota)
 KiB // 1024
 MiB // 1048576
 GiB // 1073741824
 TiB // 1099511627776 (exceeds 1 <<
32)
 PiB // 1125899906842624
 EiB // 1152921504606846976
 ZiB // 1180591620717411303424 (exceeds 1 <<
64)
 YiB // 1208925819614629174706176
)

The iota mechanism has its limits. For example, it’s not possible to generate the
more familiar powers of 1000 (KB, MB, and so on) because there is no
exponentiation operator.
Exercise 3.13: Write const declarations for KB, MB, up through YB as compactly
as you can.

3.6.2 Untyped Constants

Constants in Go are a bit unusual. Although a constant can have any of the basic data
types like int or float64, including named basic types like time.Duration,
many constants are not committed to a particular type. The compiler represents these
uncommitted constants with much greater numeric precision than values of basic
types, and arithmetic on them is more precise than machine arithmetic; you may
assume at least 256 bits of precision. There are six flavors of these uncommitted
constants, called untyped boolean, untyped integer, untyped rune, untyped floating-
point, untyped complex, and untyped string.
By deferring this commitment, untyped constants not only retain their higher precision
until later, but they can participate in many more expressions than committed
constants without requiring conversions. For example, the values ZiB and YiB in the
example above are too big to store in any integer variable, but they are legitimate
constants that may be used in expressions like this one:

fmt.Println(YiB/ZiB) // "1024"

As another example, the floating-point constant math.Pi may be used wherever
any floating-point or complex value is needed:

var x float32 = math.Pi
var y float64 = math.Pi
var z complex128 = math.Pi

If math.Pi had been committed to a specific type such as float64, the result
would not be as precise, and type conversions would be required to use it when a
float32 or complex128 value is wanted:

Click here to view code image

const Pi64 float64 = math.Pi

var x float32 = float32(Pi64)
var y float64 = Pi64
var z complex128 = complex128(Pi64)

For literals, syntax determines flavor. The literals 0, 0.0, 0i, and '\u0000' all
denote constants of the same value but different flavors: untyped integer, untyped
floating-point, untyped complex, and untyped rune, respectively. Similarly, true and
false are untyped booleans and string literals are untyped strings.

Recall that / may represent integer or floating-point division depending on its
operands. Consequently, the choice of literal may affect the result of a constant
division expression:

Click here to view code image

var f float64 = 212
fmt.Println((f - 32) * 5 / 9) // "100"; (f - 32) *
5 is a float64
fmt.Println(5 / 9 * (f - 32)) // "0"; 5/9 is an
untyped integer, 0
fmt.Println(5.0 / 9.0 * (f - 32)) // "100"; 5.0/9.0 is
an untyped float

Only constants can be untyped. When an untyped constant is assigned to a variable,
as in the first statement below, or appears on the right-hand side of a variable
declaration with an explicit type, as in the other three statements, the constant is
implicitly converted to the type of that variable if possible.

Click here to view code image

var f float64 = 3 + 0i // untyped complex -> float64
f = 2 // untyped integer -> float64
f = 1e123 // untyped floating-point ->
float64
f = 'a' // untyped rune -> float64

The statements above are thus equivalent to these:
var f float64 = float64(3 + 0i)
f = float64(2)
f = float64(1e123)
f = float64('a')

Whether implicit or explicit, converting a constant from one type to another requires
that the target type can represent the original value. Rounding is allowed for real and
complex floating-point numbers:

Click here to view code image

const (
 deadbeef = 0xdeadbeef // untyped int with value
3735928559
 a = uint32(deadbeef) // uint32 with value
3735928559
 b = float32(deadbeef) // float32 with value
3735928576 (rounded up)
 c = float64(deadbeef) // float64 with value
3735928559 (exact)
 d = int32(deadbeef) // compile error: constant
overflows int32
 e = float64(1e309) // compile error: constant
overflows float64
 f = uint(-1) // compile error: constant
underflows uint
)

In a variable declaration without an explicit type (including short variable
declarations), the flavor of the untyped constant implicitly determines the default type
of the variable, as in these examples:

Click here to view code image

i := 0 // untyped integer; implicit int(0)
r := '\000' // untyped rune; implicit
rune('\000')
f := 0.0 // untyped floating-point; implicit
float64(0.0)
c := 0i // untyped complex; implicit
complex128(0i)

Note the asymmetry: untyped integers are converted to int, whose size is not
guaranteed, but untyped floating-point and complex numbers are converted to the
explicitly sized types float64 and complex128. The language has no unsized
float and complex types analogous to unsized int, because it is very difficult to
write correct numerical algorithms without knowing the size of one’s floating-point
data types.
To give the variable a different type, we must explicitly convert the untyped constant
to the desired type or state the desired type in the variable declaration, as in these
examples:

var i = int8(0)
var i int8 = 0

These defaults are particularly important when converting an untyped constant to an
interface value (see Chapter 7) since they determine its dynamic type.

Click here to view code image

fmt.Printf("%T\n", 0) // "int"
fmt.Printf("%T\n", 0.0) // "float64"
fmt.Printf("%T\n", 0i) // "complex128"
fmt.Printf("%T\n", '\000') // "int32" (rune)

We’ve now covered the basic data types of Go. The next step is to show how they
can be combined into larger groupings like arrays and structs, and then into data
structures for solving real programming problems; that is the topic of Chapter 4.

4. Composite Types
In Chapter 3 we discussed the basic types that serve as building blocks for data
structures in a Go program; they are the atoms of our universe. In this chapter, we’ll
take a look at composite types, the molecules created by combining the basic types in
various ways. We’ll talk about four such types—arrays, slices, maps, and structs—
and at the end of the chapter, we’ll show how structured data using these types can
be encoded as and parsed from JSON data and used to generate HTML from
templates.
Arrays and structs are aggregate types; their values are concatenations of other
values in memory. Arrays are homogeneous—their elements all have the same type—
whereas structs are heterogeneous. Both arrays and structs are fixed size. In contrast,
slices and maps are dynamic data structures that grow as values are added.

4.1 Arrays
An array is a fixed-length sequence of zero or more elements of a particular type.
Because of their fixed length, arrays are rarely used directly in Go. Slices, which can
grow and shrink, are much more versatile, but to understand slices we must
understand arrays first.
Individual array elements are accessed with the conventional subscript notation,
where subscripts run from zero to one less than the array length. The built-in function
len returns the number of elements in the array.

Click here to view code image

var a [3]int // array of 3 integers
fmt.Println(a[0]) // print the first element
fmt.Println(a[len(a)-1]) // print the last element,
a[2]

// Print the indices and elements.
for i, v := range a {
 fmt.Printf("%d %d\n", i, v)
}

// Print the elements only.
for _, v := range a {
 fmt.Printf("%d\n", v)
}

By default, the elements of a new array variable are initially set to the zero value for
the element type, which is 0 for numbers. We can use an array literal to initialize an
array with a list of values:

Click here to view code image

var q [3]int = [3]int{1, 2, 3}
var r [3]int = [3]int{1, 2}
fmt.Println(r[2]) // "0"

In an array literal, if an ellipsis “...” appears in place of the length, the array length
is determined by the number of initializers. The definition of q can be simplified to

q := [...]int{1, 2, 3}
fmt.Printf("%T\n", q) // "[3]int"

The size of an array is part of its type, so [3]int and [4]int are different types.
The size must be a constant expression, that is, an expression whose value can be
computed as the program is being compiled.

Click here to view code image

q := [3]int{1, 2, 3}
q = [4]int{1, 2, 3, 4} // compile error: cannot assign
[4]int to [3]int

As we’ll see, the literal syntax is similar for arrays, slices, maps, and structs. The
specific form above is a list of values in order, but it is also possible to specify a list of
index and value pairs, like this:

Click here to view code image

type Currency int

const (
 USD Currency = iota
 EUR
 GBP
 RMB
)

symbol := [...]string{USD: "$", EUR: "€", GBP: "£",
RMB: "¥"}

fmt.Println(RMB, symbol[RMB]) // "3 ¥"

In this form, indices can appear in any order and some may be omitted; as before,
unspecified values take on the zero value for the element type. For instance,

r := [...]int{99: -1}

defines an array r with 100 elements, all zero except for the last, which has value −1.

If an array’s element type is comparable then the array type is comparable too, so we
may directly compare two arrays of that type using the == operator, which reports
whether all corresponding elements are equal. The != operator is its negation.

Click here to view code image

a := [2]int{1, 2}
b := [...]int{1, 2}
c := [2]int{1, 3}
fmt.Println(a == b, a == c, b == c) // "true false
false"
d := [3]int{1, 2}
fmt.Println(a == d) // compile error: cannot compare
[2]int == [3]int

As a more plausible example, the function Sum256 in the crypto/sha256
package produces the SHA256 cryptographic hash or digest of a message stored in an
arbitrary byte slice. The digest has 256 bits, so its type is [32]byte. If two digests
are the same, it is extremely likely that the two messages are the same; if the digests
differ, the two messages are different. This program prints and compares the SHA256
digests of "x" and "X":

Click here to view code image

gopl.io/ch4/sha256
import "crypto/sha256"

func main() {
 c1 := sha256.Sum256([]byte("x"))
 c2 := sha256.Sum256([]byte("X"))
 fmt.Printf("%x\n%x\n%t\n%T\n", c1, c2, c1 == c2,
c1)
 // Output:
 //
2d711642b726b04401627ca9fbac32f5c8530fb1903cc4db02258717921a4881

 //
4b68ab3847feda7d6c62c1fbcbeebfa35eab7351ed5e78f4ddadea5df64b8015

 // false
 // [32]uint8
}

The two inputs differ by only a single bit, but approximately half the bits are different

in the digests. Notice the Printf verbs: %x to print all the elements of an array or
slice of bytes in hexadecimal, %t to show a boolean, and %T to display the type of a
value.
When a function is called, a copy of each argument value is assigned to the
corresponding parameter variable, so the function receives a copy, not the original.
Passing large arrays in this way can be inefficient, and any changes that the function
makes to array elements affect only the copy, not the original. In this regard, Go
treats arrays like any other type, but this behavior is different from languages that
implicitly pass arrays by reference.
Of course, we can explicitly pass a pointer to an array so that any modifications the
function makes to array elements will be visible to the caller. This function zeroes the
contents of a [32]byte array:

func zero(ptr *[32]byte) {
 for i := range ptr {
 ptr[i] = 0
 }
}

The array literal [32]byte{} yields an array of 32 bytes. Each element of the
array has the zero value for byte, which is zero. We can use that fact to write a
different version of zero:

func zero(ptr *[32]byte) {
 *ptr = [32]byte{}
}

Using a pointer to an array is efficient and allows the called function to mutate the
caller’s variable, but arrays are still inherently inflexible because of their fixed size.
The zero function will not accept a pointer to a [16]byte variable, for example,
nor is there any way to add or remove array elements. For these reasons, other than
special cases like SHA256’s fixed-size hash, arrays are seldom used as function
parameters; instead, we use slices.
Exercise 4.1: Write a function that counts the number of bits that are different in two
SHA256 hashes. (See PopCount from Section 2.6.2.)

Exercise 4.2: Write a program that prints the SHA256 hash of its standard input by
default but supports a command-line flag to print the SHA384 or SHA512 hash
instead.

4.2 Slices
Slices represent variable-length sequences whose elements all have the same type. A
slice type is written []T, where the elements have type T; it looks like an array type
without a size.
Arrays and slices are intimately connected. A slice is a lightweight data structure that
gives access to a subsequence (or perhaps all) of the elements of an array, which is
known as the slice’s underlying array. A slice has three components: a pointer, a
length, and a capacity. The pointer points to the first element of the array that is
reachable through the slice, which is not necessarily the array’s first element. The
length is the number of slice elements; it can’t exceed the capacity, which is usually
the number of elements between the start of the slice and the end of the underlying
array. The built-in functions len and cap return those values.

Figure 4.1. Two overlapping slices of an array of months.

Multiple slices can share the same underlying array and may refer to overlapping parts
of that array. Figure 4.1 shows an array of strings for the months of the year, and two
overlapping slices of it. The array is declared as

Click here to view code image

months := [...]string{1: "January", /* ... */, 12:
"December"}

so January is months[1] and December is months[12]. Ordinarily, the array

element at index 0 would contain the first value, but because months are always
numbered from 1, we can leave it out of the declaration and it will be initialized to an
empty string.
The slice operator s[i:j], where 0 ≤ i ≤ j ≤ cap(s), creates a new slice that
refers to elements i through j-1 of the sequence s, which may be an array variable,
a pointer to an array, or another slice. The resulting slice has j-i elements. If i is
omitted, it’s 0, and if j is omitted, it’s len(s). Thus the slice months[1:13]
refers to the whole range of valid months, as does the slice months[1:]; the slice
months[:] refers to the whole array. Let’s define overlapping slices for the second
quarter and the northern summer:

Click here to view code image

Q2 := months[4:7]
summer := months[6:9]
fmt.Println(Q2) // ["April" "May" "June"]
fmt.Println(summer) // ["June" "July" "August"]

June is included in each and is the sole output of this (inefficient) test for common
elements:

Click here to view code image

for _, s := range summer {
 for _, q := range Q2 {
 if s == q {
 fmt.Printf("%s appears in both\n", s)
 }
 }
}

Slicing beyond cap(s) causes a panic, but slicing beyond len(s) extends the
slice, so the result may be longer than the original:

Click here to view code image

fmt.Println(summer[:20]) // panic: out of range

endlessSummer := summer[:5] // extend a slice (within
capacity)
fmt.Println(endlessSummer) // "[June July August

September October]"

As an aside, note the similarity of the substring operation on strings to the slice
operator on []byte slices. Both are written x[m:n], and both return a
subsequence of the original bytes, sharing the underlying representation so that both
operations take constant time. The expression x[m:n] yields a string if x is a string,
or a []byte if x is a []byte.

Since a slice contains a pointer to an element of an array, passing a slice to a function
permits the function to modify the underlying array elements. In other words, copying
a slice creates an alias (§2.3.2) for the underlying array. The function reverse
reverses the elements of an []int slice in place, and it may be applied to slices of
any length.

Click here to view code image

gopl.io/ch4/rev
// reverse reverses a slice of ints in place.
func reverse(s []int) {
 for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 {
 s[i], s[j] = s[j], s[i]
 }
}

Here we reverse the whole array a:

Click here to view code image

a := [...]int{0, 1, 2, 3, 4, 5}
reverse(a[:])
fmt.Println(a) // "[5 4 3 2 1 0]"

A simple way to rotate a slice left by n elements is to apply the reverse function
three times, first to the leading n elements, then to the remaining elements, and finally
to the whole slice. (To rotate to the right, make the third call first.)

Click here to view code image

s := []int{0, 1, 2, 3, 4, 5}
// Rotate s left by two positions.
reverse(s[:2])
reverse(s[2:])

reverse(s)
fmt.Println(s) // "[2 3 4 5 0 1]"

Notice how the expression that initializes the slice s differs from that for the array a.
A slice literal looks like an array literal, a sequence of values separated by commas
and surrounded by braces, but the size is not given. This implicitly creates an array
variable of the right size and yields a slice that points to it. As with array literals, slice
literals may specify the values in order, or give their indices explicitly, or use a mix of
the two styles.
Unlike arrays, slices are not comparable, so we cannot use == to test whether two
slices contain the same elements. The standard library provides the highly optimized
bytes.Equal function for comparing two slices of bytes ([]byte), but for other
types of slice, we must do the comparison ourselves:

Click here to view code image

func equal(x, y []string) bool {
 if len(x) != len(y) {
 return false
 }
 for i := range x {
 if x[i] != y[i] {
 return false
 }
 }
 return true
}

Given how natural this “deep” equality test is, and that it is no more costly at run time
than the == operator for arrays of strings, it may be puzzling that slice comparisons
do not also work this way. There are two reasons why deep equivalence is
problematic. First, unlike array elements, the elements of a slice are indirect, making it
possible for a slice to contain itself. Although there are ways to deal with such cases,
none is simple, efficient, and most importantly, obvious.
Second, because slice elements are indirect, a fixed slice value may contain different
elements at different times as the contents of the underlying array are modified.
Because a hash table such as Go’s map type makes only shallow copies of its keys, it
requires that equality for each key remain the same throughout the lifetime of the
hash table. Deep equivalence would thus make slices unsuitable for use as map keys.

For reference types like pointers and channels, the == operator tests reference
identity, that is, whether the two entities refer to the same thing. An analogous
“shallow” equality test for slices could be useful, and it would solve the problem with
maps, but the inconsistent treatment of slices and arrays by the == operator would be
confusing. The safest choice is to disallow slice comparisons altogether.
The only legal slice comparison is against nil, as in

if summer == nil { /* ... */ }

The zero value of a slice type is nil. A nil slice has no underlying array. The nil slice
has length and capacity zero, but there are also non-nil slices of length and capacity
zero, such as []int{} or make([]int, 3)[3:]. As with any type that can
have nil values, the nil value of a particular slice type can be written using a
conversion expression such as []int(nil).

Click here to view code image

var s []int // len(s) == 0, s == nil
s = nil // len(s) == 0, s == nil
s = []int(nil) // len(s) == 0, s == nil
s = []int{} // len(s) == 0, s != nil

So, if you need to test whether a slice is empty, use len(s) == 0 , not s ==
nil. Other than comparing equal to nil, a nil slice behaves like any other zero-
length slice; reverse(nil) is perfectly safe, for example. Unless clearly
documented to the contrary, Go functions should treat all zero-length slices the same
way, whether nil or non-nil.
The built-in function make creates a slice of a specified element type, length, and
capacity. The capacity argument may be omitted, in which case the capacity equals
the length.

Click here to view code image

make([]T, len)
make([]T, len, cap) // same as make([]T, cap)[:len]

Under the hood, make creates an unnamed array variable and returns a slice of it; the
array is accessible only through the returned slice. In the first form, the slice is a view
of the entire array. In the second, the slice is a view of only the array’s first len
elements, but its capacity includes the entire array. The additional elements are set

aside for future growth.

4.2.1 The append Function

The built-in append function appends items to slices:

Click here to view code image

var runes []rune
for _, r := range "Hello, " {
 runes = append(runes, r)
}
fmt.Printf("%q\n", runes) // "['H' 'e' 'l' 'l' 'o' ','
' ' ' ' ' ']"

The loop uses append to build the slice of nine runes encoded by the string literal,
although this specific problem is more conveniently solved by using the built-in
conversion []rune("Hello, ").

The append function is crucial to understanding how slices work, so let’s take a
look at what is going on. Here’s a version called appendInt that is specialized for
[]int slices:

Click here to view code image

gopl.io/ch4/append
func appendInt(x []int, y int) []int {
 var z []int
 zlen := len(x) + 1
 if zlen <= cap(x) {
 // There is room to grow. Extend the slice.
 z = x[:zlen]
 } else {
 // There is insufficient space. Allocate a
new array.
 // Grow by doubling, for amortized linear
complexity.
 zcap := zlen
 if zcap < 2*len(x) {

 zcap = 2 * len(x)
 }
 z = make([]int, zlen, zcap)
 copy(z, x) // a built-in function; see text
 }
 z[len(x)] = y
 return z
}

Each call to appendInt must check whether the slice has sufficient capacity to
hold the new elements in the existing array. If so, it extends the slice by defining a
larger slice (still within the original array), copies the element y into the new space,
and returns the slice. The input x and the result z share the same underlying array.

If there is insufficient space for growth, appendInt must allocate a new array big
enough to hold the result, copy the values from x into it, then append the new
element y. The result z now refers to a different underlying array than the array that
x refers to.

It would be straightforward to copy the elements with explicit loops, but it’s easier to
use the built-in function copy, which copies elements from one slice to another of
the same type. Its first argument is the destination and its second is the source,
resembling the order of operands in an assignment like dst = src . The slices may
refer to the same underlying array; they may even overlap. Although we don’t use it
here, copy returns the number of elements actually copied, which is the smaller of
the two slice lengths, so there is no danger of running off the end or overwriting
something out of range.
For efficiency, the new array is usually somewhat larger than the minimum needed to
hold x and y. Expanding the array by doubling its size at each expansion avoids an
excessive number of allocations and ensures that appending a single element takes
constant time on average. This program demonstrates the effect:

Click here to view code image

func main() {
 var x, y []int
 for i := 0; i < 10; i++ {
 y = appendInt(x, i)
 fmt.Printf("%d cap=%d\t%v\n", i, cap(y), y)
 x = y

 }
}

Each change in capacity indicates an allocation and a copy:
0 cap=1 [0]
1 cap=2 [0 1]
2 cap=4 [0 1 2]
3 cap=4 [0 1 2 3]
4 cap=8 [0 1 2 3 4]
5 cap=8 [0 1 2 3 4 5]
6 cap=8 [0 1 2 3 4 5 6]
7 cap=8 [0 1 2 3 4 5 6 7]
8 cap=16 [0 1 2 3 4 5 6 7 8]
9 cap=16 [0 1 2 3 4 5 6 7 8 9]

Let’s take a closer look at the i=3 iteration. The slice x contains the three elements
[0 1 2] but has capacity 4, so there is a single element of slack at the end, and
appendInt of the element 3 may proceed without reallocating. The resulting slice
y has length and capacity 4, and has the same underlying array as the original slice x,
as Figure 4.2 shows.

Figure 4.2. Appending with room to grow.

On the next iteration, i=4, there is no slack at all, so appendInt allocates a new
array of size 8, copies the four elements [0 1 2 3] of x, and appends 4, the value
of i. The resulting slice y has a length of 5 but a capacity of 8; the slack of 3 will
save the next three iterations from the need to reallocate. The slices y and x are
views of different arrays. This operation is depicted in Figure 4.3.

Figure 4.3. Appending without room to grow.

The built-in append function may use a more sophisticated growth strategy than
appendInt’s simplistic one. Usually we don’t know whether a given call to
append will cause a reallocation, so we can’t assume that the original slice refers to
the same array as the resulting slice, nor that it refers to a different one. Similarly, we
must not assume that assignments to elements of the old slice will (or will not) be
reflected in the new slice. Consequently, it’s usual to assign the result of a call to
append to the same slice variable whose value we passed to append:

runes = append(runes, r)

Updating the slice variable is required not just when calling append, but for any
function that may change the length or capacity of a slice or make it refer to a
different underlying array. To use slices correctly, it’s important to bear in mind that
although the elements of the underlying array are indirect, the slice’s pointer, length,
and capacity are not. To update them requires an assignment like the one above. In
this respect, slices are not “pure” reference types but resemble an aggregate type such
as this struct:

type IntSlice struct {
 ptr *int
 len, cap int
}

Our appendInt function adds a single element to a slice, but the built-in append
lets us add more than one new element, or even a whole slice of them.

Click here to view code image

var x []int
x = append(x, 1)
x = append(x, 2, 3)
x = append(x, 4, 5, 6)
x = append(x, x...) // append the slice x
fmt.Println(x) // "[1 2 3 4 5 6 1 2 3 4 5 6]"

With the small modification shown below, we can match the behavior of the built-in
append. The ellipsis “...” in the declaration of appendInt makes the function
variadic: it accepts any number of final arguments. The corresponding ellipsis in the
call above to append shows how to supply a list of arguments from a slice. We’ll
explain this mechanism in detail in Section 5.7.

Click here to view code image

func appendInt(x []int, y ...int) []int {
 var z []int
 zlen := len(x) + len(y)
 // ...expand z to at least zlen...
 copy(z[len(x):], y)
 return z
}

The logic to expand z’s underlying array remains unchanged and is not shown.

4.2.2 In-Place Slice Techniques

Let’s see more examples of functions that, like rotate and reverse, modify the
elements of a slice in place. Given a list of strings, the nonempty function returns
the non-empty ones:

Click here to view code image

gopl.io/ch4/nonempty
// Nonempty is an example of an in-place slice
algorithm.
package main

import "fmt"

// nonempty returns a slice holding only the non-empty
strings.
// The underlying array is modified during the call.
func nonempty(strings []string) []string {
 i := 0
 for _, s := range strings {
 if s != "" {
 strings[i] = s
 i++
 }
 }
 return strings[:i]
}

The subtle part is that the input slice and the output slice share the same underlying
array. This avoids the need to allocate another array, though of course the contents of
data are partly overwritten, as evidenced by the second print statement:

Click here to view code image

data := []string{"one", "", "three"}
fmt.Printf("%q\n", nonempty(data)) // `["one"
"three"]`
fmt.Printf("%q\n", data) // `["one" "three"
"three"]`

Thus we would usually write: data = nonempty(data) .

The nonempty function can also be written using append:

Click here to view code image

func nonempty2(strings []string) []string {
 out := strings[:0] // zero-length slice of
original
 for _, s := range strings {
 if s != "" {
 out = append(out, s)
 }
 }
 return out

}

Whichever variant we use, reusing an array in this way requires that at most one
output value is produced for each input value, which is true of many algorithms that
filter out elements of a sequence or combine adjacent ones. Such intricate slice usage
is the exception, not the rule, but it can be clear, efficient, and useful on occasion.
A slice can be used to implement a stack. Given an initially empty slice stack, we
can push a new value onto the end of the slice with append:

Click here to view code image

stack = append(stack, v) // push v

The top of the stack is the last element:

Click here to view code image

top := stack[len(stack)-1] // top of stack

and shrinking the stack by popping that element is

Click here to view code image

stack = stack[:len(stack)-1] // pop

To remove an element from the middle of a slice, preserving the order of the
remaining elements, use copy to slide the higher-numbered elements down by one to
fill the gap:

Click here to view code image

func remove(slice []int, i int) []int {
 copy(slice[i:], slice[i+1:])
 return slice[:len(slice)-1]
}

func main() {
 s := []int{5, 6, 7, 8, 9}
 fmt.Println(remove(s, 2)) // "[5 6 8 9]"
}

And if we don’t need to preserve the order, we can just move the last element into
the gap:

Click here to view code image

func remove(slice []int, i int) []int {
 slice[i] = slice[len(slice)-1]
 return slice[:len(slice)-1]
}

func main() {
 s := []int{5, 6, 7, 8, 9}
 fmt.Println(remove(s, 2)) // "[5 6 9 8]
}

Exercise 4.3: Rewrite reverse to use an array pointer instead of a slice.

Exercise 4.4: Write a version of rotate that operates in a single pass.

Exercise 4.5: Write an in-place function to eliminate adjacent duplicates in a
[]string slice.

Exercise 4.6: Write an in-place function that squashes each run of adjacent Unicode
spaces (see unicode.IsSpace) in a UTF-8-encoded []byte slice into a single
ASCII space.
Exercise 4.7: Modify reverse to reverse the characters of a []byte slice that
represents a UTF-8-encoded string, in place. Can you do it without allocating new
memory?

4.3 Maps
The hash table is one of the most ingenious and versatile of all data structures. It is an
unordered collection of key/value pairs in which all the keys are distinct, and the
value associated with a given key can be retrieved, updated, or removed using a
constant number of key comparisons on the average, no matter how large the hash
table.
In Go, a map is a reference to a hash table, and a map type is written map[K]V,
where K and V are the types of its keys and values. All of the keys in a given map are
of the same type, and all of the values are of the same type, but the keys need not be
of the same type as the values. The key type K must be comparable using ==, so that
the map can test whether a given key is equal to one already within it. Though
floating-point numbers are comparable, it’s a bad idea to compare floats for equality
and, as we mentioned in Chapter 3, especially bad if NaN is a possible value. There
are no restrictions on the value type V.

The built-in function make can be used to create a map:

Click here to view code image

ages := make(map[string]int) // mapping from strings
to ints

We can also use a map literal to create a new map populated with some initial
key/value pairs:

ages := map[string]int{
 "alice": 31,
 "charlie": 34,
}

This is equivalent to
ages := make(map[string]int)
ages["alice"] = 31
ages["charlie"] = 34

so an alternative expression for a new empty map is map[string]int{}.

Map elements are accessed through the usual subscript notation:

Click here to view code image

ages["alice"] = 32
fmt.Println(ages["alice"]) // "32"

and removed with the built-in function delete:

Click here to view code image

delete(ages, "alice") // remove element ages["alice"]

All of these operations are safe even if the element isn’t in the map; a map lookup
using a key that isn’t present returns the zero value for its type, so, for instance, the
following works even when "bob" is not yet a key in the map because the value of
ages["bob"] will be 0.

Click here to view code image

ages["bob"] = ages["bob"] + 1 // happy birthday!

The shorthand assignment forms x += y and x++ also work for map elements, so
we can rewrite the statement above as

ages["bob"] += 1

or even more concisely as
ages["bob"]++

But a map element is not a variable, and we cannot take its address:

Click here to view code image

_ = &ages["bob"] // compile error: cannot take address
of map element

One reason that we can’t take the address of a map element is that growing a map
might cause rehashing of existing elements into new storage locations, thus potentially
invalidating the address.
To enumerate all the key/value pairs in the map, we use a range-based for loop
similar to those we saw for slices. Successive iterations of the loop cause the name
and age variables to be set to the next key/value pair:

Click here to view code image

for name, age := range ages {

 fmt.Printf("%s\t%d\n", name, age)
}

The order of map iteration is unspecified, and different implementations might use a
different hash function, leading to a different ordering. In practice, the order is
random, varying from one execution to the next. This is intentional; making the
sequence vary helps force programs to be robust across implementations. To
enumerate the key/value pairs in order, we must sort the keys explicitly, for instance,
using the Strings function from the sort package if the keys are strings. This is a
common pattern:

Click here to view code image

import "sort"

var names []string
for name := range ages {
 names = append(names, name)
}
sort.Strings(names)
for _, name := range names {
 fmt.Printf("%s\t%d\n", name, ages[name])
}

Since we know the final size of names from the outset, it is more efficient to allocate
an array of the required size up front. The statement below creates a slice that is
initially empty but has sufficient capacity to hold all the keys of the ages map:

Click here to view code image

names := make([]string, 0, len(ages))

In the first range loop above, we require only the keys of the ages map, so we
omit the second loop variable. In the second loop, we require only the elements of the
names slice, so we use the blank identifier _ to ignore the first variable, the index.

The zero value for a map type is nil, that is, a reference to no hash table at all.

Click here to view code image

var ages map[string]int
fmt.Println(ages == nil) // "true"
fmt.Println(len(ages) == 0) // "true"

Most operations on maps, including lookup, delete, len, and range loops, are
safe to perform on a nil map reference, since it behaves like an empty map. But
storing to a nil map causes a panic:

Click here to view code image

ages["carol"] = 21 // panic: assignment to entry in
nil map

You must allocate the map before you can store into it.
Accessing a map element by subscripting always yields a value. If the key is present
in the map, you get the corresponding value; if not, you get the zero value for the
element type, as we saw with ages["bob"]. For many purposes that’s fine, but
sometimes you need to know whether the element was really there or not. For
example, if the element type is numeric, you might have to distinguish between a
nonexistent element and an element that happens to have the value zero, using a test
like this:

Click here to view code image

age, ok := ages["bob"]
if !ok { /* "bob" is not a key in this map; age == 0.
*/ }

You’ll often see these two statements combined, like this:
if age, ok := ages["bob"]; !ok { /* ... */ }

Subscripting a map in this context yields two values; the second is a boolean that
reports whether the element was present. The boolean variable is often called ok,
especially if it is immediately used in an if condition.

As with slices, maps cannot be compared to each other; the only legal comparison is
with nil. To test whether two maps contain the same keys and the same associated
values, we must write a loop:

Click here to view code image

func equal(x, y map[string]int) bool {
 if len(x) != len(y) {
 return false
 }
 for k, xv := range x {

 if yv, ok := y[k]; !ok || yv != xv {
 return false
 }
 }
 return true
}

Observe how we use !ok to distinguish the “missing” and “present but zero” cases.
Had we naïvely written xv != y[k] , the call below would incorrectly report its
arguments as equal:

Click here to view code image

// True if equal is written incorrectly.
equal(map[string]int{"A": 0}, map[string]int{"B": 42})

Go does not provide a set type, but since the keys of a map are distinct, a map can
serve this purpose. To illustrate, the program dedup reads a sequence of lines and
prints only the first occurrence of each distinct line. (It’s a variant of the dup
program that we showed in Section 1.3.) The dedup program uses a map whose
keys represent the set of lines that have already appeared to ensure that subsequent
occurrences are not printed.

Click here to view code image

gopl.io/ch4/dedup
func main() {
 seen := make(map[string]bool) // a set of strings
 input := bufio.NewScanner(os.Stdin)
 for input.Scan() {
 line := input.Text()
 if !seen[line] {
 seen[line] = true
 fmt.Println(line)
 }
 }

 if err := input.Err(); err != nil {
 fmt.Fprintf(os.Stderr, "dedup: %v\n", err)
 os.Exit(1)

 }
}

Go programmers often describe a map used in this fashion as a “set of strings”
without further ado, but beware, not all map[string]bool values are simple sets;
some may contain both true and false values.

Sometimes we need a map or set whose keys are slices, but because a map’s keys
must be comparable, this cannot be expressed directly. However, it can be done in
two steps. First we define a helper function k that maps each key to a string, with the
property that k(x) == k(y) if and only if we consider x and y equivalent. Then
we create a map whose keys are strings, applying the helper function to each key
before we access the map.
The example below uses a map to record the number of times Add has been called
with a given list of strings. It uses fmt.Sprintf to convert a slice of strings into a
single string that is a suitable map key, quoting each slice element with %q to record
string boundaries faithfully:

Click here to view code image

var m = make(map[string]int)

func k(list []string) string { return
fmt.Sprintf("%q", list) }

func Add(list []string) { m[k(list)]++ }
func Count(list []string) int { return m[k(list)] }

The same approach can be used for any non-comparable key type, not just slices. It’s
even useful for comparable key types when you want a definition of equality other
than ==, such as case-insensitive comparisons for strings. And the type of k(x)
needn’t be a string; any comparable type with the desired equivalence property will
do, such as integers, arrays, or structs.
Here’s another example of maps in action, a program that counts the occurrences of
each distinct Unicode code point in its input. Since there are a large number of
possible characters, only a small fraction of which would appear in any particular
document, a map is a natural way to keep track of just the ones that have been seen
and their corresponding counts.

Click here to view code image

gopl.io/ch4/charcount
// Charcount computes counts of Unicode characters.
package main

import (
 "bufio"
 "fmt"
 "io"
 "os"
 "unicode"
 "unicode/utf8"
)

func main() {
 counts := make(map[rune]int) // counts of
Unicode characters
 var utflen [utf8.UTFMax + 1]int // count of
lengths of UTF-8 encodings
 invalid := 0 // count of
invalid UTF-8 characters

 in := bufio.NewReader(os.Stdin)
 for {
 r, n, err := in.ReadRune() // returns rune,
nbytes, error
 if err == io.EOF {
 break
 }
 if err != nil {
 fmt.Fprintf(os.Stderr, "charcount: %v\n",
err)
 os.Exit(1)
 }
 if r == unicode.ReplacementChar && n == 1 {
 invalid++
 continue
 }
 counts[r]++
 utflen[n]++

 }
 fmt.Printf("rune\tcount\n")
 for c, n := range counts {
 fmt.Printf("%q\t%d\n", c, n)
 }
 fmt.Print("\nlen\tcount\n")
 for i, n := range utflen {
 if i > 0 {
 fmt.Printf("%d\t%d\n", i, n)
 }
 }
 if invalid > 0 {
 fmt.Printf("\n%d invalid UTF-8 characters\n",
invalid)
 }
}

The ReadRune method performs UTF-8 decoding and returns three values: the
decoded rune, the length in bytes of its UTF-8 encoding, and an error value. The only
error we expect is end-of-file. If the input was not a legal UTF-8 encoding of a rune,
the returned rune is unicode.ReplacementChar and the length is 1.

The charcount program also prints a count of the lengths of the UTF-8 encodings
of the runes that appeared in the input. A map is not the best data structure for that;
since encoding lengths range only from 1 to utf8.UTFMax (which has the value 4),
an array is more compact.
As an experiment, we ran charcount on this book itself at one point. Although it’s
mostly in English, of course, it does have a fair number of non-ASCII characters.
Here are the top ten:

Click here to view code image

° 27 15 14 é 13 x 10 ≤ 5 × 5 4
 4 3

and here is the distribution of the lengths of all the UTF-8 encodings:
len count
1 765391
2 60
3 70

4 0

The value type of a map can itself be a composite type, such as a map or slice. In the
following code, the key type of graph is string and the value type is
map[string]bool, representing a set of strings. Conceptually, graph maps a
string to a set of related strings, its successors in a directed graph.

Click here to view code image

gopl.io/ch4/graph
var graph = make(map[string]map[string]bool)

func addEdge(from, to string) {
 edges := graph[from]
 if edges == nil {
 edges = make(map[string]bool)
 graph[from] = edges
 }
 edges[to] = true
}

func hasEdge(from, to string) bool {
 return graph[from][to]
}

The addEdge function shows the idiomatic way to populate a map lazily, that is, to
initialize each value as its key appears for the first time. The hasEdge function
shows how the zero value of a missing map entry is often put to work: even if neither
from nor to is present, graph[from][to] will always give a meaningful result.

Exercise 4.8: Modify charcount to count letters, digits, and so on in their Unicode
categories, using functions like unicode.IsLetter.

Exercise 4.9: Write a program wordfreq to report the frequency of each word in
an input text file. Call input.Split(bufio.ScanWords) before the first call
to Scan to break the input into words instead of lines.

4.4 Structs
A struct is an aggregate data type that groups together zero or more named values of
arbitrary types as a single entity. Each value is called a field. The classic example of a
struct from data processing is the employee record, whose fields are a unique ID, the
employee’s name, address, date of birth, position, salary, manager, and the like. All of
these fields are collected into a single entity that can be copied as a unit, passed to
functions and returned by them, stored in arrays, and so on.
These two statements declare a struct type called Employee and a variable called
dilbert that is an instance of an Employee:

type Employee struct {
 ID int
 Name string
 Address string
 DoB time.Time
 Position string
 Salary int
 ManagerID int
}

var dilbert Employee

The individual fields of dilbert are accessed using dot notation like
dilbert.Name and dilbert.DoB. Because dilbert is a variable, its fields
are variables too, so we may assign to a field:

Click here to view code image

dilbert.Salary -= 5000 // demoted, for writing too few
lines of code

or take its address and access it through a pointer:

Click here to view code image

position := &dilbert.Position
*position = "Senior " + *position // promoted, for
outsourcing to Elbonia

The dot notation also works with a pointer to a struct:

Click here to view code image

var employeeOfTheMonth *Employee = &dilbert
employeeOfTheMonth.Position += " (proactive team
player)"

The last statement is equivalent to

Click here to view code image

(*employeeOfTheMonth).Position += " (proactive team
player)"

Given an employee’s unique ID, the function EmployeeByID returns a pointer to
an Employee struct. We can use the dot notation to access its fields:

Click here to view code image

func EmployeeByID(id int) *Employee { /* ... */ }

fmt.Println(EmployeeByID(dilbert.ManagerID).Position)
// "Pointy-haired boss"

id := dilbert.ID
EmployeeByID(id).Salary = 0 // fired for... no real
reason

The last statement updates the Employee struct that is pointed to by the result of
the call to EmployeeByID. If the result type of EmployeeByID were changed to
Employee instead of *Employee, the assignment statement would not compile
since its left-hand side would not identify a variable.
Fields are usually written one per line, with the field’s name preceding its type, but
consecutive fields of the same type may be combined, as with Name and Address
here:

type Employee struct {
 ID int
 Name, Address string
 DoB time.Time
 Position string

 Salary int
 ManagerID int
}

Field order is significant to type identity. Had we also combined the declaration of the
Position field (also a string), or interchanged Name and Address, we would be
defining a different struct type. Typically we only combine the declarations of related
fields.
The name of a struct field is exported if it begins with a capital letter; this is Go’s
main access control mechanism. A struct type may contain a mixture of exported and
unexported fields.
Struct types tend to be verbose because they often involve a line for each field.
Although we could write out the whole type each time it is needed, the repetition
would get tiresome. Instead, struct types usually appear within the declaration of a
named type like Employee.

A named struct type S can’t declare a field of the same type S: an aggregate value
cannot contain itself. (An analogous restriction applies to arrays.) But S may declare a
field of the pointer type *S, which lets us create recursive data structures like linked
lists and trees. This is illustrated in the code below, which uses a binary tree to
implement an insertion sort:

Click here to view code image

gopl.io/ch4/treesort
type tree struct {
 value int
 left, right *tree
}

// Sort sorts values in place.
func Sort(values []int) {
 var root *tree
 for _, v := range values {
 root = add(root, v)
 }
 appendValues(values[:0], root)
}

// appendValues appends the elements of t to values in
order
// and returns the resulting slice.
func appendValues(values []int, t *tree) []int {
 if t != nil {
 values = appendValues(values, t.left)
 values = append(values, t.value)
 values = appendValues(values, t.right)
 }
 return values
}

func add(t *tree, value int) *tree {
 if t == nil {
 // Equivalent to return &tree{value: value}.
 t = new(tree)
 t.value = value
 return t
 }
 if value < t.value {
 t.left = add(t.left, value)
 } else {
 t.right = add(t.right, value)
 }
 return t
}

The zero value for a struct is composed of the zero values of each of its fields. It is
usually desirable that the zero value be a natural or sensible default. For example, in
bytes.Buffer, the initial value of the struct is a ready-to-use empty buffer, and
the zero value of sync.Mutex, which we’ll see in Chapter 9, is a ready-to-use
unlocked mutex. Sometimes this sensible initial behavior happens for free, but
sometimes the type designer has to work at it.
The struct type with no fields is called the empty struct, written struct{}. It has
size zero and carries no information but may be useful nonetheless. Some Go
programmers use it instead of bool as the value type of a map that represents a set,
to emphasize that only the keys are significant, but the space saving is marginal and
the syntax more cumbersome, so we generally avoid it.

Click here to view code image

seen := make(map[string]struct{}) // set of strings
// ...
if _, ok := seen[s]; !ok {
 seen[s] = struct{}{}
 // ...first time seeing s...
}

4.4.1 Struct Literals

A value of a struct type can be written using a struct literal that specifies values for
its fields.

type Point struct{ X, Y int }

p := Point{1, 2}

There are two forms of struct literal. The first form, shown above, requires that a
value be specified for every field, in the right order. It burdens the writer (and reader)
with remembering exactly what the fields are, and it makes the code fragile should the
set of fields later grow or be reordered. Accordingly, this form tends to be used only
within the package that defines the struct type, or with smaller struct types for which
there is an obvious field ordering convention, like image.Point{x, y} or
color.RGBA{red, green, blue, alpha} .

More often, the second form is used, in which a struct value is initialized by listing
some or all of the field names and their corresponding values, as in this statement
from the Lissajous program of Section 1.4:

Click here to view code image

anim := gif.GIF{LoopCount: nframes}

If a field is omitted in this kind of literal, it is set to the zero value for its type.
Because names are provided, the order of fields doesn’t matter.
The two forms cannot be mixed in the same literal. Nor can you use the (order-
based) first form of literal to sneak around the rule that unexported identifiers may not
be referred to from another package.

Click here to view code image

package p
type T struct{ a, b int } // a and b are not exported

package q
import "p"
var _ = p.T{a: 1, b: 2} // compile error: can't
reference a, b
var _ = p.T{1, 2} // compile error: can't
reference a, b

Although the last line above doesn’t mention the unexported field identifiers, it’s really
using them implicitly, so it’s not allowed.
Struct values can be passed as arguments to functions and returned from them. For
instance, this function scales a Point by a specified factor:

Click here to view code image

func Scale(p Point, factor int) Point {
 return Point{p.X * factor, p.Y * factor}
}

fmt.Println(Scale(Point{1, 2}, 5)) // "{5 10}"

For efficiency, larger struct types are usually passed to or returned from functions
indirectly using a pointer,

Click here to view code image

func Bonus(e *Employee, percent int) int {
 return e.Salary * percent / 100
}

and this is required if the function must modify its argument, since in a call-by-value
language like Go, the called function receives only a copy of an argument, not a
reference to the original argument.

Click here to view code image

func AwardAnnualRaise(e *Employee) {
 e.Salary = e.Salary * 105 / 100

}

Because structs are so commonly dealt with through pointers, it’s possible to use this
shorthand notation to create and initialize a struct variable and obtain its address:

pp := &Point{1, 2}

It is exactly equivalent to
pp := new(Point)
*pp = Point{1, 2}

but &Point{1, 2} can be used directly within an expression, such as a function
call.

4.4.2 Comparing Structs

If all the fields of a struct are comparable, the struct itself is comparable, so two
expressions of that type may be compared using == or !=. The == operation
compares the corresponding fields of the two structs in order, so the two printed
expressions below are equivalent:

Click here to view code image

type Point struct{ X, Y int }

p := Point{1, 2}
q := Point{2, 1}
fmt.Println(p.X == q.X && p.Y == q.Y) // "false"
fmt.Println(p == q) // "false"

Comparable struct types, like other comparable types, may be used as the key type of
a map.

Click here to view code image

type address struct {
 hostname string
 port int
}

hits := make(map[address]int)

hits[address{"golang.org", 443}]++

4.4.3 Struct Embedding and Anonymous Fields

In this section, we’ll see how Go’s unusual struct embedding mechanism lets us use
one named struct type as an anonymous field of another struct type, providing a
convenient syntactic shortcut so that a simple dot expression like x.f can stand for a
chain of fields like x.d.e.f.

Consider a 2-D drawing program that provides a library of shapes, such as rectangles,
ellipses, stars, and wheels. Here are two of the types it might define:

type Circle struct {
 X, Y, Radius int
}

type Wheel struct {
 X, Y, Radius, Spokes int
}

A Circle has fields for the X and Y coordinates of its center, and a Radius. A
Wheel has all the features of a Circle, plus Spokes, the number of inscribed
radial spokes. Let’s create a wheel:

var w Wheel
w.X = 8
w.Y = 8
w.Radius = 5
w.Spokes = 20

As the set of shapes grows, we’re bound to notice similarities and repetition among
them, so it may be convenient to factor out their common parts:

type Point struct {
 X, Y int
}

type Circle struct {
 Center Point
 Radius int

}

type Wheel struct {
 Circle Circle
 Spokes int
}

The application may be clearer for it, but this change makes accessing the fields of a
Wheel more verbose:

var w Wheel
w.Circle.Center.X = 8
w.Circle.Center.Y = 8
w.Circle.Radius = 5
w.Spokes = 20

Go lets us declare a field with a type but no name; such fields are called anonymous
fields. The type of the field must be a named type or a pointer to a named type.
Below, Circle and Wheel have one anonymous field each. We say that a Point
is embedded within Circle, and a Circle is embedded within Wheel.

type Circle struct {
 Point
 Radius int
}

type Wheel struct {
 Circle
 Spokes int
}

Thanks to embedding, we can refer to the names at the leaves of the implicit tree
without giving the intervening names:

Click here to view code image

var w Wheel
w.X = 8 // equivalent to w.Circle.Point.X = 8
w.Y = 8 // equivalent to w.Circle.Point.Y = 8
w.Radius = 5 // equivalent to w.Circle.Radius = 5
w.Spokes = 20

The explicit forms shown in the comments above are still valid, however, showing

that “anonymous field” is something of a misnomer. The fields Circle and Point
do have names—that of the named type—but those names are optional in dot
expressions. We may omit any or all of the anonymous fields when selecting their
subfields.
Unfortunately, there’s no corresponding shorthand for the struct literal syntax, so
neither of these will compile:

Click here to view code image

w = Wheel{8, 8, 5, 20} //
compile error: unknown fields
w = Wheel{X: 8, Y: 8, Radius: 5, Spokes: 20} //
compile error: unknown fields

The struct literal must follow the shape of the type declaration, so we must use one of
the two forms below, which are equivalent to each other:

Click here to view code image

gopl.io/ch4/embed
w = Wheel{Circle{Point{8, 8}, 5}, 20}

w = Wheel{
 Circle: Circle{
 Point: Point{X: 8, Y: 8},
 Radius: 5,
 },
 Spokes: 20, // NOTE: trailing comma necessary here
(and at Radius)
}

fmt.Printf("%#v\n", w)
// Output:
// Wheel{Circle:Circle{Point:Point{X:8, Y:8},
Radius:5}, Spokes:20}

w.X = 42

fmt.Printf("%#v\n", w)
// Output:

// Wheel{Circle:Circle{Point:Point{X:42, Y:8},
Radius:5}, Spokes:20}

Notice how the # adverb causes Printf’s %v verb to display values in a form
similar to Go syntax. For struct values, this form includes the name of each field.
Because “anonymous” fields do have implicit names, you can’t have two anonymous
fields of the same type since their names would conflict. And because the name of the
field is implicitly determined by its type, so too is the visibility of the field. In the
examples above, the Point and Circle anonymous fields are exported. Had they
been unexported (point and circle), we could still use the shorthand form

Click here to view code image

w.X = 8 // equivalent to w.circle.point.X = 8

but the explicit long form shown in the comment would be forbidden outside the
declaring package because circle and point would be inaccessible.

What we’ve seen so far of struct embedding is just a sprinkling of syntactic sugar on
the dot notation used to select struct fields. Later, we’ll see that anonymous fields
need not be struct types; any named type or pointer to a named type will do. But why
would you want to embed a type that has no subfields?
The answer has to do with methods. The shorthand notation used for selecting the
fields of an embedded type works for selecting its methods as well. In effect, the
outer struct type gains not just the fields of the embedded type but its methods too.
This mechanism is the main way that complex object behaviors are composed from
simpler ones. Composition is central to object-oriented programming in Go, and we’ll
explore it further in Section 6.3.

4.5 JSON
JavaScript Object Notation (JSON) is a standard notation for sending and receiving
structured information. JSON is not the only such notation. XML (§7.14), ASN.1,
and Google’s Protocol Buffers serve similar purposes and each has its niche, but
because of its simplicity, readability, and universal support, JSON is the most widely
used.
Go has excellent support for encoding and decoding these formats, provided by the
standard library packages encoding/json, encoding/xml,
encoding/asn1, and so on, and these packages all have similar APIs. This
section gives a brief overview of the most important parts of the encoding/json
package.
JSON is an encoding of JavaScript values—strings, numbers, booleans, arrays, and
objects—as Unicode text. It’s an efficient yet readable representation for the basic
data types of Chapter 3 and the composite types of this chapter—arrays, slices,
structs, and maps.
The basic JSON types are numbers (in decimal or scientific notation), booleans
(true or false), and strings, which are sequences of Unicode code points
enclosed in double quotes, with backslash escapes using a similar notation to Go,
though JSON’s \Uhhhh numeric escapes denote UTF-16 codes, not runes.

These basic types may be combined recursively using JSON arrays and objects. A
JSON array is an ordered sequence of values, written as a comma-separated list
enclosed in square brackets; JSON arrays are used to encode Go arrays and slices. A
JSON object is a mapping from strings to values, written as a sequence of
name:value pairs separated by commas and surrounded by braces; JSON objects
are used to encode Go maps (with string keys) and structs. For example:

Click here to view code image

boolean true
number -273.15
string "She said \"Hello, \""
array ["gold", "silver", "bronze"]
object {"year": 1980,
 "event": "archery",

 "medals": ["gold", "silver",
"bronze"]}

Consider an application that gathers movie reviews and offers recommendations. Its
Movie data type and a typical list of values are declared below. (The string literals
after the Year and Color field declarations are field tags; we’ll explain them in a
moment.)

Click here to view code image

gopl.io/ch4/movie
type Movie struct {
 Title string
 Year int `json:"released"`
 Color bool `json:"color,omitempty"`
 Actors []string
}

var movies = []Movie{
 {Title: "Casablanca", Year: 1942, Color: false,
 Actors: []string{"Humphrey Bogart", "Ingrid
Bergman"}},
 {Title: "Cool Hand Luke", Year: 1967, Color: true,
 Actors: []string{"Paul Newman"}},
 {Title: "Bullitt", Year: 1968, Color: true,
 Actors: []string{"Steve McQueen", "Jacqueline
Bisset"}},
 // ...
}

Data structures like this are an excellent fit for JSON, and it’s easy to convert in both
directions. Converting a Go data structure like movies to JSON is called
marshaling. Marshaling is done by json.Marshal:

Click here to view code image

data, err := json.Marshal(movies)
if err != nil {
 log.Fatalf("JSON marshaling failed: %s", err)
}
fmt.Printf("%s\n", data)

Marshal produces a byte slice containing a very long string with no extraneous
white space; we’ve folded the lines so it fits:

Click here to view code image

[{"Title":"Casablanca","released":1942,"Actors":
["Humphrey Bogart","Ingr
id Bergman"]},{"Title":"Cool Hand
Luke","released":1967,"color":true,"Ac
tors":["Paul Newman"]},
{"Title":"Bullitt","released":1968,"color":true,"
Actors":["Steve McQueen","Jacqueline Bisset"]}]

This compact representation contains all the information but it’s hard to read. For
human consumption, a variant called json.MarshalIndent produces neatly
indented output. Two additional arguments define a prefix for each line of output and
a string for each level of indentation:

Click here to view code image

data, err := json.MarshalIndent(movies, "", " ")
if err != nil {
 log.Fatalf("JSON marshaling failed: %s", err)
}
fmt.Printf("%s\n", data)

The code above prints

Click here to view code image

[
 {
 "Title": "Casablanca",
 "released": 1942,
 "Actors": [
 "Humphrey Bogart",
 "Ingrid Bergman"
]
 },
 {
 "Title": "Cool Hand Luke",
 "released": 1967,

 "color": true,
 "Actors": [
 "Paul Newman"
]
 },
 {
 "Title": "Bullitt",
 "released": 1968,
 "color": true,
 "Actors": [
 "Steve McQueen",
 "Jacqueline Bisset"
]
 }
]

Marshaling uses the Go struct field names as the field names for the JSON objects
(through reflection, as we’ll see in Section 12.6). Only exported fields are marshaled,
which is why we chose capitalized names for all the Go field names.
You may have noticed that the name of the Year field changed to released in the
output, and Color changed to color. That’s because of the field tags. A field tag
is a string of metadata associated at compile time with the field of a struct:

Click here to view code image

Year int `json:"released"`
Color bool `json:"color,omitempty"`

A field tag may be any literal string, but it is conventionally interpreted as a space-
separated list of key:"value" pairs; since they contain double quotation marks,
field tags are usually written with raw string literals. The json key controls the
behavior of the encoding/json package, and other encoding/... packages
follow this convention. The first part of the json field tag specifies an alternative
JSON name for the Go field. Field tags are often used to specify an idiomatic JSON
name like total_count for a Go field named TotalCount. The tag for Color
has an additional option, omitempty, which indicates that no JSON output should
be produced if the field has the zero value for its type (false, here) or is otherwise
empty. Sure enough, the JSON output for Casablanca, a black-and-white movie, has
no color field.

The inverse operation to marshaling, decoding JSON and populating a Go data
structure, is called unmarshaling, and it is done by json.Unmarshal. The code
below unmarshals the JSON movie data into a slice of structs whose only field is
Title. By defining suitable Go data structures in this way, we can select which
parts of the JSON input to decode and which to discard. When Unmarshal returns,
it has filled in the slice with the Title information; other names in the JSON are
ignored.

Click here to view code image

var titles []struct{ Title string }
if err := json.Unmarshal(data, &titles); err != nil {
 log.Fatalf("JSON unmarshaling failed: %s", err)
}
fmt.Println(titles) // "[{Casablanca} {Cool Hand Luke}
{Bullitt}]"

Many web services provide a JSON interface—make a request with HTTP and back
comes the desired information in JSON format. To illustrate, let’s query the GitHub
issue tracker using its web-service interface. First we’ll define the necessary types and
constants:

Click here to view code image

gopl.io/ch4/github
// Package github provides a Go API for the GitHub
issue tracker.
// See https://developer.github.com/v3/search/#search-
issues.
package github

import "time"

const IssuesURL =
"https://api.github.com/search/issues"

type IssuesSearchResult struct {
 TotalCount int `json:"total_count"`
 Items []*Issue
}

type Issue struct {
 Number int
 HTMLURL string `json:"html_url"`
 Title string
 State string
 User *User
 CreatedAt time.Time `json:"created_at"`
 Body string // in Markdown format
}

type User struct {
 Login string
 HTMLURL string `json:"html_url"`
}

As before, the names of all the struct fields must be capitalized even if their JSON
names are not. However, the matching process that associates JSON names with Go
struct names during unmarshaling is case-insensitive, so it’s only necessary to use a
field tag when there’s an underscore in the JSON name but not in the Go name.
Again, we are being selective about which fields to decode; the GitHub search
response contains considerably more information than we show here.
The SearchIssues function makes an HTTP request and decodes the result as
JSON. Since the query terms presented by a user could contain characters like ? and
& that have special meaning in a URL, we use url.QueryEscape to ensure that
they are taken literally.

Click here to view code image

gopl.io/ch4/github
package github

import (
 "encoding/json"
 "fmt"
 "net/http"
 "net/url"
 "strings"
)

// SearchIssues queries the GitHub issue tracker.
func SearchIssues(terms []string)
(*IssuesSearchResult, error) {
 q := url.QueryEscape(strings.Join(terms, " "))
 resp, err := http.Get(IssuesURL + "?q=" + q)
 if err != nil {
 return nil, err
 }

 // We must close resp.Body on all execution paths.
 // (Chapter 5 presents 'defer', which makes this
simpler.)
 if resp.StatusCode != http.StatusOK {
 resp.Body.Close()
 return nil, fmt.Errorf("search query failed:
%s", resp.Status)
 }

 var result IssuesSearchResult
 if err :=
json.NewDecoder(resp.Body).Decode(&result); err != nil
{
 resp.Body.Close()
 return nil, err
 }
 resp.Body.Close()
 return &result, nil
}

The earlier examples used json.Unmarshal to decode the entire contents of a
byte slice as a single JSON entity. For variety, this example uses the streaming
decoder, json.Decoder, which allows several JSON entities to be decoded in
sequence from the same stream, although we don’t need that feature here. As you
might expect, there is a corresponding streaming encoder called json.Encoder.

The call to Decode populates the variable result. There are various ways we can
format its value nicely. The simplest, demonstrated by the issues command below,
is as a text table with fixed-width columns, but in the next section we’ll see a more
sophisticated approach based on templates.

Click here to view code image

gopl.io/ch4/issues
// Issues prints a table of GitHub issues matching the
search terms.
package main

import (
 "fmt"
 "log"
 "os"

 "gopl.io/ch4/github"
)

func main() {
 result, err := github.SearchIssues(os.Args[1:])
 if err != nil {
 log.Fatal(err)
 }
 fmt.Printf("%d issues:\n", result.TotalCount)
 for _, item := range result.Items {
 fmt.Printf("#%-5d %9.9s %.55s\n",
 item.Number, item.User.Login, item.Title)
 }
}

The command-line arguments specify the search terms. The command below queries
the Go project’s issue tracker for the list of open bugs related to JSON decoding:

Click here to view code image

$ go build gopl.io/ch4/issues
$./issues repo:golang/go is:open json decoder
13 issues:
#5680 eaigner encoding/json: set key converter on
en/decoder
#6050 gopherbot encoding/json: provide tokenizer
#8658 gopherbot encoding/json: use bufio
#8462 kortschak encoding/json: UnmarshalText confuses

json.Unmarshal
#5901 rsc encoding/json: allow override type
marshaling
#9812 klauspost encoding/json: string tag not
symmetric
#7872 extempora encoding/json: Encoder internally
buffers full output
#9650 cespare encoding/json: Decoding gives
errPhase when unmarshalin
#6716 gopherbot encoding/json: include field name in
unmarshal error me
#6901 lukescott encoding/json, encoding/xml: option
to treat unknown fi
#6384 joeshaw encoding/json: encode precise
floating point integers u
#6647 btracey x/tools/cmd/godoc: display type kind
of each named type
#4237 gjemiller encoding/base64: URLEncoding padding
is optional

The GitHub web-service interface at
https://developer.github.com/v3/ has many more features than we
have space for here.
Exercise 4.10: Modify issues to report the results in age categories, say less than a
month old, less than a year old, and more than a year old.
Exercise 4.11: Build a tool that lets users create, read, update, and delete GitHub
issues from the command line, invoking their preferred text editor when substantial
text input is required.
Exercise 4.12: The popular web comic xkcd has a JSON interface. For example, a
request to https://xkcd.com/571/info.0.json produces a detailed
description of comic 571, one of many favorites. Download each URL (once!) and
build an offline index. Write a tool xkcd that, using this index, prints the URL and
transcript of each comic that matches a search term provided on the command line.
Exercise 4.13: The JSON-based web service of the Open Movie Database lets you
search https://omdbapi.com/ for a movie by name and download its poster
image. Write a tool poster that downloads the poster image for the movie named
on the command line.

4.6 Text and HTML Templates
The previous example does only the simplest possible formatting, for which Printf
is entirely adequate. But sometimes formatting must be more elaborate, and it’s
desirable to separate the format from the code more completely. This can be done
with the text/template and html/template packages, which provide a
mechanism for substituting the values of variables into a text or HTML template.
A template is a string or file containing one or more portions enclosed in double
braces, {{...}}, called actions. Most of the string is printed literally, but the
actions trigger other behaviors. Each action contains an expression in the template
language, a simple but powerful notation for printing values, selecting struct fields,
calling functions and methods, expressing control flow such as if-else statements
and range loops, and instantiating other templates. A simple template string is
shown below:

Click here to view code image

gopl.io/ch4/issuesreport
const templ = `{{.TotalCount}} issues:
{{range .Items}}--------------------------------------
--
Number: {{.Number}}
User: {{.User.Login}}
Title: {{.Title | printf "%.64s"}}
Age: {{.CreatedAt | daysAgo}} days
{{end}}`

This template first prints the number of matching issues, then prints the number, user,
title, and age in days of each one. Within an action, there is a notion of the current
value, referred to as “dot” and written as “.”, a period. The dot initially refers to the
template’s parameter, which will be a github.IssuesSearchResult in this
example. The {{.TotalCount}} action expands to the value of the
TotalCount field, printed in the usual way. The {{range .Items}} and
{{end}} actions create a loop, so the text between them is expanded multiple times,
with dot bound to successive elements of Items.

Within an action, the | notation makes the result of one operation the argument of

another, analogous to a Unix shell pipeline. In the case of Title, the second
operation is the printf function, which is a built-in synonym for fmt.Sprintf
in all templates. For Age, the second operation is the following function, daysAgo,
which converts the CreatedAt field into an elapsed time, using time.Since:

Click here to view code image

func daysAgo(t time.Time) int {
 return int(time.Since(t).Hours() / 24)
}

Notice that the type of CreatedAt is time.Time, not string. In the same way
that a type may control its string formatting (§2.5) by defining certain methods, a type
may also define methods to control its JSON marshaling and unmarshaling behavior.
The JSON-marshaled value of a time.Time is a string in a standard format.

Producing output with a template is a two-step process. First we must parse the
template into a suitable internal representation, and then execute it on specific inputs.
Parsing need be done only once. The code below creates and parses the template
templ defined above. Note the chaining of method calls: template.New creates
and returns a template; Funcs adds daysAgo to the set of functions accessible
within this template, then returns that template; finally, Parse is called on the result.

Click here to view code image

report, err := template.New("report").
 Funcs(template.FuncMap{"daysAgo": daysAgo}).
 Parse(templ)
if err != nil {
 log.Fatal(err)
}

Because templates are usually fixed at compile time, failure to parse a template
indicates a fatal bug in the program. The template.Must helper function makes
error handling more convenient: it accepts a template and an error, checks that the
error is nil (and panics otherwise), and then returns the template. We’ll come back to
this idea in Section 5.9.
Once the template has been created, augmented with daysAgo, parsed, and
checked, we can execute it using a github.IssuesSearchResult as the data
source and os.Stdout as the destination:

Click here to view code image

var report = template.Must(template.New("issuelist").
 Funcs(template.FuncMap{"daysAgo": daysAgo}).
 Parse(templ))

func main() {
 result, err := github.SearchIssues(os.Args[1:])
 if err != nil {
 log.Fatal(err)
 }
 if err := report.Execute(os.Stdout, result); err
!= nil {
 log.Fatal(err)
 }
}

The program prints a plain text report like this:

Click here to view code image

$ go build gopl.io/ch4/issuesreport
$./issuesreport repo:golang/go is:open json decoder
13 issues:
--
Number: 5680
User: eaigner
Title: encoding/json: set key converter on en/decoder
Age: 750 days
--
Number: 6050
User: gopherbot
Title: encoding/json: provide tokenizer
Age: 695 days
--
...

Now let’s turn to the html/template package. It uses the same API and
expression language as text/template but adds features for automatic and
context-appropriate escaping of strings appearing within HTML, JavaScript, CSS, or
URLs. These features can help avoid a perennial security problem of HTML

generation, an injection attack, in which an adversary crafts a string value like the
title of an issue to include malicious code that, when improperly escaped by a
template, gives them control over the page.
The template below prints the list of issues as an HTML table. Note the different
import:

Click here to view code image

gopl.io/ch4/issueshtml
import "html/template"

var issueList =
template.Must(template.New("issuelist").Parse(`
<h1>{{.TotalCount}} issues</h1>
<table>
<tr style='text-align: left'>
 <th>#</th>
 <th>State</th>
 <th>User</th>
 <th>Title</th>
</tr>
{{range .Items}}
<tr>
 <td>{{.Number}}</td>
 <td>{{.State}}</td>
 <td>{{.User.Login}}
</td>
 <td>{{.Title}}</td>
</tr>
{{end}}
</table>
`))

The command below executes the new template on the results of a slightly different
query:

Click here to view code image

$ go build gopl.io/ch4/issueshtml
$./issueshtml repo:golang/go commenter:gopherbot json

encoder >issues.html

Figure 4.4 shows the appearance of the table in a web browser. The links connect to
the appropriate web pages at GitHub.

Figure 4.4. An HTML table of Go project issues relating to JSON encoding.

None of the issues in Figure 4.4 pose a challenge for HTML, but we can see the
effect more clearly with issues whose titles contain HTML metacharacters like & and
<. We’ve selected two such issues for this example:

Click here to view code image

$./issueshtml repo:golang/go 3133 10535 >issues2.html

Figure 4.5 shows the result of this query. Notice that the html/template package
automatically HTML-escaped the titles so that they appear literally. Had we used the
text/template package by mistake, the four-character string "<" would
have been rendered as a less-than character '<', and the string "<link>" would
have become a link element, changing the structure of the HTML document and
perhaps compromising its security.
We can suppress this auto-escaping behavior for fields that contain trusted HTML

data by using the named string type template.HTML instead of string. Similar
named types exist for trusted JavaScript, CSS, and URLs. The program below
demonstrates the principle by using two fields with the same value but different types:
A is a string and B is a template.HTML.

Figure 4.5. HTML metacharacters in issue titles are correctly displayed.

Click here to view code image

gopl.io/ch4/autoescape
func main() {
 const templ = `<p>A: {{.A}}</p><p>B: {{.B}}</p>`
 t :=
template.Must(template.New("escape").Parse(templ))
 var data struct {
 A string // untrusted plain text
 B template.HTML // trusted HTML
 }
 data.A = "Hello!"
 data.B = "Hello!"
 if err := t.Execute(os.Stdout, data); err != nil {
 log.Fatal(err)
 }
}

Figure 4.6 shows the template’s output as it appears in a browser. We can see that A
was subject to escaping but B was not.

Figure 4.6. String values are HTML-escaped but template.HTML values are not.

We have space here to show only the most basic features of the template system. As
always, for more information, consult the package documentation:

$ go doc text/template
$ go doc html/template

Exercise 4.14: Create a web server that queries GitHub once and then allows
navigation of the list of bug reports, milestones, and users.

5. Functions
A function lets us wrap up a sequence of statements as a unit that can be called from
elsewhere in a program, perhaps multiple times. Functions make it possible to break a
big job into smaller pieces that might well be written by different people separated by
both time and space. A function hides its implementation details from its users. For all
of these reasons, functions are a critical part of any programming language.
We’ve seen many functions already. Now let’s take time for a more thorough
discussion. The running example of this chapter is a web crawler, that is, the
component of a web search engine responsible for fetching web pages, discovering
the links within them, fetching the pages identified by those links, and so on. A web
crawler gives us ample opportunity to explore recursion, anonymous functions, error
handling, and aspects of functions that are unique to Go.

5.1 Function Declarations
A function declaration has a name, a list of parameters, an optional list of results, and
a body:

Click here to view code image

func name(parameter-list) (result-list) {
 body
}

The parameter list specifies the names and types of the function’s parameters, which
are the local variables whose values or arguments are supplied by the caller. The
result list specifies the types of the values that the function returns. If the function
returns one unnamed result or no results at all, parentheses are optional and usually
omitted. Leaving off the result list entirely declares a function that does not return any
value and is called only for its effects. In the hypot function,

Click here to view code image

func hypot(x, y float64) float64 {
 return math.Sqrt(x*x + y*y)
}

fmt.Println(hypot(3, 4)) // "5"

x and y are parameters in the declaration, 3 and 4 are arguments of the call, and the
function returns a float64 value.

Like parameters, results may be named. In that case, each name declares a local
variable initialized to the zero value for its type.
A function that has a result list must end with a return statement unless execution
clearly cannot reach the end of the function, perhaps because the function ends with a
call to panic or an infinite for loop with no break.

As we saw with hypot, a sequence of parameters or results of the same type can be
factored so that the type itself is written only once. These two declarations are
equivalent:

Click here to view code image

func f(i, j, k int, s, t string) { /*
... */ }
func f(i int, j int, k int, s string, t string) { /*
... */ }

Here are four ways to declare a function with two parameters and one result, all of
type int. The blank identifier can be used to emphasize that a parameter is unused.

Click here to view code image

func add(x int, y int) int { return x + y }
func sub(x, y int) (z int) { z = x - y; return }
func first(x int, _ int) int { return x }
func zero(int, int) int { return 0 }

fmt.Printf("%T\n", add) // "func(int, int) int"
fmt.Printf("%T\n", sub) // "func(int, int) int"
fmt.Printf("%T\n", first) // "func(int, int) int"
fmt.Printf("%T\n", zero) // "func(int, int) int"

The type of a function is sometimes called its signature. Two functions have the
same type or signature if they have the same sequence of parameter types and the
same sequence of result types. The names of parameters and results don’t affect the
type, nor does whether or not they were declared using the factored form.
Every function call must provide an argument for each parameter, in the order in
which the parameters were declared. Go has no concept of default parameter values,
nor any way to specify arguments by name, so the names of parameters and results
don’t matter to the caller except as documentation.
Parameters are local variables within the body of the function, with their initial values
set to the arguments supplied by the caller. Function parameters and named results
are variables in the same lexical block as the function’s outermost local variables.
Arguments are passed by value, so the function receives a copy of each argument;
modifications to the copy do not affect the caller. However, if the argument contains
some kind of reference, like a pointer, slice, map, function, or channel, then the caller
may be affected by any modifications the function makes to variables indirectly
referred to by the argument.
You may occasionally encounter a function declaration without a body, indicating that
the function is implemented in a language other than Go. Such a declaration defines

the function signature.

Click here to view code image

package math

func Sin(x float64) float64 // implemented in assembly
language

5.2 Recursion
Functions may be recursive, that is, they may call themselves, either directly or
indirectly. Recursion is a powerful technique for many problems, and of course it’s
essential for processing recursive data structures. In Section 4.4, we used recursion
over a tree to implement a simple insertion sort. In this section, we’ll use it again for
processing HTML documents.
The example program below uses a non-standard package,
golang.org/x/net/html, which provides an HTML parser. The
golang.org/x/... repositories hold packages designed and maintained by the
Go team for applications such as networking, internationalized text processing, mobile
platforms, image manipulation, cryptography, and developer tools. These packages
are not in the standard library because they’re still under development or because
they’re rarely needed by the majority of Go programmers.
The parts of the golang.org/x/net/html API that we’ll need are shown
below. The function html.Parse reads a sequence of bytes, parses them, and
returns the root of the HTML document tree, which is an html.Node. HTML has
several kinds of nodes—text, comments, and so on—but here we are concerned only
with element nodes of the form <name key='value'> .

Click here to view code image

golang.org/x/net/html
package html

type Node struct {
 Type NodeType
 Data string
 Attr []Attribute
 FirstChild, NextSibling *Node
}

type NodeType int32

const (
 ErrorNode NodeType = iota

 TextNode
 DocumentNode
 ElementNode
 CommentNode
 DoctypeNode
)

type Attribute struct {
 Key, Val string
}

func Parse(r io.Reader) (*Node, error)

The main function parses the standard input as HTML, extracts the links using a
recursive visit function, and prints each discovered link:

Click here to view code image

gopl.io/ch5/findlinks1
// Findlinks1 prints the links in an HTML document
read from standard input.
package main

import (
 "fmt"
 "os"

 "golang.org/x/net/html"
)

func main() {
 doc, err := html.Parse(os.Stdin)
 if err != nil {
 fmt.Fprintf(os.Stderr, "findlinks1: %v\n",
err)
 os.Exit(1)
 }
 for _, link := range visit(nil, doc) {
 fmt.Println(link)
 }

}

The visit function traverses an HTML node tree, extracts the link from the href
attribute of each anchor element , appends the links to a slice of
strings, and returns the resulting slice:

Click here to view code image

// visit appends to links each link found in n and
returns the result.
func visit(links []string, n *html.Node) []string {
 if n.Type == html.ElementNode && n.Data == "a" {
 for _, a := range n.Attr {
 if a.Key == "href" {
 links = append(links, a.Val)
 }
 }
 }
 for c := n.FirstChild; c != nil; c = c.NextSibling
{
 links = visit(links, c)
 }
 return links
}

To descend the tree for a node n, visit recursively calls itself for each of n’s
children, which are held in the FirstChild linked list.

Let’s run findlinks on the Go home page, piping the output of fetch (§1.5) to
the input of findlinks. We’ve edited the output slightly for brevity.

Click here to view code image

$ go build gopl.io/ch1/fetch
$ go build gopl.io/ch5/findlinks1
$./fetch https://golang.org | ./findlinks1
#
/doc/
/pkg/
/help/
/blog/
http://play.golang.org/

//tour.golang.org/
https://golang.org/dl/
//blog.golang.org/
/LICENSE
/doc/tos.html
http://www.google.com/intl/en/policies/privacy/

Notice the variety of forms of links that appear in the page. Later we’ll see how to
resolve them relative to the base URL, https://golang.org, to make absolute
URLs.
The next program uses recursion over the HTML node tree to print the structure of
the tree in outline. As it encounters each element, it pushes the element’s tag onto a
stack, then prints the stack.

Click here to view code image

gopl.io/ch5/outline
func main() {
 doc, err := html.Parse(os.Stdin)
 if err != nil {
 fmt.Fprintf(os.Stderr, "outline: %v\n", err)
 os.Exit(1)
 }
 outline(nil, doc)
}

func outline(stack []string, n *html.Node) {
 if n.Type == html.ElementNode {
 stack = append(stack, n.Data) // push tag
 fmt.Println(stack)
 }
 for c := n.FirstChild; c != nil; c = c.NextSibling
{
 outline(stack, c)
 }
}

Note one subtlety: although outline “pushes” an element on stack, there is no
corresponding pop. When outline calls itself recursively, the callee receives a copy

of stack. Although the callee may append elements to this slice, modifying its
underlying array and perhaps even allocating a new array, it doesn’t modify the initial
elements that are visible to the caller, so when the function returns, the caller’s
stack is as it was before the call.

Here’s the outline of https://golang.org, again edited for brevity:

Click here to view code image

$ go build gopl.io/ch5/outline
$./fetch https://golang.org | ./outline
[html]
[html head]
[html head meta]
[html head title]
[html head link]
[html body]
[html body div]
[html body div]
[html body div div]
[html body div div form]
[html body div div form div]
[html body div div form div a]
...

As you can see by experimenting with outline, most HTML documents can be
processed with only a few levels of recursion, but it’s not hard to construct
pathological web pages that require extremely deep recursion.
Many programming language implementations use a fixed-size function call stack;
sizes from 64KB to 2MB are typical. Fixed-size stacks impose a limit on the depth of
recursion, so one must be careful to avoid a stack overflow when traversing large data
structures recursively; fixed-size stacks may even pose a security risk. In contrast,
typical Go implementations use variable-size stacks that start small and grow as
needed up to a limit on the order of a gigabyte. This lets us use recursion safely and
without worrying about overflow.
Exercise 5.1: Change the findlinks program to traverse the n.FirstChild
linked list using recursive calls to visit instead of a loop.

Exercise 5.2: Write a function to populate a mapping from element names—p, div,

span, and so on—to the number of elements with that name in an HTML document
tree.
Exercise 5.3: Write a function to print the contents of all text nodes in an HTML
document tree. Do not descend into <script> or <style> elements, since their
contents are not visible in a web browser.
Exercise 5.4: Extend the visit function so that it extracts other kinds of links from
the document, such as images, scripts, and style sheets.

5.3 Multiple Return Values
A function can return more than one result. We’ve seen many examples of functions
from standard packages that return two values, the desired computational result and
an error value or boolean that indicates whether the computation worked. The next
example shows how to write one of our own.
The program below is a variation of findlinks that makes the HTTP request
itself so that we no longer need to run fetch. Because the HTTP and parsing
operations can fail, findLinks declares two results: the list of discovered links and
an error. Incidentally, the HTML parser can usually recover from bad input and
construct a document containing error nodes, so Parse rarely fails; when it does, it’s
typically due to underlying I/O errors.

Click here to view code image

gopl.io/ch5/findlinks2
func main() {
 for _, url := range os.Args[1:] {
 links, err := findLinks(url)
 if err != nil {
 fmt.Fprintf(os.Stderr, "findlinks2: %v\n",
err)
 continue
 }
 for _, link := range links {
 fmt.Println(link)
 }
 }
}

// findLinks performs an HTTP GET request for url,
parses the
// response as HTML, and extracts and returns the
links.
func findLinks(url string) ([]string, error) {
 resp, err := http.Get(url)
 if err != nil {

 return nil, err
 }
 if resp.StatusCode != http.StatusOK {
 resp.Body.Close()
 return nil, fmt.Errorf("getting %s: %s", url,
resp.Status)
 }
 doc, err := html.Parse(resp.Body)
 resp.Body.Close()
 if err != nil {
 return nil, fmt.Errorf("parsing %s as HTML:
%v", url, err)
 }
 return visit(nil, doc), nil
}

There are four return statements in findLinks, each of which returns a pair of
values. The first three returns cause the function to pass the underlying errors
from the http and html packages on to the caller. In the first case, the error is
returned unchanged; in the second and third, it is augmented with additional context
information by fmt.Errorf (§7.8). If findLinks is successful, the final return
statement returns the slice of links, with no error.
We must ensure that resp.Body is closed so that network resources are properly
released even in case of error. Go’s garbage collector recycles unused memory, but do
not assume it will release unused operating system resources like open files and
network connections. They should be closed explicitly.
The result of calling a multi-valued function is a tuple of values. The caller of such a
function must explicitly assign the values to variables if any of them are to be used:

links, err := findLinks(url)

To ignore one of the values, assign it to the blank identifier:

Click here to view code image

links, _ := findLinks(url) // errors ignored

The result of a multi-valued call may itself be returned from a (multi-valued) calling
function, as in this function that behaves like findLinks but logs its argument:

Click here to view code image

func findLinksLog(url string) ([]string, error) {
 log.Printf("findLinks %s", url)
 return findLinks(url)
}

A multi-valued call may appear as the sole argument when calling a function of
multiple parameters. Although rarely used in production code, this feature is
sometimes convenient during debugging since it lets us print all the results of a call
using a single statement. The two print statements below have the same effect.

log.Println(findLinks(url))

links, err := findLinks(url)
log.Println(links, err)

Well-chosen names can document the significance of a function’s results. Names are
particularly valuable when a function returns multiple results of the same type, like

Click here to view code image

func Size(rect image.Rectangle) (width, height int)
func Split(path string) (dir, file string)
func HourMinSec(t time.Time) (hour, minute, second
int)

but it’s not always necessary to name multiple results solely for documentation. For
instance, convention dictates that a final bool result indicates success; an error
result often needs no explanation.
In a function with named results, the operands of a return statement may be omitted.
This is called a bare return.

Click here to view code image

// CountWordsAndImages does an HTTP GET request for
the HTML
// document url and returns the number of words and
images in it.
func CountWordsAndImages(url string) (words, images
int, err error) {
 resp, err := http.Get(url)
 if err != nil {
 return

 }

 doc, err := html.Parse(resp.Body)
 resp.Body.Close()
 if err != nil {
 err = fmt.Errorf("parsing HTML: %s", err)
 return
 }
 words, images = countWordsAndImages(doc)
 return
}

func countWordsAndImages(n *html.Node) (words, images
int) { /* ... */ }

A bare return is a shorthand way to return each of the named result variables in order,
so in the function above, each return statement is equivalent to

return words, images, err

In functions like this one, with many return statements and several results, bare
returns can reduce code duplication, but they rarely make code easier to understand.
For instance, it’s not obvious at first glance that the two early returns are equivalent to
return 0, 0, err (because the result variables words and images are
initialized to their zero values) and that the final return is equivalent to return
words, images, nil . For this reason, bare returns are best used sparingly.

Exercise 5.5: Implement countWordsAndImages. (See Exercise 4.9 for word-
splitting.)
Exercise 5.6: Modify the corner function in gopl.io/ch3/surface (§3.2) to
use named results and a bare return statement.

5.4 Errors
Some functions always succeed at their task. For example, strings.Contains
and strconv.FormatBool have well-defined results for all possible argument
values and cannot fail—barring catastrophic and unpredictable scenarios like running
out of memory, where the symptom is far from the cause and from which there’s
little hope of recovery.
Other functions always succeed so long as their preconditions are met. For example,
the time.Date function always constructs a time.Time from its components—
year, month, and so on—unless the last argument (the time zone) is nil, in which
case it panics. This panic is a sure sign of a bug in the calling code and should never
happen in a well-written program.
For many other functions, even in a well-written program, success is not assured
because it depends on factors beyond the programmer’s control. Any function that
does I/O, for example, must confront the possibility of error, and only a naïve
programmer believes a simple read or write cannot fail. Indeed, it’s when the most
reliable operations fail unexpectedly that we most need to know why.
Errors are thus an important part of a package’s API or an application’s user
interface, and failure is just one of several expected behaviors. This is the approach
Go takes to error handling.
A function for which failure is an expected behavior returns an additional result,
conventionally the last one. If the failure has only one possible cause, the result is a
boolean, usually called ok, as in this example of a cache lookup that always succeeds
unless there was no entry for that key:

Click here to view code image

value, ok := cache.Lookup(key)
if !ok {
 // ...cache[key] does not exist...
}

More often, and especially for I/O, the failure may have a variety of causes for which
the caller will need an explanation. In such cases, the type of the additional result is
error.

The built-in type error is an interface type. We’ll see more of what this means and
its implications for error handling in Chapter 7. For now it’s enough to know that an
error may be nil or non-nil, that nil implies success and non-nil implies failure, and
that a non-nil error has an error message string which we can obtain by calling its
Error method or print by calling fmt.Println(err) or
fmt.Printf("%v", err) .

Usually when a function returns a non-nil error, its other results are undefined and
should be ignored. However, a few functions may return partial results in error cases.
For example, if an error occurs while reading from a file, a call to Read returns the
number of bytes it was able to read and an error value describing the problem. For
correct behavior, some callers may need to process the incomplete data before
handling the error, so it is important that such functions clearly document their results.
Go’s approach sets it apart from many other languages in which failures are reported
using exceptions, not ordinary values. Although Go does have an exception
mechanism of sorts, as we will see in Section 5.9, it is used only for reporting truly
unexpected errors that indicate a bug, not the routine errors that a robust program
should be built to expect.
The reason for this design is that exceptions tend to entangle the description of an
error with the control flow required to handle it, often leading to an undesirable
outcome: routine errors are reported to the end user in the form of an
incomprehensible stack trace, full of information about the structure of the program
but lacking intelligible context about what went wrong.
By contrast, Go programs use ordinary control-flow mechanisms like if and
return to respond to errors. This style undeniably demands that more attention be
paid to error-handling logic, but that is precisely the point.

5.4.1 Error-Handling Strategies

When a function call returns an error, it’s the caller’s responsibility to check it and
take appropriate action. Depending on the situation, there may be a number of
possibilities. Let’s take a look at five of them.
First, and most common, is to propagate the error, so that a failure in a subroutine
becomes a failure of the calling routine. We saw examples of this in the findLinks

function of Section 5.3. If the call to http.Get fails, findLinks returns the
HTTP error to the caller without further ado:

resp, err := http.Get(url)
if err != nil {
 return nil, err
}

In contrast, if the call to html.Parse fails, findLinks does not return the
HTML parser’s error directly because it lacks two crucial pieces of information: that
the error occurred in the parser, and the URL of the document that was being parsed.
In this case, findLinks constructs a new error message that includes both pieces
of information as well as the underlying parse error:

Click here to view code image

doc, err := html.Parse(resp.Body)
resp.Body.Close()
if err != nil {
 return nil, fmt.Errorf("parsing %s as HTML: %v",
url, err)
}

The fmt.Errorf function formats an error message using fmt.Sprintf and
returns a new error value. We use it to build descriptive errors by successively
prefixing additional context information to the original error message. When the error
is ultimately handled by the program’s main function, it should provide a clear causal
chain from the root problem to the overall failure, reminiscent of a NASA accident
investigation:

Click here to view code image

genesis: crashed: no parachute: G-switch failed: bad
relay orientation

Because error messages are frequently chained together, message strings should not
be capitalized and newlines should be avoided. The resulting errors may be long, but
they will be self-contained when found by tools like grep.

When designing error messages, be deliberate, so that each one is a meaningful
description of the problem with sufficient and relevant detail, and be consistent, so
that errors returned by the same function or by a group of functions in the same

package are similar in form and can be dealt with in the same way.
For example, the os package guarantees that every error returned by a file operation,
such as os.Open or the Read, Write, or Close methods of an open file,
describes not just the nature of the failure (permission denied, no such directory, and
so on) but also the name of the file, so the caller needn’t include this information in
the error message it constructs.
In general, the call f(x) is responsible for reporting the attempted operation f and
the argument value x as they relate to the context of the error. The caller is
responsible for adding further information that it has but the call f(x) does not, such
as the URL in the call to html.Parse above.

Let’s move on to the second strategy for handling errors. For errors that represent
transient or unpredictable problems, it may make sense to retry the failed operation,
possibly with a delay between tries, and perhaps with a limit on the number of
attempts or the time spent trying before giving up entirely.

Click here to view code image

gopl.io/ch5/wait
// WaitForServer attempts to contact the server of a
URL.
// It tries for one minute using exponential back-off.
// It reports an error if all attempts fail.
func WaitForServer(url string) error {
 const timeout = 1 * time.Minute
 deadline := time.Now().Add(timeout)
 for tries := 0; time.Now().Before(deadline);
tries++ {
 _, err := http.Head(url)
 if err == nil {
 return nil // success
 }
 log.Printf("server not responding (%s);
retrying...", err)
 time.Sleep(time.Second << uint(tries)) //
exponential back-off
 }
 return fmt.Errorf("server %s failed to respond

after %s", url, timeout)
}

Third, if progress is impossible, the caller can print the error and stop the program
gracefully, but this course of action should generally be reserved for the main package
of a program. Library functions should usually propagate errors to the caller, unless
the error is a sign of an internal inconsistency—that is, a bug.

Click here to view code image

// (In function main.)
if err := WaitForServer(url); err != nil {
 fmt.Fprintf(os.Stderr, "Site is down: %v\n", err)
 os.Exit(1)
}

A more convenient way to achieve the same effect is to call log.Fatalf. As with
all the log functions, by default it prefixes the time and date to the error message.

Click here to view code image

if err := WaitForServer(url); err != nil {
 log.Fatalf("Site is down: %v\n", err)
}

The default format is helpful in a long-running server, but less so for an interactive
tool:

Click here to view code image

2006/01/02 15:04:05 Site is down: no such domain:
bad.gopl.io

For a more attractive output, we can set the prefix used by the log package to the
name of the command, and suppress the display of the date and time:

log.SetPrefix("wait: ")
log.SetFlags(0)

Fourth, in some cases, it’s sufficient just to log the error and then continue, perhaps
with reduced functionality. Again there’s a choice between using the log package,
which adds the usual prefix:

Click here to view code image

if err := Ping(); err != nil {
 log.Printf("ping failed: %v; networking disabled",
err)
}

and printing directly to the standard error stream:

Click here to view code image

if err := Ping(); err != nil {
 fmt.Fprintf(os.Stderr, "ping failed: %v;
networking disabled\n", err)
}

(All log functions append a newline if one is not already present.)

And fifth and finally, in rare cases we can safely ignore an error entirely:

Click here to view code image

dir, err := ioutil.TempDir("", "scratch")
if err != nil {
 return fmt.Errorf("failed to create temp dir: %v",
err)
}

// ...use temp dir...

os.RemoveAll(dir) // ignore errors; $TMPDIR is cleaned
periodically

The call to os.RemoveAll may fail, but the program ignores it because the
operating system periodically cleans out the temporary directory. In this case,
discarding the error was intentional, but the program logic would be the same had we
forgotten to deal with it. Get into the habit of considering errors after every function
call, and when you deliberately ignore one, document your intention clearly.
Error handling in Go has a particular rhythm. After checking an error, failure is
usually dealt with before success. If failure causes the function to return, the logic for
success is not indented within an else block but follows at the outer level. Functions
tend to exhibit a common structure, with a series of initial checks to reject errors,
followed by the substance of the function at the end, minimally indented.

5.4.2 End of File (EOF)

Usually, the variety of errors that a function may return is interesting to the end user
but not to the intervening program logic. On occasion, however, a program must take
different actions depending on the kind of error that has occurred. Consider an
attempt to read n bytes of data from a file. If n is chosen to be the length of the file,
any error represents a failure. On the other hand, if the caller repeatedly tries to read
fixed-size chunks until the file is exhausted, the caller must respond differently to an
end-of-file condition than it does to all other errors. For this reason, the io package
guarantees that any read failure caused by an end-of-file condition is always reported
by a distinguished error, io.EOF, which is defined as follows:

Click here to view code image

package io

import "errors"

// EOF is the error returned by Read when no more
input is available.
var EOF = errors.New("EOF")

The caller can detect this condition using a simple comparison, as in the loop below,
which reads runes from the standard input. (The charcount program in
Section 4.3 provides a more complete example.)

Click here to view code image

in := bufio.NewReader(os.Stdin)
for {
 r, _, err := in.ReadRune()
 if err == io.EOF {
 break // finished reading
 }
 if err != nil {
 return fmt.Errorf("read failed: %v", err)
 }
 // ...use r...
}

Since in an end-of-file condition there is no information to report besides the fact of
it, io.EOF has a fixed error message, "EOF". For other errors, we may need to
report both the quality and quantity of the error, so to speak, so a fixed error value
will not do. In Section 7.11, we’ll present a more systematic way to distinguish certain
error values from others.

5.5 Function Values
Functions are first-class values in Go: like other values, function values have types,
and they may be assigned to variables or passed to or returned from functions. A
function value may be called like any other function. For example:

Click here to view code image

func square(n int) int { return n * n }
func negative(n int) int { return -n }
func product(m, n int) int { return m * n }

f := square
fmt.Println(f(3)) // "9"

f = negative
fmt.Println(f(3)) // "-3"
fmt.Printf("%T\n", f) // "func(int) int"

f = product // compile error: can't assign f(int, int)
int to f(int) int

The zero value of a function type is nil. Calling a nil function value causes a panic:

Click here to view code image

var f func(int) int
f(3) // panic: call of nil function

Function values may be compared with nil:
var f func(int) int
if f != nil {
 f(3)
}

but they are not comparable, so they may not be compared against each other or used
as keys in a map.
Function values let us parameterize our functions over not just data, but behavior too.
The standard libraries contain many examples. For instance, strings.Map applies

a function to each character of a string, joining the results to make another string.

Click here to view code image

func add1(r rune) rune { return r + 1 }

fmt.Println(strings.Map(add1, "HAL-9000")) //
"IBM.:111"
fmt.Println(strings.Map(add1, "VMS")) // "WNT"

fmt.Println(strings.Map(add1, "Admix")) // "Benjy"

The findLinks function from Section 5.2 uses a helper function, visit, to visit
all the nodes in an HTML document and apply an action to each one. Using a
function value, we can separate the logic for tree traversal from the logic for the
action to be applied to each node, letting us reuse the traversal with different actions.

Click here to view code image

gopl.io/ch5/outline2
// forEachNode calls the functions pre(x) and post(x)
for each node
// x in the tree rooted at n. Both functions are
optional.
// pre is called before the children are visited
(preorder) and
// post is called after (postorder).
func forEachNode(n *html.Node, pre, post func(n
*html.Node)) {
 if pre != nil {
 pre(n)
 }

 for c := n.FirstChild; c != nil; c = c.NextSibling
{
 forEachNode(c, pre, post)
 }

 if post != nil {
 post(n)

 }
}

The forEachNode function accepts two function arguments, one to call before a
node’s children are visited and one to call after. This arrangement gives the caller a
great deal of flexibility. For example, the functions startElement and
endElement print the start and end tags of an HTML element like ...:

Click here to view code image

var depth int

func startElement(n *html.Node) {
 if n.Type == html.ElementNode {
 fmt.Printf("%*s<%s>\n", depth*2, "", n.Data)
 depth++
 }
}

func endElement(n *html.Node) {
 if n.Type == html.ElementNode {
 depth--
 fmt.Printf("%*s</%s>\n", depth*2, "", n.Data)
 }
}

The functions also indent the output using another fmt.Printf trick. The *
adverb in %*s prints a string padded with a variable number of spaces. The width
and the string are provided by the arguments depth*2 and "".

If we call forEachNode on an HTML document, like this:

Click here to view code image

forEachNode(doc, startElement, endElement)

we get a more elaborate variation on the output of our earlier outline program:

Click here to view code image

$ go build gopl.io/ch5/outline2
$./outline2 http://gopl.io
<html>

 <head>
 <meta>
 </meta>
 <title>
 </title>
 <style>
 </style>
 </head>
 <body>
 <table>
 <tbody>
 <tr>
 <td>
 <a>

...

Exercise 5.7: Develop startElement and endElement into a general HTML
pretty-printer. Print comment nodes, text nodes, and the attributes of each element
(). Use short forms like instead of
when an element has no children. Write a test to ensure that the output can be parsed
successfully. (See Chapter 11.)
Exercise 5.8: Modify forEachNode so that the pre and post functions return a
boolean result indicating whether to continue the traversal. Use it to write a function
ElementByID with the following signature that finds the first HTML element with
the specified id attribute. The function should stop the traversal as soon as a match
is found.

Click here to view code image

func ElementByID(doc *html.Node, id string) *html.Node

Exercise 5.9: Write a function expand(s string, f func(string)
string) string that replaces each substring “$foo” within s by the text
returned by f("foo").

5.6 Anonymous Functions
Named functions can be declared only at the package level, but we can use a function
literal to denote a function value within any expression. A function literal is written
like a function declaration, but without a name following the func keyword. It is an
expression, and its value is called an anonymous function.
Function literals let us define a function at its point of use. As an example, the earlier
call to strings.Map can be rewritten as

Click here to view code image

strings.Map(func(r rune) rune { return r + 1 }, "HAL-
9000")

More importantly, functions defined in this way have access to the entire lexical
environment, so the inner function can refer to variables from the enclosing function,
as this example shows:

Click here to view code image

gopl.io/ch5/squares
// squares returns a function that returns
// the next square number each time it is called.
func squares() func() int {
 var x int
 return func() int {
 x++
 return x * x
 }
}

func main() {
 f := squares()
 fmt.Println(f()) // "1"
 fmt.Println(f()) // "4"
 fmt.Println(f()) // "9"
 fmt.Println(f()) // "16"
}

The function squares returns another function, of type func() int . A call to
squares creates a local variable x and returns an anonymous function that, each
time it is called, increments x and returns its square. A second call to squares
would create a second variable x and return a new anonymous function which
increments that variable.
The squares example demonstrates that function values are not just code but can
have state. The anonymous inner function can access and update the local variables
of the enclosing function squares. These hidden variable references are why we
classify functions as reference types and why function values are not comparable.
Function values like these are implemented using a technique called closures, and Go
programmers often use this term for function values.
Here again we see an example where the lifetime of a variable is not determined by its
scope: the variable x exists after squares has returned within main, even though x
is hidden inside f.

As a somewhat academic example of anonymous functions, consider the problem of
computing a sequence of computer science courses that satisfies the prerequisite
requirements of each one. The prerequisites are given in the prereqs table below,
which is a mapping from each course to the list of courses that must be completed
before it.

Click here to view code image

gopl.io/ch5/toposort
// prereqs maps computer science courses to their
prerequisites.
var prereqs = map[string][]string{
 "algorithms": {"data structures"},
 "calculus": {"linear algebra"},

 "compilers": {
 "data structures",
 "formal languages",
 "computer organization",
 },

 "data structures": {"discrete math"},
 "databases": {"data structures"},

 "discrete math": {"intro to programming"},
 "formal languages": {"discrete math"},
 "networks": {"operating systems"},
 "operating systems": {"data structures",
"computer organization"},
 "programming languages": {"data structures",
"computer organization"},
}

This kind of problem is known as topological sorting. Conceptually, the prerequisite
information forms a directed graph with a node for each course and edges from each
course to the courses that it depends on. The graph is acyclic: there is no path from a
course that leads back to itself. We can compute a valid sequence using depth-first
search through the graph with the code below:

Click here to view code image

func main() {
 for i, course := range topoSort(prereqs) {
 fmt.Printf("%d:\t%s\n", i+1, course)
 }
}

func topoSort(m map[string][]string) []string {
 var order []string
 seen := make(map[string]bool)
 var visitAll func(items []string)

 visitAll = func(items []string) {
 for _, item := range items {
 if !seen[item] {
 seen[item] = true
 visitAll(m[item])
 order = append(order, item)
 }
 }
 }

 var keys []string
 for key := range m {

 keys = append(keys, key)
 }

 sort.Strings(keys)
 visitAll(keys)
 return order
}

When an anonymous function requires recursion, as in this example, we must first
declare a variable, and then assign the anonymous function to that variable. Had these
two steps been combined in the declaration, the function literal would not be within
the scope of the variable visitAll so it would have no way to call itself
recursively:

Click here to view code image

visitAll := func(items []string) {
 // ...
 visitAll(m[item]) // compile error: undefined:
visitAll
 // ...
}

The output of the toposort program is shown below. It is deterministic, an often-
desirable property that doesn’t always come for free. Here, the values of the
prereqs map are slices, not more maps, so their iteration order is deterministic, and
we sorted the keys of prereqs before making the initial calls to visitAll.

1: intro to programming
2: discrete math
3: data structures
4: algorithms
5: linear algebra
6: calculus
7: formal languages
8: computer organization
9: compilers
10: databases
11: operating systems
12: networks
13: programming languages

Let’s return to our findLinks example. We’ve moved the link-extraction function
links.Extract to its own package, since we’ll use it again in Chapter 8. We
replaced the visit function with an anonymous function that appends to the
links slice directly, and used forEachNode to handle the traversal. Since
Extract needs only the pre function, it passes nil for the post argument.

Click here to view code image

gopl.io/ch5/links
// Package links provides a link-extraction function.
package links

import (
 "fmt"
 "net/http"

 "golang.org/x/net/html"
)

// Extract makes an HTTP GET request to the specified
URL, parses
// the response as HTML, and returns the links in the
HTML document.
func Extract(url string) ([]string, error) {
 resp, err := http.Get(url)
 if err != nil {
 return nil, err
 }
 if resp.StatusCode != http.StatusOK {
 resp.Body.Close()
 return nil, fmt.Errorf("getting %s: %s", url,
resp.Status)
 }

 doc, err := html.Parse(resp.Body)
 resp.Body.Close()
 if err != nil {
 return nil, fmt.Errorf("parsing %s as HTML:
%v", url, err)

 }

 var links []string
 visitNode := func(n *html.Node) {
 if n.Type == html.ElementNode && n.Data == "a"
{
 for _, a := range n.Attr {
 if a.Key != "href" {
 continue
 }
 link, err :=
resp.Request.URL.Parse(a.Val)
 if err != nil {
 continue // ignore bad URLs
 }
 links = append(links, link.String())
 }
 }
 }
 forEachNode(doc, visitNode, nil)
 return links, nil
}

Instead of appending the raw href attribute value to the links slice, this version
parses it as a URL relative to the base URL of the document,
resp.Request.URL. The resulting link is in absolute form, suitable for use in a
call to http.Get.

Crawling the web is, at its heart, a problem of graph traversal. The topoSort
example showed a depth-first traversal; for our web crawler, we’ll use breadth-first
traversal, at least initially. In Chapter 8, we’ll explore concurrent traversal.
The function below encapsulates the essence of a breadth-first traversal. The caller
provides an initial list worklist of items to visit and a function value f to call for
each item. Each item is identified by a string. The function f returns a list of new
items to append to the worklist. The breadthFirst function returns when all
items have been visited. It maintains a set of strings to ensure that no item is visited
twice.

Click here to view code image

gopl.io/ch5/findlinks3
// breadthFirst calls f for each item in the worklist.
// Any items returned by f are added to the worklist.
// f is called at most once for each item.
func breadthFirst(f func(item string) []string,
worklist []string) {
 seen := make(map[string]bool)
 for len(worklist) > 0 {
 items := worklist
 worklist = nil
 for _, item := range items {
 if !seen[item] {
 seen[item] = true
 worklist = append(worklist,
f(item)...)
 }
 }
 }
}

As we explained in passing in Chapter 3, the argument “f(item)...” causes all
the items in the list returned by f to be appended to the worklist.

In our crawler, items are URLs. The crawl function we’ll supply to
breadthFirst prints the URL, extracts its links, and returns them so that they too
are visited.

Click here to view code image

func crawl(url string) []string {
 fmt.Println(url)
 list, err := links.Extract(url)
 if err != nil {
 log.Print(err)
 }
 return list
}

To start the crawler off, we’ll use the command-line arguments as the initial URLs.

Click here to view code image

func main() {
 // Crawl the web breadth-first,
 // starting from the command-line arguments.
 breadthFirst(crawl, os.Args[1:])
}

Let’s crawl the web starting from https://golang.org. Here are some of the
resulting links:

Click here to view code image

$ go build gopl.io/ch5/findlinks3
$./findlinks3 https://golang.org
https://golang.org/
https://golang.org/doc/
https://golang.org/pkg/
https://golang.org/project/
https://code.google.com/p/go-tour/
https://golang.org/doc/code.html
https://www.youtube.com/watch?v=XCsL89YtqCs
http://research.swtch.com/gotour
https://vimeo.com/53221560
...

The process ends when all reachable web pages have been crawled or the memory of
the computer is exhausted.
Exercise 5.10: Rewrite topoSort to use maps instead of slices and eliminate the
initial sort. Verify that the results, though nondeterministic, are valid topological
orderings.
Exercise 5.11: The instructor of the linear algebra course decides that calculus is now
a prerequisite. Extend the topoSort function to report cycles.

Exercise 5.12: The startElement and endElement functions in
gopl.io/ch5/outline2 (§5.5) share a global variable, depth. Turn them into
anonymous functions that share a variable local to the outline function.

Exercise 5.13: Modify crawl to make local copies of the pages it finds, creating
directories as necessary. Don’t make copies of pages that come from a different
domain. For example, if the original page comes from golang.org, save all files
from there, but exclude ones from vimeo.com.

Exercise 5.14: Use the breadthFirst function to explore a different structure.
For example, you could use the course dependencies from the topoSort example
(a directed graph), the file system hierarchy on your computer (a tree), or a list of bus
or subway routes downloaded from your city government’s web site (an undirected
graph).

5.6.1 Caveat: Capturing Iteration Variables

In this section, we’ll look at a pitfall of Go’s lexical scope rules that can cause
surprising results. We urge you to understand the problem before proceeding, because
the trap can ensnare even experienced programmers.
Consider a program that must create a set of directories and later remove them. We
can use a slice of function values to hold the clean-up operations. (For brevity, we
have omitted all error handling in this example.)

Click here to view code image

var rmdirs []func()
for _, d := range tempDirs() {
 dir := d // NOTE: necessary!
 os.MkdirAll(dir, 0755) // creates parent
directories too
 rmdirs = append(rmdirs, func() {
 os.RemoveAll(dir)
 })
}

// ...do some work...

for _, rmdir := range rmdirs {
 rmdir() // clean up
}

You may be wondering why we assigned the loop variable d to a new local variable
dir within the loop body, instead of just naming the loop variable dir as in this
subtly incorrect variant:

Click here to view code image

var rmdirs []func()
for _, dir := range tempDirs() {
 os.MkdirAll(dir, 0755)
 rmdirs = append(rmdirs, func() {
 os.RemoveAll(dir) // NOTE: incorrect!
 })
}

The reason is a consequence of the scope rules for loop variables. In the program
immediately above, the for loop introduces a new lexical block in which the variable
dir is declared. All function values created by this loop “capture” and share the
same variable—an addressable storage location, not its value at that particular
moment. The value of dir is updated in successive iterations, so by the time the
cleanup functions are called, the dir variable has been updated several times by the
now-completed for loop. Thus dir holds the value from the final iteration, and
consequently all calls to os.RemoveAll will attempt to remove the same directory.

Frequently, the inner variable introduced to work around this problem—dir in our
example—is given the exact same name as the outer variable of which it is a copy,
leading to odd-looking but crucial variable declarations like this:

Click here to view code image

for _, dir := range tempDirs() {
 dir := dir // declares inner dir, initialized to
outer dir
 // ...
}

The risk is not unique to range-based for loops. The loop in the example below
suffers from the same problem due to unintended capture of the index variable i.

Click here to view code image

var rmdirs []func()
dirs := tempDirs()
for i := 0; i < len(dirs); i++ {
 os.MkdirAll(dirs[i], 0755) // OK
 rmdirs = append(rmdirs, func() {
 os.RemoveAll(dirs[i]) // NOTE: incorrect!
 })

}

The problem of iteration variable capture is most often encountered when using the
go statement (Chapter 8) or with defer (which we will see in a moment) since both
may delay the execution of a function value until after the loop has finished. But the
problem is not inherent to go or defer.

5.7 Variadic Functions
A variadic function is one that can be called with varying numbers of arguments. The
most familiar examples are fmt.Printf and its variants. Printf requires one
fixed argument at the beginning, then accepts any number of subsequent arguments.
To declare a variadic function, the type of the final parameter is preceded by an
ellipsis, “...”, which indicates that the function may be called with any number of
arguments of this type.

Click here to view code image

gopl.io/ch5/sum
func sum(vals ...int) int {
 total := 0
 for _, val := range vals {
 total += val
 }
 return total
}

The sum function above returns the sum of zero or more int arguments. Within the
body of the function, the type of vals is an []int slice. When sum is called, any
number of values may be provided for its vals parameter.

Click here to view code image

fmt.Println(sum()) // "0"
fmt.Println(sum(3)) // "3"
fmt.Println(sum(1, 2, 3, 4)) // "10"

Implicitly, the caller allocates an array, copies the arguments into it, and passes a slice
of the entire array to the function. The last call above thus behaves the same as the
call below, which shows how to invoke a variadic function when the arguments are
already in a slice: place an ellipsis after the final argument.

Click here to view code image

values := []int{1, 2, 3, 4}
fmt.Println(sum(values...)) // "10"

Although the ...int parameter behaves like a slice within the function body, the
type of a variadic function is distinct from the type of a function with an ordinary
slice parameter.

Click here to view code image

func f(...int) {}
func g([]int) {}

fmt.Printf("%T\n", f) // "func(...int)"
fmt.Printf("%T\n", g) // "func([]int)"

Variadic functions are often used for string formatting. The errorf function below
constructs a formatted error message with a line number at the beginning. The suffix
f is a widely followed naming convention for variadic functions that accept a
Printf-style format string.

Click here to view code image

func errorf(linenum int, format string, args
...interface{}) {
 fmt.Fprintf(os.Stderr, "Line %d: ", linenum)
 fmt.Fprintf(os.Stderr, format, args...)
 fmt.Fprintln(os.Stderr)
}

linenum, name := 12, "count"
errorf(linenum, "undefined: %s", name) // "Line 12:
undefined: count"

The interface{} type means that this function can accept any values at all for its
final arguments, as we’ll explain in Chapter 7.
Exercise 5.15: Write variadic functions max and min, analogous to sum. What
should these functions do when called with no arguments? Write variants that require
at least one argument.
Exercise 5.16: Write a variadic version of strings.Join.

Exercise 5.17: Write a variadic function ElementsByTagName that, given an
HTML node tree and zero or more names, returns all the elements that match one of
those names. Here are two example calls:

Click here to view code image

func ElementsByTagName(doc *html.Node, name ...string)
[]*html.Node

images := ElementsByTagName(doc, "img")
headings := ElementsByTagName(doc, "h1", "h2", "h3",
"h4")

5.8 Deferred Function Calls
Our findLinks examples used the output of http.Get as the input to
html.Parse. This works well if the content of the requested URL is indeed
HTML, but many pages contain images, plain text, and other file formats. Feeding
such files into an HTML parser could have undesirable effects.
The program below fetches an HTML document and prints its title. The title
function inspects the Content-Type header of the server’s response and returns
an error if the document is not HTML.

Click here to view code image

gopl.io/ch5/title1
func title(url string) error {
 resp, err := http.Get(url)
 if err != nil {
 return err
 }

 // Check Content-Type is HTML (e.g., "text/html;
charset=utf-8").
 ct := resp.Header.Get("Content-Type")
 if ct != "text/html" && !strings.HasPrefix(ct,
"text/html;") {
 resp.Body.Close()
 return fmt.Errorf("%s has type %s, not
text/html", url, ct)
 }

 doc, err := html.Parse(resp.Body)
 resp.Body.Close()
 if err != nil {
 return fmt.Errorf("parsing %s as HTML: %v",
url, err)
 }

 visitNode := func(n *html.Node) {

 if n.Type == html.ElementNode && n.Data ==
"title" &&
 n.FirstChild != nil {
 fmt.Println(n.FirstChild.Data)
 }
 }
 forEachNode(doc, visitNode, nil)
 return nil
}

Here’s a typical session, slightly edited to fit:

Click here to view code image

$ go build gopl.io/ch5/title1
$./title1 http://gopl.io
The Go Programming Language
$./title1 https://golang.org/doc/effective_go.html
Effective Go - The Go Programming Language
$./title1 https://golang.org/doc/gopher/frontpage.png
title: https://golang.org/doc/gopher/frontpage.png
 has type image/png, not text/html

Observe the duplicated resp.Body.Close() call, which ensures that title
closes the network connection on all execution paths, including failures. As functions
grow more complex and have to handle more errors, such duplication of clean-up
logic may become a maintenance problem. Let’s see how Go’s novel defer
mechanism makes things simpler.
Syntactically, a defer statement is an ordinary function or method call prefixed by
the keyword defer. The function and argument expressions are evaluated when the
statement is executed, but the actual call is deferred until the function that contains
the defer statement has finished, whether normally, by executing a return statement
or falling off the end, or abnormally, by panicking. Any number of calls may be
deferred; they are executed in the reverse of the order in which they were deferred.
A defer statement is often used with paired operations like open and close, connect
and disconnect, or lock and unlock to ensure that resources are released in all cases,
no matter how complex the control flow. The right place for a defer statement that
releases a resource is immediately after the resource has been successfully acquired.
In the title function below, a single deferred call replaces both previous calls to

resp.Body.Close():

Click here to view code image

gopl.io/ch5/title2
func title(url string) error {
 resp, err := http.Get(url)
 if err != nil {
 return err
 }
 defer resp.Body.Close()

 ct := resp.Header.Get("Content-Type")
 if ct != "text/html" && !strings.HasPrefix(ct,
"text/html;") {
 return fmt.Errorf("%s has type %s, not
text/html", url, ct)
 }

 doc, err := html.Parse(resp.Body)
 if err != nil {
 return fmt.Errorf("parsing %s as HTML: %v",
url, err)
 }

 // ...print doc's title element...

 return nil
}

The same pattern can be used for other resources beside network connections, for
instance to close an open file:

Click here to view code image

io/ioutil
package ioutil

func ReadFile(filename string) ([]byte, error) {
 f, err := os.Open(filename)

 if err != nil {
 return nil, err
 }
 defer f.Close()
 return ReadAll(f)
}

or to unlock a mutex (§9.2):
var mu sync.Mutex
var m = make(map[string]int)

func lookup(key string) int {
 mu.Lock()
 defer mu.Unlock()
 return m[key]
}

The defer statement can also be used to pair “on entry” and “on exit” actions when
debugging a complex function. The bigSlowOperation function below calls
trace immediately, which does the “on entry” action then returns a function value
that, when called, does the corresponding “on exit” action. By deferring a call to the
returned function in this way, we can instrument the entry point and all exit points of
a function in a single statement and even pass values, like the start time, between
the two actions. But don’t forget the final parentheses in the defer statement, or the
“on entry” action will happen on exit and the on-exit action won’t happen at all!

Click here to view code image

gopl.io/ch5/trace
func bigSlowOperation() {
 defer trace("bigSlowOperation")() // don't forget
the extra parentheses
 // ...lots of work...
 time.Sleep(10 * time.Second) // simulate slow
operation by sleeping
}

func trace(msg string) func() {
 start := time.Now()

 log.Printf("enter %s", msg)
 return func() { log.Printf("exit %s (%s)", msg,
time.Since(start)) }
}

Each time bigSlowOperation is called, it logs its entry and exit and the elapsed
time between them. (We used time.Sleep to simulate a slow operation.)

Click here to view code image

$ go build gopl.io/ch5/trace
$./trace
2015/11/18 09:53:26 enter bigSlowOperation
2015/11/18 09:53:36 exit bigSlowOperation
(10.000589217s)

Deferred functions run after return statements have updated the function’s result
variables. Because an anonymous function can access its enclosing function’s
variables, including named results, a deferred anonymous function can observe the
function’s results.
Consider the function double:

Click here to view code image

func double(x int) int {
 return x + x
}

By naming its result variable and adding a defer statement, we can make the
function print its arguments and results each time it is called.

Click here to view code image

func double(x int) (result int) {
 defer func() { fmt.Printf("double(%d) = %d\n", x,
result) }()
 return x + x
}

_ = double(4)
// Output:
// "double(4) = 8"

This trick is overkill for a function as simple as double but may be useful in
functions with many return statements.
A deferred anonymous function can even change the values that the enclosing
function returns to its caller:

func triple(x int) (result int) {
 defer func() { result += x }()
 return double(x)
}

fmt.Println(triple(4)) // "12"

Because deferred functions aren’t executed until the very end of a function’s
execution, a defer statement in a loop deserves extra scrutiny. The code below
could run out of file descriptors since no file will be closed until all files have been
processed:

Click here to view code image

for _, filename := range filenames {
 f, err := os.Open(filename)
 if err != nil {
 return err
 }
 defer f.Close() // NOTE: risky; could run out of
file descriptors
 // ...process f...
}

One solution is to move the loop body, including the defer statement, into another
function that is called on each iteration.

Click here to view code image

for _, filename := range filenames {
 if err := doFile(filename); err != nil {
 return err
 }
}

func doFile(filename string) error {

 f, err := os.Open(filename)
 if err != nil {
 return err
 }
 defer f.Close()
 // ...process f...
}

The example below is an improved fetch program (§1.5) that writes the HTTP
response to a local file instead of to the standard output. It derives the file name from
the last component of the URL path, which it obtains using the path.Base
function.

Click here to view code image

gopl.io/ch5/fetch
// Fetch downloads the URL and returns the
// name and length of the local file.
func fetch(url string) (filename string, n int64, err
error) {
 resp, err := http.Get(url)
 if err != nil {
 return "", 0, err
 }
 defer resp.Body.Close()

 local := path.Base(resp.Request.URL.Path)
 if local == "/" {
 local = "index.html"
 }
 f, err := os.Create(local)
 if err != nil {
 return "", 0, err
 }
 n, err = io.Copy(f, resp.Body)
 // Close file, but prefer error from Copy, if any.
 if closeErr := f.Close(); err == nil {
 err = closeErr
 }
 return local, n, err

}

The deferred call to resp.Body.Close should be familiar by now. It’s tempting
to use a second deferred call, to f.Close, to close the local file, but this would be
subtly wrong because os.Create opens a file for writing, creating it as needed. On
many file systems, notably NFS, write errors are not reported immediately but may
be postponed until the file is closed. Failure to check the result of the close operation
could cause serious data loss to go unnoticed. However, if both io.Copy and
f.Close fail, we should prefer to report the error from io.Copy since it occurred
first and is more likely to tell us the root cause.
Exercise 5.18: Without changing its behavior, rewrite the fetch function to use
defer to close the writable file.

5.9 Panic
Go’s type system catches many mistakes at compile time, but others, like an out-of-
bounds array access or nil pointer dereference, require checks at run time. When the
Go runtime detects these mistakes, it panics.
During a typical panic, normal execution stops, all deferred function calls in that
goroutine are executed, and the program crashes with a log message. This log
message includes the panic value, which is usually an error message of some sort,
and, for each goroutine, a stack trace showing the stack of function calls that were
active at the time of the panic. This log message often has enough information to
diagnose the root cause of the problem without running the program again, so it
should always be included in a bug report about a panicking program.
Not all panics come from the runtime. The built-in panic function may be called
directly; it accepts any value as an argument. A panic is often the best thing to do
when some “impossible” situation happens, for instance, execution reaches a case that
logically can’t happen:

Click here to view code image

switch s := suit(drawCard()); s {
case "Spades": // ...
case "Hearts": // ...
case "Diamonds": // ...
case "Clubs": // ...
default:
 panic(fmt.Sprintf("invalid suit %q", s)) // Joker?
}

It’s good practice to assert that the preconditions of a function hold, but this can
easily be done to excess. Unless you can provide a more informative error message or
detect an error sooner, there is no point asserting a condition that the runtime will
check for you.

Click here to view code image

func Reset(x *Buffer) {
 if x == nil {
 panic("x is nil") // unnecessary!

 }
 x.elements = nil
}

Although Go’s panic mechanism resembles exceptions in other languages, the
situations in which panic is used are quite different. Since a panic causes the program
to crash, it is generally used for grave errors, such as a logical inconsistency in the
program; diligent programmers consider any crash to be proof of a bug in their code.
In a robust program, “expected” errors, the kind that arise from incorrect input,
misconfiguration, or failing I/O, should be handled gracefully; they are best dealt with
using error values.

Consider the function regexp.Compile, which compiles a regular expression into
an efficient form for matching. It returns an error if called with an ill-formed
pattern, but checking this error is unnecessary and burdensome if the caller knows
that a particular call cannot fail. In such cases, it’s reasonable for the caller to handle
an error by panicking, since it is believed to be impossible.
Since most regular expressions are literals in the program source code, the regexp
package provides a wrapper function regexp.MustCompile that does this check:

Click here to view code image

package regexp

func Compile(expr string) (*Regexp, error) { /* ... */
}

func MustCompile(expr string) *Regexp {
 re, err := Compile(expr)
 if err != nil {
 panic(err)
 }
 return re
}

The wrapper function makes it convenient for clients to initialize a package-level
variable with a compiled regular expression, like this:

Click here to view code image

var httpSchemeRE = regexp.MustCompile(`^https?:`) //

"http:" or "https:"

Of course, MustCompile should not be called with untrusted input values. The
Must prefix is a common naming convention for functions of this kind, like
template.Must in Section 4.6.

When a panic occurs, all deferred functions are run in reverse order, starting with
those of the topmost function on the stack and proceeding up to main, as the
program below demonstrates:

Click here to view code image

gopl.io/ch5/defer1
func main() {
 f(3)
}

func f(x int) {
 fmt.Printf("f(%d)\n", x+0/x) // panics if x == 0
 defer fmt.Printf("defer %d\n", x)
 f(x - 1)
}

When run, the program prints the following to the standard output:
f(3)
f(2)
f(1)
defer 1
defer 2
defer 3

A panic occurs during the call to f(0), causing the three deferred calls to
fmt.Printf to run. Then the runtime terminates the program, printing the panic
message and a stack dump to the standard error stream (simplified for clarity):

Click here to view code image

panic: runtime error: integer divide by zero
main.f(0)
 src/gopl.io/ch5/defer1/defer.go:14
main.f(1)

 src/gopl.io/ch5/defer1/defer.go:16
main.f(2)
 src/gopl.io/ch5/defer1/defer.go:16

main.f(3)
 src/gopl.io/ch5/defer1/defer.go:16
main.main()
 src/gopl.io/ch5/defer1/defer.go:10

As we will see soon, it is possible for a function to recover from a panic so that it
does not terminate the program.
For diagnostic purposes, the runtime package lets the programmer dump the stack
using the same machinery. By deferring a call to printStack in main,

Click here to view code image

gopl.io/ch5/defer2
func main() {
 defer printStack()
 f(3)
}

func printStack() {
 var buf [4096]byte
 n := runtime.Stack(buf[:], false)
 os.Stdout.Write(buf[:n])
}

the following additional text (again simplified for clarity) is printed to the standard
output:

Click here to view code image

goroutine 1 [running]:
main.printStack()
 src/gopl.io/ch5/defer2/defer.go:20
main.f(0)
 src/gopl.io/ch5/defer2/defer.go:27
main.f(1)
 src/gopl.io/ch5/defer2/defer.go:29

main.f(2)
 src/gopl.io/ch5/defer2/defer.go:29
main.f(3)
 src/gopl.io/ch5/defer2/defer.go:29
main.main()
 src/gopl.io/ch5/defer2/defer.go:15

Readers familiar with exceptions in other languages may be surprised that
runtime.Stack can print information about functions that seem to have already
been “unwound.” Go’s panic mechanism runs the deferred functions before it
unwinds the stack.

5.10 Recover
Giving up is usually the right response to a panic, but not always. It might be possible
to recover in some way, or at least clean up the mess before quitting. For example, a
web server that encounters an unexpected problem could close the connection rather
than leave the client hanging, and during development, it might report the error to the
client too.
If the built-in recover function is called within a deferred function and the function
containing the defer statement is panicking, recover ends the current state of
panic and returns the panic value. The function that was panicking does not continue
where it left off but returns normally. If recover is called at any other time, it has
no effect and returns nil.

To illustrate, consider the development of a parser for a language. Even when it
appears to be working well, given the complexity of its job, bugs may still lurk in
obscure corner cases. We might prefer that, instead of crashing, the parser turns these
panics into ordinary parse errors, perhaps with an extra message exhorting the user to
file a bug report.

Click here to view code image

func Parse(input string) (s *Syntax, err error) {
 defer func() {
 if p := recover(); p != nil {
 err = fmt.Errorf("internal error: %v", p)
 }
 }()
 // ...parser...
}

The deferred function in Parse recovers from a panic, using the panic value to
construct an error message; a fancier version might include the entire call stack using
runtime.Stack. The deferred function then assigns to the err result, which is
returned to the caller.
Recovering indiscriminately from panics is a dubious practice because the state of a
package’s variables after a panic is rarely well defined or documented. Perhaps a
critical update to a data structure was incomplete, a file or network connection was

opened but not closed, or a lock was acquired but not released. Furthermore, by
replacing a crash with, say, a line in a log file, indiscriminate recovery may cause bugs
to go unnoticed.
Recovering from a panic within the same package can help simplify the handling of
complex or unexpected errors, but as a general rule, you should not attempt to
recover from another package’s panic. Public APIs should report failures as errors.
Similarly, you should not recover from a panic that may pass through a function you
do not maintain, such as a caller-provided callback, since you cannot reason about its
safety.
For example, the net/http package provides a web server that dispatches
incoming requests to user-provided handler functions. Rather than let a panic in one
of these handlers kill the process, the server calls recover, prints a stack trace, and
continues serving. This is convenient in practice, but it does risk leaking resources or
leaving the failed handler in an unspecified state that could lead to other problems.
For all the above reasons, it’s safest to recover selectively if at all. In other words,
recover only from panics that were intended to be recovered from, which should be
rare. This intention can be encoded by using a distinct, unexported type for the panic
value and testing whether the value returned by recover has that type. (We’ll see
one way to do this in the next example.) If so, we report the panic as an ordinary
error; if not, we call panic with the same value to resume the state of panic.

The example below is a variation on the title program that reports an error if the
HTML document contains multiple <title> elements. If so, it aborts the recursion
by calling panic with a value of the special type bailout.

Click here to view code image

gopl.io/ch5/title3
// soleTitle returns the text of the first non-empty
title element
// in doc, and an error if there was not exactly one.
func soleTitle(doc *html.Node) (title string, err
error) {
 type bailout struct{}

 defer func() {
 switch p := recover(); p {

 case nil:
 // no panic
 case bailout{}:
 // "expected" panic
 err = fmt.Errorf("multiple title
elements")
 default:
 panic(p) // unexpected panic; carry on
panicking
 }
 }()

 // Bail out of recursion if we find more than one
non-empty title.
 forEachNode(doc, func(n *html.Node) {
 if n.Type == html.ElementNode && n.Data ==
"title" &&
 n.FirstChild != nil {
 if title != "" {
 panic(bailout{}) // multiple title
elements
 }
 title = n.FirstChild.Data
 }
 }, nil)
 if title == "" {
 return "", fmt.Errorf("no title element")
 }
 return title, nil
}

The deferred handler function calls recover, checks the panic value, and reports an
ordinary error if the value was bailout{}. All other non-nil values indicate an
unexpected panic, in which case the handler calls panic with that value, undoing the
effect of recover and resuming the original state of panic. (This example does
somewhat violate our advice about not using panics for “expected” errors, but it
provides a compact illustration of the mechanics.)
From some conditions there is no recovery. Running out of memory, for example,
causes the Go runtime to terminate the program with a fatal error.

Exercise 5.19: Use panic and recover to write a function that contains no
return statement yet returns a non-zero value.

6. Methods
Since the early 1990s, object-oriented programming (OOP) has been the dominant
programming paradigm in industry and education, and nearly all widely used
languages developed since then have included support for it. Go is no exception.
Although there is no universally accepted definition of object-oriented programming,
for our purposes, an object is simply a value or variable that has methods, and a
method is a function associated with a particular type. An object-oriented program is
one that uses methods to express the properties and operations of each data structure
so that clients need not access the object’s representation directly.
In earlier chapters, we have made regular use of methods from the standard library,
like the Seconds method of type time.Duration:

Click here to view code image

const day = 24 * time.Hour
fmt.Println(day.Seconds()) // "86400"

and we defined a method of our own in Section 2.5, a String method for the
Celsius type:

Click here to view code image

func (c Celsius) String() string { return
fmt.Sprintf("%g°C", c) }

In this chapter, the first of two on object-oriented programming, we’ll show how to
define and use methods effectively. We’ll also cover two key principles of object-
oriented programming, encapsulation and composition.

6.1 Method Declarations
A method is declared with a variant of the ordinary function declaration in which an
extra parameter appears before the function name. The parameter attaches the
function to the type of that parameter.
Let’s write our first method in a simple package for plane geometry:

Click here to view code image

gopl.io/ch6/geometry
package geometry

import "math"

type Point struct{ X, Y float64 }

// traditional function
func Distance(p, q Point) float64 {
 return math.Hypot(q.X-p.X, q.Y-p.Y)
}

// same thing, but as a method of the Point type
func (p Point) Distance(q Point) float64 {
 return math.Hypot(q.X-p.X, q.Y-p.Y)
}

The extra parameter p is called the method’s receiver, a legacy from early object-
oriented languages that described calling a method as “sending a message to an
object.”
In Go, we don’t use a special name like this or self for the receiver; we choose
receiver names just as we would for any other parameter. Since the receiver name
will be frequently used, it’s a good idea to choose something short and to be
consistent across methods. A common choice is the first letter of the type name, like
p for Point.

In a method call, the receiver argument appears before the method name. This
parallels the declaration, in which the receiver parameter appears before the method

name.

Click here to view code image

p := Point{1, 2}
q := Point{4, 6}
fmt.Println(Distance(p, q)) // "5", function call
fmt.Println(p.Distance(q)) // "5", method call

There’s no conflict between the two declarations of functions called Distance
above. The first declares a package-level function called geometry.Distance.
The second declares a method of the type Point, so its name is
Point.Distance.

The expression p.Distance is called a selector, because it selects the appropriate
Distance method for the receiver p of type Point. Selectors are also used to
select fields of struct types, as in p.X. Since methods and fields inhabit the same
name space, declaring a method X on the struct type Point would be ambiguous
and the compiler will reject it.
Since each type has its own name space for methods, we can use the name
Distance for other methods so long as they belong to different types. Let’s define
a type Path that represents a sequence of line segments and give it a Distance
method too.

Click here to view code image

// A Path is a journey connecting the points with
straight lines.
type Path []Point

// Distance returns the distance traveled along the
path.
func (path Path) Distance() float64 {
 sum := 0.0
 for i := range path {
 if i > 0 {
 sum += path[i-1].Distance(path[i])
 }
 }
 return sum

}

Path is a named slice type, not a struct type like Point, yet we can still define
methods for it. In allowing methods to be associated with any type, Go is unlike many
other object-oriented languages. It is often convenient to define additional behaviors
for simple types such as numbers, strings, slices, maps, and sometimes even
functions. Methods may be declared on any named type defined in the same package,
so long as its underlying type is neither a pointer nor an interface.
The two Distance methods have different types. They’re not related to each other
at all, though Path.Distance uses Point.Distance internally to compute
the length of each segment that connects adjacent points.
Let’s call the new method to compute the perimeter of a right triangle:

Click here to view code image

perim := Path{
 {1, 1},
 {5, 1},
 {5, 4},
 {1, 1},
}
fmt.Println(perim.Distance()) // "12"

In the two calls above to methods named Distance, the compiler determines which
function to call based on both the method name and the type of the receiver. In the
first, path[i-1] has type Point so Point.Distance is called; in the second,
perim has type Path, so Path.Distance is called.

All methods of a given type must have unique names, but different types can use the
same name for a method, like the Distance methods for Point and Path;
there’s no need to qualify function names (for example, PathDistance) to
disambiguate. Here we see the first benefit to using methods over ordinary functions:
method names can be shorter. The benefit is magnified for calls originating outside the
package, since they can use the shorter name and omit the package name:

Click here to view code image

import "gopl.io/ch6/geometry"

perim := geometry.Path{{1, 1}, {5, 1}, {5, 4}, {1, 1}}
fmt.Println(geometry.PathDistance(perim)) // "12",
standalone function
fmt.Println(perim.Distance()) // "12",
method of geometry.Path

6.2 Methods with a Pointer Receiver
Because calling a function makes a copy of each argument value, if a function needs
to update a variable, or if an argument is so large that we wish to avoid copying it, we
must pass the address of the variable using a pointer. The same goes for methods that
need to update the receiver variable: we attach them to the pointer type, such as
*Point.

Click here to view code image

func (p *Point) ScaleBy(factor float64) {
 p.X *= factor
 p.Y *= factor
}

The name of this method is (*Point).ScaleBy. The parentheses are necessary;
without them, the expression would be parsed as *(Point.ScaleBy).

In a realistic program, convention dictates that if any method of Point has a pointer
receiver, then all methods of Point should have a pointer receiver, even ones that
don’t strictly need it. We’ve broken this rule for Point so that we can show both
kinds of method.
Named types (Point) and pointers to them (*Point) are the only types that may
appear in a receiver declaration. Furthermore, to avoid ambiguities, method
declarations are not permitted on named types that are themselves pointer types:

Click here to view code image

type P *int
func (P) f() { /* ... */ } // compile error: invalid
receiver type

The (*Point).ScaleBy method can be called by providing a *Point receiver,
like this:

r := &Point{1, 2}
r.ScaleBy(2)
fmt.Println(*r) // "{2, 4}"

or this:

p := Point{1, 2}
pptr := &p
pptr.ScaleBy(2)
fmt.Println(p) // "{2, 4}"

or this:
p := Point{1, 2}
(&p).ScaleBy(2)
fmt.Println(p) // "{2, 4}"

But the last two cases are ungainly. Fortunately, the language helps us here. If the
receiver p is a variable of type Point but the method requires a *Point receiver,
we can use this shorthand:

p.ScaleBy(2)

and the compiler will perform an implicit &p on the variable. This works only for
variables, including struct fields like p.X and array or slice elements like perim[0].
We cannot call a *Point method on a non-addressable Point receiver, because
there’s no way to obtain the address of a temporary value.

Click here to view code image

Point{1, 2}.ScaleBy(2) // compile error: can't take
address of Point literal

But we can call a Point method like Point.Distance with a *Point receiver,
because there is a way to obtain the value from the address: just load the value
pointed to by the receiver. The compiler inserts an implicit * operation for us. These
two function calls are equivalent:

pptr.Distance(q)
(*pptr).Distance(q)

Let’s summarize these three cases again, since they are a frequent point of confusion.
In every valid method call expression, exactly one of these three statements is true.
Either the receiver argument has the same type as the receiver parameter, for example
both have type T or both have type *T:

Click here to view code image

Point{1, 2}.Distance(q) // Point
pptr.ScaleBy(2) // *Point

Or the receiver argument is a variable of type T and the receiver parameter has type
*T. The compiler implicitly takes the address of the variable:

p.ScaleBy(2) // implicit (&p)

Or the receiver argument has type *T and the receiver parameter has type T. The
compiler implicitly dereferences the receiver, in other words, loads the value:

Click here to view code image

pptr.Distance(q) // implicit (*pptr)

If all the methods of a named type T have a receiver type of T itself (not *T), it is
safe to copy instances of that type; calling any of its methods necessarily makes a
copy. For example, time.Duration values are liberally copied, including as
arguments to functions. But if any method has a pointer receiver, you should avoid
copying instances of T because doing so may violate internal invariants. For example,
copying an instance of bytes.Buffer would cause the original and the copy to
alias (§2.3.2) the same underlying array of bytes. Subsequent method calls would
have unpredictable effects.

6.2.1 Nil Is a Valid Receiver Value

Just as some functions allow nil pointers as arguments, so do some methods for their
receiver, especially if nil is a meaningful zero value of the type, as with maps and
slices. In this simple linked list of integers, nil represents the empty list:

Click here to view code image

// An IntList is a linked list of integers.
// A nil *IntList represents the empty list.
type IntList struct {
 Value int
 Tail *IntList
}

// Sum returns the sum of the list elements.
func (list *IntList) Sum() int {
 if list == nil {

 return 0
 }
 return list.Value + list.Tail.Sum()
}

When you define a type whose methods allow nil as a receiver value, it’s worth
pointing this out explicitly in its documentation comment, as we did above.
Here’s part of the definition of the Values type from the net/url package:

Click here to view code image

net/url
package url

// Values maps a string key to a list of values.
type Values map[string][]string

// Get returns the first value associated with the
given key,
// or "" if there are none.
func (v Values) Get(key string) string {
 if vs := v[key]; len(vs) > 0 {
 return vs[0]
 }
 return ""
}

// Add adds the value to key.
// It appends to any existing values associated with
key.
func (v Values) Add(key, value string) {
 v[key] = append(v[key], value)
}

It exposes its representation as a map but also provides methods to simplify access to
the map, whose values are slices of strings—it’s a multimap. Its clients can use its
intrinsic operators (make, slice literals, m[key], and so on), or its methods, or both,
as they prefer:

Click here to view code image

gopl.io/ch6/urlvalues
m := url.Values{"lang": {"en"}} // direct construction
m.Add("item", "1")
m.Add("item", "2")

fmt.Println(m.Get("lang")) // "en"
fmt.Println(m.Get("q")) // ""
fmt.Println(m.Get("item")) // "1" (first value)
fmt.Println(m["item"]) // "[1 2]" (direct map
access)

m = nil
fmt.Println(m.Get("item")) // ""
m.Add("item", "3") // panic: assignment to
entry in nil map

In the final call to Get, the nil receiver behaves like an empty map. We could
equivalently have written it as Values(nil).Get("item")), but
nil.Get("item") will not compile because the type of nil has not been
determined. By contrast, the final call to Add panics as it tries to update a nil map.

Because url.Values is a map type and a map refers to its key/value pairs
indirectly, any updates and deletions that url.Values.Add makes to the map
elements are visible to the caller. However, as with ordinary functions, any changes a
method makes to the reference itself, like setting it to nil or making it refer to a
different map data structure, will not be reflected in the caller.

6.3 Composing Types by Struct
Embedding
Consider the type ColoredPoint:

Click here to view code image

gopl.io/ch6/coloredpoint
import "image/color"

type Point struct{ X, Y float64 }

type ColoredPoint struct {
 Point
 Color color.RGBA
}

We could have defined ColoredPoint as a struct of three fields, but instead we
embedded a Point to provide the X and Y fields. As we saw in Section 4.4.3,
embedding lets us take a syntactic shortcut to defining a ColoredPoint that
contains all the fields of Point, plus some more. If we want, we can select the fields
of ColoredPoint that were contributed by the embedded Point without
mentioning Point:

var cp ColoredPoint
cp.X = 1
fmt.Println(cp.Point.X) // "1"
cp.Point.Y = 2
fmt.Println(cp.Y) // "2"

A similar mechanism applies to the methods of Point. We can call methods of the
embedded Point field using a receiver of type ColoredPoint, even though
ColoredPoint has no declared methods:

Click here to view code image

red := color.RGBA{255, 0, 0, 255}
blue := color.RGBA{0, 0, 255, 255}

var p = ColoredPoint{Point{1, 1}, red}
var q = ColoredPoint{Point{5, 4}, blue}
fmt.Println(p.Distance(q.Point)) // "5"
p.ScaleBy(2)
q.ScaleBy(2)
fmt.Println(p.Distance(q.Point)) // "10"

The methods of Point have been promoted to ColoredPoint. In this way,
embedding allows complex types with many methods to be built up by the
composition of several fields, each providing a few methods.
Readers familiar with class-based object-oriented languages may be tempted to view
Point as a base class and ColoredPoint as a subclass or derived class, or to
interpret the relationship between these types as if a ColoredPoint “is a” Point.
But that would be a mistake. Notice the calls to Distance above. Distance has
a parameter of type Point, and q is not a Point, so although q does have an
embedded field of that type, we must explicitly select it. Attempting to pass q would
be an error:

Click here to view code image

p.Distance(q) // compile error: cannot use q
(ColoredPoint) as Point

A ColoredPoint is not a Point, but it “has a” Point, and it has two additional
methods Distance and ScaleBy promoted from Point. If you prefer to think
in terms of implementation, the embedded field instructs the compiler to generate
additional wrapper methods that delegate to the declared methods, equivalent to these:

Click here to view code image

func (p ColoredPoint) Distance(q Point) float64 {
 return p.Point.Distance(q)
}

func (p *ColoredPoint) ScaleBy(factor float64) {
 p.Point.ScaleBy(factor)
}

When Point.Distance is called by the first of these wrapper methods, its
receiver value is p.Point, not p, and there is no way for the method to access the
ColoredPoint in which the Point is embedded.

The type of an anonymous field may be a pointer to a named type, in which case
fields and methods are promoted indirectly from the pointed-to object. Adding
another level of indirection lets us share common structures and vary the relationships
between objects dynamically. The declaration of ColoredPoint below embeds a
*Point:

Click here to view code image

type ColoredPoint struct {
 *Point
 Color color.RGBA
}

p := ColoredPoint{&Point{1, 1}, red}
q := ColoredPoint{&Point{5, 4}, blue}
fmt.Println(p.Distance(*q.Point)) // "5"
q.Point = p.Point // p and q now share
the same Point
p.ScaleBy(2)
fmt.Println(*p.Point, *q.Point) // "{2 2} {2 2}"

A struct type may have more than one anonymous field. Had we declared
ColoredPoint as

type ColoredPoint struct {
 Point
 color.RGBA
}

then a value of this type would have all the methods of Point, all the methods of
RGBA, and any additional methods declared on ColoredPoint directly. When the
compiler resolves a selector such as p.ScaleBy to a method, it first looks for a
directly declared method named ScaleBy, then for methods promoted once from
ColoredPoint’s embedded fields, then for methods promoted twice from
embedded fields within Point and RGBA, and so on. The compiler reports an error
if the selector was ambiguous because two methods were promoted from the same
rank.
Methods can be declared only on named types (like Point) and pointers to them
(*Point), but thanks to embedding, it’s possible and sometimes useful for unnamed
struct types to have methods too.

Here’s a nice trick to illustrate. This example shows part of a simple cache
implemented using two package-level variables, a mutex (§9.2) and the map that it
guards:

Click here to view code image

var (
 mu sync.Mutex // guards mapping
 mapping = make(map[string]string)
)

func Lookup(key string) string {
 mu.Lock()
 v := mapping[key]
 mu.Unlock()
 return v
}

The version below is functionally equivalent but groups together the two related
variables in a single package-level variable, cache:

Click here to view code image

var cache = struct {
 sync.Mutex
 mapping map[string]string
} {
 mapping: make(map[string]string),
}

func Lookup(key string) string {
 cache.Lock()
 v := cache.mapping[key]
 cache.Unlock()
 return v
}

The new variable gives more expressive names to the variables related to the cache,
and because the sync.Mutex field is embedded within it, its Lock and Unlock
methods are promoted to the unnamed struct type, allowing us to lock the cache
with a self-explanatory syntax.

6.4 Method Values and Expressions
Usually we select and call a method in the same expression, as in p.Distance(),
but it’s possible to separate these two operations. The selector p.Distance yields
a method value, a function that binds a method (Point.Distance) to a specific
receiver value p. This function can then be invoked without a receiver value; it needs
only the non-receiver arguments.

Click here to view code image

p := Point{1, 2}
q := Point{4, 6}

distanceFromP := p.Distance // method value
fmt.Println(distanceFromP(q)) // "5"
var origin Point // {0, 0}
fmt.Println(distanceFromP(origin)) //
"2.23606797749979", √5

scaleP := p.ScaleBy // method value
scaleP(2) // p becomes (2, 4)
scaleP(3) // then (6, 12)
scaleP(10) // then (60, 120)

Method values are useful when a package’s API calls for a function value, and the
client’s desired behavior for that function is to call a method on a specific receiver.
For example, the function time.AfterFunc calls a function value after a specified
delay. This program uses it to launch the rocket r after 10 seconds:

Click here to view code image

type Rocket struct { /* ... */ }
func (r *Rocket) Launch() { /* ... */ }

r := new(Rocket)
time.AfterFunc(10 * time.Second, func() { r.Launch()
})

The method value syntax is shorter:

Click here to view code image

time.AfterFunc(10 * time.Second, r.Launch)

Related to the method value is the method expression. When calling a method, as
opposed to an ordinary function, we must supply the receiver in a special way using
the selector syntax. A method expression, written T.f or (*T).f where T is a type,
yields a function value with a regular first parameter taking the place of the receiver,
so it can be called in the usual way.

Click here to view code image

p := Point{1, 2}
q := Point{4, 6}

distance := Point.Distance // method expression
fmt.Println(distance(p, q)) // "5"
fmt.Printf("%T\n", distance) // "func(Point, Point)
float64"

scale := (*Point).ScaleBy
scale(&p, 2)
fmt.Println(p) // "{2 4}"
fmt.Printf("%T\n", scale) // "func(*Point, float64)"

Method expressions can be helpful when you need a value to represent a choice
among several methods belonging to the same type so that you can call the chosen
method with many different receivers. In the following example, the variable op
represents either the addition or the subtraction method of type Point, and
Path.TranslateBy calls it for each point in the Path:

Click here to view code image

type Point struct{ X, Y float64 }

func (p Point) Add(q Point) Point { return Point{p.X +
q.X, p.Y + q.Y} }
func (p Point) Sub(q Point) Point { return Point{p.X -
q.X, p.Y - q.Y} }

type Path []Point

func (path Path) TranslateBy(offset Point, add bool) {
 var op func(p, q Point) Point
 if add {
 op = Point.Add
 } else {
 op = Point.Sub
 }
 for i := range path {
 // Call either path[i].Add(offset) or
path[i].Sub(offset).
 path[i] = op(path[i], offset)
 }
}

6.5 Example: Bit Vector Type
Sets in Go are usually implemented as a map[T]bool, where T is the element type.
A set represented by a map is very flexible but, for certain problems, a specialized
representation may outperform it. For example, in domains such as dataflow analysis
where set elements are small non-negative integers, sets have many elements, and set
operations like union and intersection are common, a bit vector is ideal.
A bit vector uses a slice of unsigned integer values or “words,” each bit of which
represents a possible element of the set. The set contains i if the i-th bit is set. The
following program demonstrates a simple bit vector type with three methods:

Click here to view code image

gopl.io/ch6/intset
// An IntSet is a set of small non-negative integers.
// Its zero value represents the empty set.
type IntSet struct {
 words []uint64
}

// Has reports whether the set contains the non-
negative value x.
func (s *IntSet) Has(x int) bool {
 word, bit := x/64, uint(x%64)
 return word < len(s.words) && s.words[word]&
(1<<bit) != 0
}

// Add adds the non-negative value x to the set.
func (s *IntSet) Add(x int) {
 word, bit := x/64, uint(x%64)
 for word >= len(s.words) {
 s.words = append(s.words, 0)
 }
 s.words[word] |= 1 << bit
}

// UnionWith sets s to the union of s and t.
func (s *IntSet) UnionWith(t *IntSet) {
 for i, tword := range t.words {
 if i < len(s.words) {
 s.words[i] |= tword
 } else {
 s.words = append(s.words, tword)
 }
 }
}

Since each word has 64 bits, to locate the bit for x, we use the quotient x/64 as the
word index and the remainder x%64 as the bit index within that word. The
UnionWith operation uses the bitwise OR operator | to compute the union 64
elements at a time. (We’ll revisit the choice of 64-bit words in Exercise 6.5.)
This implementation lacks many desirable features, some of which are posed as
exercises below, but one is hard to live without: way to print an IntSet as a string.
Let’s give it a String method as we did with Celsius in Section 2.5:

Click here to view code image

// String returns the set as a string of the form "{1
2 3}".
func (s *IntSet) String() string {
 var buf bytes.Buffer
 buf.WriteByte('{')
 for i, word := range s.words {
 if word == 0 {
 continue
 }
 for j := 0; j < 64; j++ {
 if word&(1<<uint(j)) != 0 {
 if buf.Len() > len("{") {
 buf.WriteByte(' ')
 }
 fmt.Fprintf(&buf, "%d", 64*i+j)
 }
 }
 }

 buf.WriteByte('}')
 return buf.String()
}

Notice the similarity of the String method above with intsToString in
Section 3.5.4; bytes.Buffer is often used this way in String methods. The
fmt package treats types with a String method specially so that values of
complicated types can display themselves in a user-friendly manner. Instead of
printing the raw representation of the value (a struct in this case), fmt calls the
String method. The mechanism relies on interfaces and type assertions, which
we’ll explain in Chapter 7.
We can now demonstrate IntSet in action:

Click here to view code image

var x, y IntSet
x.Add(1)
x.Add(144)
x.Add(9)
fmt.Println(x.String()) // "{1 9 144}"

y.Add(9)
y.Add(42)
fmt.Println(y.String()) // "{9 42}"

x.UnionWith(&y)
fmt.Println(x.String()) // "{1 9 42 144}"

fmt.Println(x.Has(9), x.Has(123)) // "true false"

A word of caution: we declared String and Has as methods of the pointer type
*IntSet not out of necessity, but for consistency with the other two methods,
which need a pointer receiver because they assign to s.words. Consequently, an
IntSet value does not have a String method, occasionally leading to surprises
like this:

Click here to view code image

fmt.Println(&x) // "{1 9 42 144}"
fmt.Println(x.String()) // "{1 9 42 144}"

fmt.Println(x) // "{[4398046511618 0 65536]}"

In the first case, we print an *IntSet pointer, which does have a String method.
In the second case, we call String() on an IntSet variable; the compiler inserts
the implicit & operation, giving us a pointer, which has the String method. But in
the third case, because the IntSet value does not have a String method,
fmt.Println prints the representation of the struct instead. It’s important not to
forget the & operator. Making String a method of IntSet, not *IntSet, might
be a good idea, but this is a case-by-case judgment.
Exercise 6.1: Implement these additional methods:

Click here to view code image

func (*IntSet) Len() int // return the number of
elements
func (*IntSet) Remove(x int) // remove x from the set
func (*IntSet) Clear() // remove all elements
from the set
func (*IntSet) Copy() *IntSet // return a copy of the
set

Exercise 6.2: Define a variadic (*IntSet).AddAll(...int) method that
allows a list of values to be added, such as s.AddAll(1, 2, 3) .

Exercise 6.3: (*IntSet).UnionWith computes the union of two sets using |,
the word-parallel bitwise OR operator. Implement methods for IntersectWith,
DifferenceWith, and SymmetricDifference for the corresponding set
operations. (The symmetric difference of two sets contains the elements present in
one set or the other but not both.)
Exercise 6.4: Add a method Elems that returns a slice containing the elements of the
set, suitable for iterating over with a range loop.

Exercise 6.5: The type of each word used by IntSet is uint64, but 64-bit
arithmetic may be inefficient on a 32-bit platform. Modify the program to use the
uint type, which is the most efficient unsigned integer type for the platform. Instead
of dividing by 64, define a constant holding the effective size of uint in bits, 32 or
64. You can use the perhaps too-clever expression 32 << (^uint(0) >> 63)
for this purpose.

6.6 Encapsulation
A variable or method of an object is said to be encapsulated if it is inaccessible to
clients of the object. Encapsulation, sometimes called information hiding, is a key
aspect of object-oriented programming.
Go has only one mechanism to control the visibility of names: capitalized identifiers
are exported from the package in which they are defined, and uncapitalized names are
not. The same mechanism that limits access to members of a package also limits
access to the fields of a struct or the methods of a type. As a consequence, to
encapsulate an object, we must make it a struct.
That’s the reason the IntSet type from the previous section was declared as a
struct type even though it has only a single field:

type IntSet struct {
 words []uint64
}

We could instead define IntSet as a slice type as follows, though of course we’d
have to replace each occurrence of s.words by *s in its methods:

type IntSet []uint64

Although this version of IntSet would be essentially equivalent, it would allow
clients from other packages to read and modify the slice directly. Put another way,
whereas the expression *s could be used in any package, s.words may appear
only in the package that defines IntSet.

Another consequence of this name-based mechanism is that the unit of encapsulation
is the package, not the type as in many other languages. The fields of a struct type are
visible to all code within the same package. Whether the code appears in a function or
a method makes no difference.
Encapsulation provides three benefits. First, because clients cannot directly modify
the object’s variables, one need inspect fewer statements to understand the possible
values of those variables.
Second, hiding implementation details prevents clients from depending on things that
might change, which gives the designer greater freedom to evolve the implementation
without breaking API compatibility.

As an example, consider the bytes.Buffer type. It is frequently used to
accumulate very short strings, so it is a profitable optimization to reserve a little extra
space in the object to avoid memory allocation in this common case. Since Buffer
is a struct type, this space takes the form of an extra field of type [64]byte with an
uncapitalized name. When this field was added, because it was not exported, clients
of Buffer outside the bytes package were unaware of any change except
improved performance. Buffer and its Grow method are shown below, simplified
for clarity:

Click here to view code image

type Buffer struct {
 buf []byte
 initial [64]byte
 /* ... */
}

// Grow expands the buffer's capacity, if necessary,
// to guarantee space for another n bytes. [...]
func (b *Buffer) Grow(n int) {
 if b.buf == nil {
 b.buf = b.initial[:0] // use preallocated
space initially
 }
 if len(b.buf)+n > cap(b.buf) {
 buf := make([]byte, b.Len(), 2*cap(b.buf) + n)
 copy(buf, b.buf)
 b.buf = buf
 }
}

The third benefit of encapsulation, and in many cases the most important, is that it
prevents clients from setting an object’s variables arbitrarily. Because the object’s
variables can be set only by functions in the same package, the author of that package
can ensure that all those functions maintain the object’s internal invariants. For
example, the Counter type below permits clients to increment the counter or to
reset it to zero, but not to set it to some arbitrary value:

Click here to view code image

type Counter struct { n int }

func (c *Counter) N() int { return c.n }
func (c *Counter) Increment() { c.n++ }
func (c *Counter) Reset() { c.n = 0 }

Functions that merely access or modify internal values of a type, such as the methods
of the Logger type from log package, below, are called getters and setters.
However, when naming a getter method, we usually omit the Get prefix. This
preference for brevity extends to all methods, not just field accessors, and to other
redundant prefixes as well, such as Fetch, Find, and Lookup.

Click here to view code image

package log

type Logger struct {
 flags int
 prefix string
 // ...
}

func (l *Logger) Flags() int
func (l *Logger) SetFlags(flag int)
func (l *Logger) Prefix() string
func (l *Logger) SetPrefix(prefix string)

Go style does not forbid exported fields. Of course, once exported, a field cannot be
unexported without an incompatible change to the API, so the initial choice should be
deliberate and should consider the complexity of the invariants that must be
maintained, the likelihood of future changes, and the quantity of client code that
would be affected by a change.
Encapsulation is not always desirable. By revealing its representation as an int64
number of nanoseconds, time.Duration lets us use all the usual arithmetic and
comparison operations with durations, and even to define constants of this type:

Click here to view code image

const day = 24 * time.Hour
fmt.Println(day.Seconds()) // "86400"

As another example, contrast IntSet with the geometry.Path type from the
beginning of this chapter. Path was defined as a slice type, allowing its clients to
construct instances using the slice literal syntax, to iterate over its points using a range
loop, and so on, whereas these operations are denied to clients of IntSet.

Here’s the crucial difference: geometry.Path is intrinsically a sequence of points,
no more and no less, and we don’t foresee adding new fields to it, so it makes sense
for the geometry package to reveal that Path is a slice. In contrast, an IntSet
merely happens to be represented as a []uint64 slice. It could have been
represented using []uint, or something completely different for sets that are sparse
or very small, and it might perhaps benefit from additional features like an extra field
to record the number of elements in the set. For these reasons, it makes sense for
IntSet to be opaque.

In this chapter, we learned how to associate methods with named types, and how to
call those methods. Although methods are crucial to object-oriented programming,
they’re only half the picture. To complete it, we need interfaces, the subject of the
next chapter.

7. Interfaces
Interface types express generalizations or abstractions about the behaviors of other
types. By generalizing, interfaces let us write functions that are more flexible and
adaptable because they are not tied to the details of one particular implementation.
Many object-oriented languages have some notion of interfaces, but what makes Go’s
interfaces so distinctive is that they are satisfied implicitly. In other words, there’s no
need to declare all the interfaces that a given concrete type satisfies; simply possessing
the necessary methods is enough. This design lets you create new interfaces that are
satisfied by existing concrete types without changing the existing types, which is
particularly useful for types defined in packages that you don’t control.
In this chapter, we’ll start by looking at the basic mechanics of interface types and
their values. Along the way, we’ll study several important interfaces from the
standard library. Many Go programs make as much use of standard interfaces as they
do of their own ones. Finally, we’ll look at type assertions (§7.10) and type switches
(§7.13) and see how they enable a different kind of generality.

7.1 Interfaces as Contracts
All the types we’ve looked at so far have been concrete types. A concrete type
specifies the exact representation of its values and exposes the intrinsic operations of
that representation, such as arithmetic for numbers, or indexing, append, and
range for slices. A concrete type may also provide additional behaviors through its
methods. When you have a value of a concrete type, you know exactly what it is and
what you can do with it.
There is another kind of type in Go called an interface type. An interface is an
abstract type. It doesn’t expose the representation or internal structure of its values,
or the set of basic operations they support; it reveals only some of their methods.
When you have a value of an interface type, you know nothing about what it is; you
know only what it can do, or more precisely, what behaviors are provided by its
methods.
Throughout the book, we’ve been using two similar functions for string formatting:
fmt.Printf, which writes the result to the standard output (a file), and
fmt.Sprintf, which returns the result as a string. It would be unfortunate if
the hard part, formatting the result, had to be duplicated because of these superficial
differences in how the result is used. Thanks to interfaces, it does not. Both of these
functions are, in effect, wrappers around a third function, fmt.Fprintf, that is
agnostic about what happens to the result it computes:

Click here to view code image

package fmt

func Fprintf(w io.Writer, format string, args
...interface{}) (int, error)

func Printf(format string, args ...interface{}) (int,
error) {
 return Fprintf(os.Stdout, format, args...)
}

func Sprintf(format string, args ...interface{})
string {

 var buf bytes.Buffer
 Fprintf(&buf, format, args...)
 return buf.String()
}

The F prefix of Fprintf stands for file and indicates that the formatted output
should be written to the file provided as the first argument. In the Printf case, the
argument, os.Stdout, is an *os.File. In the Sprintf case, however, the
argument is not a file, though it superficially resembles one: &buf is a pointer to a
memory buffer to which bytes can be written.
The first parameter of Fprintf is not a file either. It’s an io.Writer, which is an
interface type with the following declaration:

Click here to view code image

package io

// Writer is the interface that wraps the basic Write
method.
type Writer interface {
 // Write writes len(p) bytes from p to the
underlying data stream.
 // It returns the number of bytes written from p
(0 <= n <= len(p))
 // and any error encountered that caused the write
to stop early.
 // Write must return a non-nil error if it returns
n < len(p).
 // Write must not modify the slice data, even
temporarily.
 //
 // Implementations must not retain p.
 Write(p []byte) (n int, err error)
}

The io.Writer interface defines the contract between Fprintf and its callers.
On the one hand, the contract requires that the caller provide a value of a concrete
type like *os.File or *bytes.Buffer that has a method called Write with
the appropriate signature and behavior. On the other hand, the contract guarantees
that Fprintf will do its job given any value that satisfies the io.Writer

interface. Fprintf may not assume that it is writing to a file or to memory, only
that it can call Write.

Because fmt.Fprintf assumes nothing about the representation of the value and
relies only on the behaviors guaranteed by the io.Writer contract, we can safely
pass a value of any concrete type that satisfies io.Writer as the first argument to
fmt.Fprintf. This freedom to substitute one type for another that satisfies the
same interface is called substitutability, and is a hallmark of object-oriented
programming.
Let’s test this out using a new type. The Write method of the *ByteCounter
type below merely counts the bytes written to it before discarding them. (The
conversion is required to make the types of len(p) and *c match in the +=
assignment statement.)

Click here to view code image

gopl.io/ch7/bytecounter
type ByteCounter int

func (c *ByteCounter) Write(p []byte) (int, error) {
 *c += ByteCounter(len(p)) // convert int to
ByteCounter
 return len(p), nil
}

Since *ByteCounter satisfies the io.Writer contract, we can pass it to
Fprintf, which does its string formatting oblivious to this change; the
ByteCounter correctly accumulates the length of the result.

Click here to view code image

var c ByteCounter
c.Write([]byte("hello"))
fmt.Println(c) // "5", = len("hello")

c = 0 // reset the counter
var name = "Dolly"
fmt.Fprintf(&c, "hello, %s", name)
fmt.Println(c) // "12", = len("hello, Dolly")

Besides io.Writer, there is another interface of great importance to the fmt
package. Fprintf and Fprintln provide a way for types to control how their
values are printed. In Section 2.5, we defined a String method for the Celsius
type so that temperatures would print as "100°C", and in Section 6.5 we equipped
*IntSet with a String method so that sets would be rendered using traditional
set notation like "{1 2 3}" . Declaring a String method makes a type satisfy one
of the most widely used interfaces of all, fmt.Stringer:

Click here to view code image

package fmt

// The String method is used to print values passed
// as an operand to any format that accepts a string
// or to an unformatted printer such as Print.
type Stringer interface {
 String() string
}

We’ll explain how the fmt package discovers which values satisfy this interface in
Section 7.10.
Exercise 7.1: Using the ideas from ByteCounter, implement counters for words
and for lines. You will find bufio.ScanWords useful.

Exercise 7.2: Write a function CountingWriter with the signature below that,
given an io.Writer, returns a new Writer that wraps the original, and a pointer
to an int64 variable that at any moment contains the number of bytes written to the
new Writer.

Click here to view code image

func CountingWriter(w io.Writer) (io.Writer, *int64)

Exercise 7.3: Write a String method for the *tree type in
gopl.io/ch4/treesort (§4.4) that reveals the sequence of values in the tree.

7.2 Interface Types
An interface type specifies a set of methods that a concrete type must possess to be
considered an instance of that interface.
The io.Writer type is one of the most widely used interfaces because it provides
an abstraction of all the types to which bytes can be written, which includes files,
memory buffers, network connections, HTTP clients, archivers, hashers, and so on.
The io package defines many other useful interfaces. A Reader represents any
type from which you can read bytes, and a Closer is any value that you can close,
such as a file or a network connection. (By now you’ve probably noticed the naming
convention for many of Go’s single-method interfaces.)

Click here to view code image

package io

type Reader interface {
 Read(p []byte) (n int, err error)
}

type Closer interface {
 Close() error
}

Looking farther, we find declarations of new interface types as combinations of
existing ones. Here are two examples:

Click here to view code image

type ReadWriter interface {
 Reader
 Writer
}

type ReadWriteCloser interface {
 Reader
 Writer
 Closer

}

The syntax used above, which resembles struct embedding, lets us name another
interface as a shorthand for writing out all of its methods. This is called embedding an
interface. We could have written io.ReadWriter without embedding, albeit less
succinctly, like this:

Click here to view code image

type ReadWriter interface {
 Read(p []byte) (n int, err error)
 Write(p []byte) (n int, err error)
}

or even using a mixture of the two styles:

Click here to view code image

type ReadWriter interface {
 Read(p []byte) (n int, err error)
 Writer
}

All three declarations have the same effect. The order in which the methods appear is
immaterial. All that matters is the set of methods.
Exercise 7.4: The strings.NewReader function returns a value that satisfies the
io.Reader interface (and others) by reading from its argument, a string.
Implement a simple version of NewReader yourself, and use it to make the HTML
parser (§5.2) take input from a string.
Exercise 7.5: The LimitReader function in the io package accepts an
io.Reader r and a number of bytes n, and returns another Reader that reads
from r but reports an end-of-file condition after n bytes. Implement it.

Click here to view code image

func LimitReader(r io.Reader, n int64) io.Reader

7.3 Interface Satisfaction
A type satisfies an interface if it possesses all the methods the interface requires. For
example, an *os.File satisfies io.Reader, Writer, Closer, and
ReadWriter. A *bytes.Buffer satisfies Reader, Writer, and
ReadWriter, but does not satisfy Closer because it does not have a Close
method. As a shorthand, Go programmers often say that a concrete type “is a”
particular interface type, meaning that it satisfies the interface. For example, a
*bytes.Buffer is an io.Writer; an *os.File is an io.ReadWriter.

The assignability rule (§2.4.2) for interfaces is very simple: an expression may be
assigned to an interface only if its type satisfies the interface. So:

Click here to view code image

var w io.Writer
w = os.Stdout // OK: *os.File has Write
method
w = new(bytes.Buffer) // OK: *bytes.Buffer has Write
method
w = time.Second // compile error:
time.Duration lacks Write method

var rwc io.ReadWriteCloser
rwc = os.Stdout // OK: *os.File has Read,
Write, Close methods
rwc = new(bytes.Buffer) // compile error:
*bytes.Buffer lacks Close method

This rule applies even when the right-hand side is itself an interface:

Click here to view code image

w = rwc // OK: io.ReadWriteCloser has
Write method
rwc = w // compile error: io.Writer
lacks Close method

Because ReadWriter and ReadWriteCloser include all the methods of
Writer, any type that satisfies ReadWriter or ReadWriteCloser necessarily

satisfies Writer.

Before we go further, we should explain one subtlety in what it means for a type to
have a method. Recall from Section 6.2 that for each named concrete type T, some
of its methods have a receiver of type T itself whereas others require a *T pointer.
Recall also that it is legal to call a *T method on an argument of type T so long as the
argument is a variable; the compiler implicitly takes its address. But this is mere
syntactic sugar: a value of type T does not possess all the methods that a *T pointer
does, and as a result it might satisfy fewer interfaces.
An example will make this clear. The String method of the IntSet type from
Section 6.5 requires a pointer receiver, so we cannot call that method on a non-
addressable IntSet value:

Click here to view code image

type IntSet struct { /* ... */ }
func (*IntSet) String() string

var _ = IntSet{}.String() // compile error: String
requires *IntSet receiver

but we can call it on an IntSet variable:

Click here to view code image

var s IntSet
var _ = s.String() // OK: s is a variable and &s has a
String method

However, since only *IntSet has a String method, only *IntSet satisfies the
fmt.Stringer interface:

Click here to view code image

var _ fmt.Stringer = &s // OK
var _ fmt.Stringer = s // compile error: IntSet lacks
String method

Section 12.8 includes a program that prints the methods of an arbitrary value, and the
godoc -analysis=type tool (§10.7.4) displays the methods of each type and
the relationship between interfaces and concrete types.

Like an envelope that wraps and conceals the letter it holds, an interface wraps and
conceals the concrete type and value that it holds. Only the methods revealed by the
interface type may be called, even if the concrete type has others:

Click here to view code image

os.Stdout.Write([]byte("hello")) // OK: *os.File has
Write method
os.Stdout.Close() // OK: *os.File has
Close method

var w io.Writer
w = os.Stdout
w.Write([]byte("hello")) // OK: io.Writer has Write
method
w.Close() // compile error: io.Writer
lacks Close method

An interface with more methods, such as io.ReadWriter, tells us more about the
values it contains, and places greater demands on the types that implement it, than
does an interface with fewer methods such as io.Reader. So what does the type
interface{}, which has no methods at all, tell us about the concrete types that
satisfy it?
That’s right: nothing. This may seem useless, but in fact the type interface{},
which is called the empty interface type, is indispensable. Because the empty
interface type places no demands on the types that satisfy it, we can assign any value
to the empty interface.

var any interface{}
any = true
any = 12.34
any = "hello"
any = map[string]int{"one": 1}
any = new(bytes.Buffer)

Although it wasn’t obvious, we’ve been using the empty interface type since the very
first example in this book, because it is what allows functions like fmt.Println,
or errorf in Section 5.7, to accept arguments of any type.

Of course, having created an interface{} value containing a boolean, float,
string, map, pointer, or any other type, we can do nothing directly to the value it holds

since the interface has no methods. We need a way to get the value back out again.
We’ll see how to do that using a type assertion in Section 7.10.
Since interface satisfaction depends only on the methods of the two types involved,
there is no need to declare the relationship between a concrete type and the interfaces
it satisfies. That said, it is occasionally useful to document and assert the relationship
when it is intended but not otherwise enforced by the program. The declaration below
asserts at compile time that a value of type *bytes.Buffer satisfies
io.Writer:

Click here to view code image

// *bytes.Buffer must satisfy io.Writer
var w io.Writer = new(bytes.Buffer)

We needn’t allocate a new variable since any value of type *bytes.Buffer will
do, even nil, which we write as (*bytes.Buffer)(nil) using an explicit
conversion. And since we never intend to refer to w, we can replace it with the blank
identifier. Together, these changes give us this more frugal variant:

Click here to view code image

// *bytes.Buffer must satisfy io.Writer
var _ io.Writer = (*bytes.Buffer)(nil)

Non-empty interface types such as io.Writer are most often satisfied by a pointer
type, particularly when one or more of the interface methods implies some kind of
mutation to the receiver, as the Write method does. A pointer to a struct is an
especially common method-bearing type.
But pointer types are by no means the only types that satisfy interfaces, and even
interfaces with mutator methods may be satisfied by one of Go’s other reference
types. We’ve seen examples of slice types with methods (geometry.Path, §6.1)
and map types with methods (url.Values, §6.2.1), and later we’ll see a function
type with methods (http.HandlerFunc, §7.7). Even basic types may satisfy
interfaces; as we saw in Section 7.4, time.Duration satisfies fmt.Stringer.

A concrete type may satisfy many unrelated interfaces. Consider a program that
organizes or sells digitized cultural artifacts like music, films, and books. It might
define the following set of concrete types:

Album

Book
Movie
Magazine
Podcast
TVEpisode
Track

We can express each abstraction of interest as an interface. Some properties are
common to all artifacts, such as a title, a creation date, and a list of creators (authors
or artists).

type Artifact interface {
 Title() string
 Creators() []string
 Created() time.Time
}

Other properties are restricted to certain types of artifacts. Properties of the printed
word are relevant only to books and magazines, whereas only movies and TV
episodes have a screen resolution.

Click here to view code image

type Text interface {
 Pages() int
 Words() int
 PageSize() int
}

type Audio interface {
 Stream() (io.ReadCloser, error)
 RunningTime() time.Duration
 Format() string // e.g., "MP3", "WAV"
}

type Video interface {
 Stream() (io.ReadCloser, error)
 RunningTime() time.Duration
 Format() string // e.g., "MP4", "WMV"
 Resolution() (x, y int)
}

These interfaces are but one useful way to group related concrete types together and
express the facets they share in common. We may discover other groupings later. For
example, if we find we need to handle Audio and Video items in the same way,
we can define a Streamer interface to represent their common aspects without
changing any existing type declarations.

type Streamer interface {
 Stream() (io.ReadCloser, error)
 RunningTime() time.Duration
 Format() string
}

Each grouping of concrete types based on their shared behaviors can be expressed as
an interface type. Unlike class-based languages, in which the set of interfaces satisfied
by a class is explicit, in Go we can define new abstractions or groupings of interest
when we need them, without modifying the declaration of the concrete type. This is
particularly useful when the concrete type comes from a package written by a
different author. Of course, there do need to be underlying commonalities in the
concrete types.

7.4 Parsing Flags with flag.Value
In this section, we’ll see how another standard interface, flag.Value, helps us
define new notations for command-line flags. Consider the program below, which
sleeps for a specified period of time.

Click here to view code image

gopl.io/ch7/sleep
var period = flag.Duration("period", 1*time.Second,
"sleep period")

func main() {
 flag.Parse()
 fmt.Printf("Sleeping for %v...", *period)
 time.Sleep(*period)
 fmt.Println()
}

Before it goes to sleep it prints the time period. The fmt package calls the
time.Duration’s String method to print the period not as a number of
nanoseconds, but in a user-friendly notation:

$ go build gopl.io/ch7/sleep
$./sleep
Sleeping for 1s...

By default, the sleep period is one second, but it can be controlled through the -
period command-line flag. The flag.Duration function creates a flag variable
of type time.Duration and allows the user to specify the duration in a variety of
user-friendly formats, including the same notation printed by the String method.
This symmetry of design leads to a nice user interface.

Click here to view code image

$./sleep -period 50ms
Sleeping for 50ms...
$./sleep -period 2m30s
Sleeping for 2m30s...

$./sleep -period 1.5h
Sleeping for 1h30m0s...
$./sleep -period "1 day"
invalid value "1 day" for flag -period: time: invalid
duration 1 day

Because duration-valued flags are so useful, this feature is built into the flag
package, but it’s easy to define new flag notations for our own data types. We need
only define a type that satisfies the flag.Value interface, whose declaration is
below:

Click here to view code image

package flag

// Value is the interface to the value stored in a
flag.
type Value interface {
 String() string
 Set(string) error
}

The String method formats the flag’s value for use in command-line help
messages; thus every flag.Value is also a fmt.Stringer. The Set method
parses its string argument and updates the flag value. In effect, the Set method is the
inverse of the String method, and it is good practice for them to use the same
notation.
Let’s define a celsiusFlag type that allows a temperature to be specified in
Celsius, or in Fahrenheit with an appropriate conversion. Notice that celsiusFlag
embeds a Celsius (§2.5), thereby getting a String method for free. To satisfy
flag.Value, we need only declare the Set method:

Click here to view code image

gopl.io/ch7/tempconv
// *celsiusFlag satisfies the flag.Value interface.
type celsiusFlag struct{ Celsius }

func (f *celsiusFlag) Set(s string) error {
 var unit string

 var value float64
 fmt.Sscanf(s, "%f%s", &value, &unit) // no error
check needed
 switch unit {
 case "C", "°C":
 f.Celsius = Celsius(value)
 return nil
 case "F", "°F":
 f.Celsius = FToC(Fahrenheit(value))
 return nil
 }
 return fmt.Errorf("invalid temperature %q", s)
}

The call to fmt.Sscanf parses a floating-point number (value) and a string
(unit) from the input s. Although one must usually check Sscanf’s error result, in
this case we don’t need to because if there was a problem, no switch case will match.
The CelsiusFlag function below wraps it all up. To the caller, it returns a pointer
to the Celsius field embedded within the celsiusFlag variable f. The
Celsius field is the variable that will be updated by the Set method during flags
processing. The call to Var adds the flag to the application’s set of command-line
flags, the global variable flag.CommandLine. Programs with unusually complex
command-line interfaces may have several variables of this type. The call to Var
assigns a *celsiusFlag argument to a flag.Value parameter, causing the
compiler to check that *celsiusFlag has the necessary methods.

Click here to view code image

// CelsiusFlag defines a Celsius flag with the
specified name,
// default value, and usage, and returns the address
of the flag variable.
// The flag argument must have a quantity and a unit,
e.g., "100C".
func CelsiusFlag(name string, value Celsius, usage
string) *Celsius {
 f := celsiusFlag{value}
 flag.CommandLine.Var(&f, name, usage)
 return &f.Celsius

}

Now we can start using the new flag in our programs:

Click here to view code image

gopl.io/ch7/tempflag
var temp = tempconv.CelsiusFlag("temp", 20.0, "the
temperature")

func main() {
 flag.Parse()
 fmt.Println(*temp)
}

Here’s a typical session:

Click here to view code image

$ go build gopl.io/ch7/tempflag
$./tempflag
20°C
$./tempflag -temp -18C
-18°C
$./tempflag -temp 212°F
100°C
$./tempflag -temp 273.15K
invalid value "273.15K" for flag -temp: invalid
temperature "273.15K"
Usage of ./tempflag:
 -temp value
 the temperature (default 20°C)
$./tempflag -help
Usage of ./tempflag:
 -temp value
 the temperature (default 20°C)

Exercise 7.6: Add support for Kelvin temperatures to tempflag.

Exercise 7.7: Explain why the help message contains °C when the default value of
20.0 does not.

7.5 Interface Values
Conceptually, a value of an interface type, or interface value, has two components, a
concrete type and a value of that type. These are called the interface’s dynamic type
and dynamic value.
For a statically typed language like Go, types are a compile-time concept, so a type is
not a value. In our conceptual model, a set of values called type descriptors provide
information about each type, such as its name and methods. In an interface value, the
type component is represented by the appropriate type descriptor.
In the four statements below, the variable w takes on three different values. (The
initial and final values are the same.)

var w io.Writer
w = os.Stdout
w = new(bytes.Buffer)
w = nil

Let’s take a closer look at the value and dynamic behavior of w after each statement.
The first statement declares w:

var w io.Writer

In Go, variables are always initialized to a well-defined value, and interfaces are no
exception. The zero value for an interface has both its type and value components set
to nil (Figure 7.1).

Figure 7.1. A nil interface value.

An interface value is described as nil or non-nil based on its dynamic type, so this is a
nil interface value. You can test whether an interface value is nil using w == nil or
w != nil . Calling any method of a nil interface value causes a panic:

Click here to view code image

w.Write([]byte("hello")) // panic: nil pointer
dereference

The second statement assigns a value of type *os.File to w:
w = os.Stdout

This assignment involves an implicit conversion from a concrete type to an interface
type, and is equivalent to the explicit conversion io.Writer(os.Stdout). A
conversion of this kind, whether explicit or implicit, captures the type and the value of
its operand. The interface value’s dynamic type is set to the type descriptor for the
pointer type *os.File, and its dynamic value holds a copy of os.Stdout, which
is a pointer to the os.File variable representing the standard output of the process
(Figure 7.2).

Figure 7.2. An interface value containing an *os.File pointer.

Calling the Write method on an interface value containing an *os.File pointer
causes the (*os.File).Write method to be called. The call prints "hello".

Click here to view code image

w.Write([]byte("hello")) // "hello"

In general, we cannot know at compile time what the dynamic type of an interface
value will be, so a call through an interface must use dynamic dispatch. Instead of a
direct call, the compiler must generate code to obtain the address of the method
named Write from the type descriptor, then make an indirect call to that address.
The receiver argument for the call is a copy of the interface’s dynamic value,
os.Stdout. The effect is as if we had made this call directly:

Click here to view code image

os.Stdout.Write([]byte("hello")) // "hello"

The third statement assigns a value of type *bytes.Buffer to the interface value:
w = new(bytes.Buffer)

The dynamic type is now *bytes.Buffer and the dynamic value is a pointer to
the newly allocated buffer (Figure 7.3).

Figure 7.3. An interface value containing a *bytes.Buffer pointer.

A call to the Write method uses the same mechanism as before:

Click here to view code image

w.Write([]byte("hello")) // writes "hello" to the
bytes.Buffer

This time, the type descriptor is *bytes.Buffer, so the
(*bytes.Buffer).Write method is called, with the address of the buffer as
the value of the receiver parameter. The call appends "hello" to the buffer.

Finally, the fourth statement assigns nil to the interface value:
w = nil

This resets both its components to nil, restoring w to the same state as when it was
declared, which was shown in Figure 7.1.
An interface value can hold arbitrarily large dynamic values. For example, the
time.Time type, which represents an instant in time, is a struct type with several
unexported fields. If we create an interface value from it,

var x interface{} = time.Now()

the result might look like Figure 7.4. Conceptually, the dynamic value always fits
inside the interface value, no matter how large its type. (This is only a conceptual
model; a realistic implementation is quite different.)

Figure 7.4. An interface value holding a time.Time struct.

Interface values may be compared using == and !=. Two interface values are equal
if both are nil, or if their dynamic types are identical and their dynamic values are
equal according to the usual behavior of == for that type. Because interface values
are comparable, they may be used as the keys of a map or as the operand of a switch
statement.
However, if two interface values are compared and have the same dynamic type, but
that type is not comparable (a slice, for instance), then the comparison fails with a
panic:

Click here to view code image

var x interface{} = []int{1, 2, 3}
fmt.Println(x == x) // panic: comparing uncomparable
type []int

In this respect, interface types are unusual. Other types are either safely comparable
(like basic types and pointers) or not comparable at all (like slices, maps, and
functions), but when comparing interface values or aggregate types that contain
interface values, we must be aware of the potential for a panic. A similar risk exists
when using interfaces as map keys or switch operands. Only compare interface values
if you are certain that they contain dynamic values of comparable types.
When handling errors, or during debugging, it is often helpful to report the dynamic
type of an interface value. For that, we use the fmt package’s %T verb:

Click here to view code image

var w io.Writer
fmt.Printf("%T\n", w) // "<nil>"

w = os.Stdout
fmt.Printf("%T\n", w) // "*os.File"

w = new(bytes.Buffer)
fmt.Printf("%T\n", w) // "*bytes.Buffer"

Internally, fmt uses reflection to obtain the name of the interface’s dynamic type.
We’ll look at reflection in Chapter 12.

7.5.1 Caveat: An Interface Containing a Nil
Pointer Is Non-Nil

A nil interface value, which contains no value at all, is not the same as an interface
value containing a pointer that happens to be nil. This subtle distinction creates a trap
into which every Go programmer has stumbled.
Consider the program below. With debug set to true, the main function collects
the output of the function f in a bytes.Buffer.

Click here to view code image

const debug = true

func main() {
 var buf *bytes.Buffer
 if debug {
 buf = new(bytes.Buffer) // enable collection
of output
 }
 f(buf) // NOTE: subtly incorrect!
 if debug {
 // ...use buf...
 }
}

// If out is non-nil, output will be written to it.
func f(out io.Writer) {
 // ...do something...
 if out != nil {
 out.Write([]byte("done!\n"))
 }
}

We might expect that changing debug to false would disable the collection of the
output, but in fact it causes the program to panic during the out.Write call:

Click here to view code image

if out != nil {
 out.Write([]byte("done!\n")) // panic: nil pointer
dereference
}

When main calls f, it assigns a nil pointer of type *bytes.Buffer to the out
parameter, so the dynamic value of out is nil. However, its dynamic type is
*bytes.Buffer, meaning that out is a non-nil interface containing a nil pointer
value (Figure 7.5), so the defensive check out != nil is still true.

Figure 7.5. A non-nil interface containing a nil pointer.

As before, the dynamic dispatch mechanism determines that
(*bytes.Buffer).Write must be called but this time with a receiver value that
is nil. For some types, such as *os.File, nil is a valid receiver (§6.2.1), but
*bytes.Buffer is not among them. The method is called, but it panics as it tries
to access the buffer.
The problem is that although a nil *bytes.Buffer pointer has the methods
needed to satisfy the interface, it doesn’t satisfy the behavioral requirements of the
interface. In particular, the call violates the implicit precondition of
(*bytes.Buffer).Write that its receiver is not nil, so assigning the nil pointer
to the interface was a mistake. The solution is to change the type of buf in main to
io.Writer, thereby avoiding the assignment of the dysfunctional value to the
interface in the first place:

Click here to view code image

var buf io.Writer
if debug {
 buf = new(bytes.Buffer) // enable collection of
output
}
f(buf) // OK

Now that we’ve covered the mechanics of interface values, let’s take a look at some

more important interfaces from Go’s standard library. In the next three sections, we’ll
see how interfaces are used for sorting, web serving, and error handling.

7.6 Sorting with sort.Interface
Like string formatting, sorting is a frequently used operation in many programs.
Although a minimal Quicksort can be written in about 15 lines, a robust
implementation is much longer, and it is not the kind of code we should wish to write
anew or copy each time we need it.
Fortunately, the sort package provides in-place sorting of any sequence according
to any ordering function. Its design is rather unusual. In many languages, the sorting
algorithm is associated with the sequence data type, while the ordering function is
associated with the type of the elements. By contrast, Go’s sort.Sort function
assumes nothing about the representation of either the sequence or its elements.
Instead, it uses an interface, sort.Interface, to specify the contract between
the generic sort algorithm and each sequence type that may be sorted. An
implementation of this interface determines both the concrete representation of the
sequence, which is often a slice, and the desired ordering of its elements.
An in-place sort algorithm needs three things—the length of the sequence, a means of
comparing two elements, and a way to swap two elements—so they are the three
methods of sort.Interface:

Click here to view code image

package sort

type Interface interface {
 Len() int
 Less(i, j int) bool // i, j are indices of
sequence elements
 Swap(i, j int)
}

To sort any sequence, we need to define a type that implements these three methods,
then apply sort.Sort to an instance of that type. As perhaps the simplest
example, consider sorting a slice of strings. The new type StringSlice and its
Len, Less, and Swap methods are shown below.

Click here to view code image

type StringSlice []string

func (p StringSlice) Len() int { return
len(p) }
func (p StringSlice) Less(i, j int) bool { return p[i]
< p[j] }
func (p StringSlice) Swap(i, j int) { p[i], p[j]
= p[j], p[i] }

Now we can sort a slice of strings, names, by converting the slice to a
StringSlice like this:

sort.Sort(StringSlice(names))

The conversion yields a slice value with the same length, capacity, and underlying
array as names but with a type that has the three methods required for sorting.

Sorting a slice of strings is so common that the sort package provides the
StringSlice type, as well as a function called Strings so that the call above
can be simplified to sort.Strings(names).

The technique here is easily adapted to other sort orders, for instance, to ignore
capitalization or special characters. (The Go program that sorts index terms and page
numbers for this book does this, with extra logic for Roman numerals.) For more
complicated sorting, we use the same idea, but with more complicated data structures
or more complicated implementations of the sort.Interface methods.

Our running example for sorting will be a music playlist, displayed as a table. Each
track is a single row, and each column is an attribute of that track, like artist, title, and
running time. Imagine that a graphical user interface presents the table, and that
clicking the head of a column causes the playlist to be sorted by that attribute; clicking
the same column head again reverses the order. Let’s look at what might happen in
response to each click.
The variable tracks below contains a playlist. (One of the authors apologizes for
the other author’s musical tastes.) Each element is indirect, a pointer to a Track.
Although the code below would work if we stored the Tracks directly, the sort
function will swap many pairs of elements, so it will run faster if each element is a
pointer, which is a single machine word, instead of an entire Track, which might be
eight words or more.

Click here to view code image

gopl.io/ch7/sorting
type Track struct {
 Title string
 Artist string
 Album string
 Year int
 Length time.Duration
}

var tracks = []*Track{
 {"Go", "Delilah", "From the Roots Up", 2012,
length("3m38s")},
 {"Go", "Moby", "Moby", 1992, length("3m37s")},
 {"Go Ahead", "Alicia Keys", "As I Am", 2007,
length("4m36s")},
 {"Ready 2 Go", "Martin Solveig", "Smash", 2011,
length("4m24s")},
}

func length(s string) time.Duration {
 d, err := time.ParseDuration(s)
 if err != nil {
 panic(s)
 }
 return d
}

The printTracks function prints the playlist as a table. A graphical display would
be nicer, but this little routine uses the text/tabwriter package to produce a
table whose columns are neatly aligned and padded as shown below. Observe that
*tabwriter.Writer satisfies io.Writer. It collects each piece of data
written to it; its Flush method formats the entire table and writes it to
os.Stdout.

Click here to view code image

func printTracks(tracks []*Track) {
 const format = "%v\t%v\t%v\t%v\t%v\t\n"
 tw := new(tabwriter.Writer).Init(os.Stdout, 0, 8,

2, ' ', 0)
 fmt.Fprintf(tw, format, "Title", "Artist",
"Album", "Year", "Length")
 fmt.Fprintf(tw, format, "-----", "------", "-----
", "----", "------")
 for _, t := range tracks {
 fmt.Fprintf(tw, format, t.Title, t.Artist,
t.Album, t.Year, t.Length)
 }
 tw.Flush() // calculate column widths and print
table
}

To sort the playlist by the Artist field, we define a new slice type with the
necessary Len, Less, and Swap methods, analogous to what we did for
StringSlice.

Click here to view code image

type byArtist []*Track

func (x byArtist) Len() int { return len(x)
}
func (x byArtist) Less(i, j int) bool { return
x[i].Artist < x[j].Artist }
func (x byArtist) Swap(i, j int) { x[i], x[j] =
x[j], x[i] }

To call the generic sort routine, we must first convert tracks to the new type,
byArtist, that defines the order:

sort.Sort(byArtist(tracks))

After sorting the slice by artist, the output from printTracks is

Click here to view code image

Title Artist Album Year
Length
----- ------ ----- ---- -

Go Ahead Alicia Keys As I Am 2007

4m36s
Go Delilah From the Roots Up 2012
3m38s
Ready 2 Go Martin Solveig Smash 2011
4m24s
Go Moby Moby 1992
3m37s

If the user requests “sort by artist” a second time, we’ll sort the tracks in reverse. We
needn’t define a new type byReverseArtist with an inverted Less method,
however, since the sort package provides a Reverse function that transforms any
sort order to its inverse.

Click here to view code image

sort.Sort(sort.Reverse(byArtist(tracks)))

After reverse-sorting the slice by artist, the output from printTracks is

Click here to view code image

Title Artist Album Year
Length
----- ------ ----- ---- -

Go Moby Moby 1992
3m37s
Ready 2 Go Martin Solveig Smash 2011
4m24s
Go Delilah From the Roots Up 2012
3m38s
Go Ahead Alicia Keys As I Am 2007
4m36s

The sort.Reverse function deserves a closer look since it uses composition
(§6.3), which is an important idea. The sort package defines an unexported type
reverse, which is a struct that embeds a sort.Interface. The Less method
for reverse calls the Less method of the embedded sort.Interface value,
but with the indices flipped, reversing the order of the sort results.

Click here to view code image

package sort

type reverse struct{ Interface } // that is,
sort.Interface

func (r reverse) Less(i, j int) bool { return
r.Interface.Less(j, i) }

func Reverse(data Interface) Interface { return
reverse{data} }

Len and Swap, the other two methods of reverse, are implicitly provided by the
original sort.Interface value because it is an embedded field. The exported
function Reverse returns an instance of the reverse type that contains the
original sort.Interface value.

To sort by a different column, we must define a new type, such as byYear:

Click here to view code image

type byYear []*Track

func (x byYear) Len() int { return len(x) }
func (x byYear) Less(i, j int) bool { return x[i].Year
< x[j].Year }
func (x byYear) Swap(i, j int) { x[i], x[j] =
x[j], x[i] }

After sorting tracks by year using sort.Sort(byYear(tracks)),
printTracks shows a chronological listing:

Click here to view code image

Title Artist Album Year
Length
----- ------ ----- ---- -

Go Moby Moby 1992
3m37s
Go Ahead Alicia Keys As I Am 2007
4m36s
Ready 2 Go Martin Solveig Smash 2011

4m24s
Go Delilah From the Roots Up 2012
3m38s

For every slice element type and every ordering function we need, we declare a new
implementation of sort.Interface. As you can see, the Len and Swap
methods have identical definitions for all slice types. In the next example, the concrete
type customSort combines a slice with a function, letting us define a new sort
order by writing only the comparison function. Incidentally, the concrete types that
implement sort.Interface are not always slices; customSort is a struct
type.

Click here to view code image

type customSort struct {
 t []*Track
 less func(x, y *Track) bool
}

func (x customSort) Len() int { return
len(x.t) }
func (x customSort) Less(i, j int) bool { return
x.less(x.t[i], x.t[j]) }
func (x customSort) Swap(i, j int) { x.t[i],
x.t[j] = x.t[j], x.t[i] }

Let’s define a multi-tier ordering function whose primary sort key is the Title,
whose secondary key is the Year, and whose tertiary key is the running time,
Length. Here’s the call to Sort using an anonymous ordering function:

Click here to view code image

sort.Sort(customSort{tracks, func(x, y *Track) bool {
 if x.Title != y.Title {
 return x.Title < y.Title
 }
 if x.Year != y.Year {
 return x.Year < y.Year
 }
 if x.Length != y.Length {
 return x.Length < y.Length

 }
 return false
}})

And here’s the result. Notice that the tie between the two tracks titled “Go” is broken
in favor of the older one.

Click here to view code image

Title Artist Album Year
Length
----- ------ ----- ---- -

Go Moby Moby 1992
3m37s
Go Delilah From the Roots Up 2012
3m38s
Go Ahead Alicia Keys As I Am 2007
4m36s
Ready 2 Go Martin Solveig Smash 2011
4m24s

Although sorting a sequence of length n requires O(n log n) comparison operations,
testing whether a sequence is already sorted requires at most n−1 comparisons. The
IsSorted function from the sort package checks this for us. Like sort.Sort,
it abstracts both the sequence and its ordering function using sort.Interface,
but it never calls the Swap method: This code demonstrates the IntsAreSorted
and Ints functions and the IntSlice type:

Click here to view code image

values := []int{3, 1, 4, 1}
fmt.Println(sort.IntsAreSorted(values)) // "false"
sort.Ints(values)
fmt.Println(values) // "[1 1 3 4]"
fmt.Println(sort.IntsAreSorted(values)) // "true"
sort.Sort(sort.Reverse(sort.IntSlice(values)))
fmt.Println(values) // "[4 3 1 1]"
fmt.Println(sort.IntsAreSorted(values)) // "false"

For convenience, the sort package provides versions of its functions and types
specialized for []int, []string, and []float64 using their natural orderings.

For other types, such as []int64 or []uint, we’re on our own, though the path
is short.
Exercise 7.8: Many GUIs provide a table widget with a stateful multi-tier sort: the
primary sort key is the most recently clicked column head, the secondary sort key is
the second-most recently clicked column head, and so on. Define an implementation
of sort.Interface for use by such a table. Compare that approach with
repeated sorting using sort.Stable.

Exercise 7.9: Use the html/template package (§4.6) to replace printTracks
with a function that displays the tracks as an HTML table. Use the solution to the
previous exercise to arrange that each click on a column head makes an HTTP
request to sort the table.
Exercise 7.10: The sort.Interface type can be adapted to other uses. Write a
function IsPalindrome(s sort.Interface) bool that reports whether
the sequence s is a palindrome, in other words, reversing the sequence would not
change it. Assume that the elements at indices i and j are equal if !s.Less(i,
j) && !s.Less(j, i) .

7.7 The http.Handler Interface
In Chapter 1, we saw a glimpse of how to use the net/http package to implement
web clients (§1.5) and servers (§1.7). In this section, we’ll look more closely at the
server API, whose foundation is the http.Handler interface:

Click here to view code image

net/http
package http

type Handler interface {
 ServeHTTP(w ResponseWriter, r *Request)
}

func ListenAndServe(address string, h Handler) error

The ListenAndServe function requires a server address, such as
"localhost:8000", and an instance of the Handler interface to which all
requests should be dispatched. It runs forever, or until the server fails (or fails to start)
with an error, always non-nil, which it returns.
Imagine an e-commerce site with a database mapping the items for sale to their prices
in dollars. The program below shows the simplest imaginable implementation. It
models the inventory as a map type, database, to which we’ve attached a
ServeHTTP method so that it satisfies the http.Handler interface. The handler
ranges over the map and prints the items.

Click here to view code image

gopl.io/ch7/http1
func main() {
 db := database{"shoes": 50, "socks": 5}
 log.Fatal(http.ListenAndServe("localhost:8000",
db))
}

type dollars float32

func (d dollars) String() string { return
fmt.Sprintf("$%.2f", d) }

type database map[string]dollars

func (db database) ServeHTTP(w http.ResponseWriter,
req *http.Request) {
 for item, price := range db {
 fmt.Fprintf(w, "%s: %s\n", item, price)
 }
}

If we start the server,
$ go build gopl.io/ch7/http1
$./http1 &

then connect to it with the fetch program from Section 1.5 (or a web browser if
you prefer), we get the following output:

Click here to view code image

$ go build gopl.io/ch1/fetch
$./fetch http://localhost:8000
shoes: $50.00
socks: $5.00

So far, the server can only list its entire inventory and will do this for every request,
regardless of URL. A more realistic server defines multiple different URLs, each
triggering a different behavior. Let’s call the existing one /list and add another one
called /price that reports the price of a single item, specified as a request
parameter like /price?item=socks.

Click here to view code image

gopl.io/ch7/http2
func (db database) ServeHTTP(w http.ResponseWriter,
req *http.Request) {
 switch req.URL.Path {
 case "/list":
 for item, price := range db {

 fmt.Fprintf(w, "%s: %s\n", item, price)
 }
 case "/price":
 item := req.URL.Query().Get("item")
 price, ok := db[item]
 if !ok {
 w.WriteHeader(http.StatusNotFound) // 404
 fmt.Fprintf(w, "no such item: %q\n", item)
 return
 }
 fmt.Fprintf(w, "%s\n", price)
 default:
 w.WriteHeader(http.StatusNotFound) // 404
 fmt.Fprintf(w, "no such page: %s\n", req.URL)
 }
}

Now the handler decides what logic to execute based on the path component of the
URL, req.URL.Path. If the handler doesn’t recognize the path, it reports an
HTTP error to the client by calling
w.WriteHeader(http.StatusNotFound); this must be done before writing
any text to w. (Incidentally, http.ResponseWriter is another interface. It
augments io.Writer with methods for sending HTTP response headers.)
Equivalently, we could use the http.Error utility function:

Click here to view code image

msg := fmt.Sprintf("no such page: %s\n", req.URL)
http.Error(w, msg, http.StatusNotFound) // 404

The case for /price calls the URL’s Query method to parse the HTTP request
parameters as a map, or more precisely, a multimap of type url.Values (§6.2.1)
from the net/url package. It then finds the first item parameter and looks up its
price. If the item wasn’t found, it reports an error.
Here’s an example session with the new server:

Click here to view code image

$ go build gopl.io/ch7/http2
$ go build gopl.io/ch1/fetch

$./http2 &
$./fetch http://localhost:8000/list
shoes: $50.00
socks: $5.00
$./fetch http://localhost:8000/price?item=socks
$5.00
$./fetch http://localhost:8000/price?item=shoes
$50.00
$./fetch http://localhost:8000/price?item=hat
no such item: "hat"
$./fetch http://localhost:8000/help
no such page: /help

Obviously we could keep adding cases to ServeHTTP, but in a realistic application,
it’s convenient to define the logic for each case in a separate function or method.
Furthermore, related URLs may need similar logic; several image files may have
URLs of the form /images/*.png, for instance. For these reasons, net/http
provides ServeMux, a request multiplexer, to simplify the association between
URLs and handlers. A ServeMux aggregates a collection of http.Handlers into
a single http.Handler. Again, we see that different types satisfying the same
interface are substitutable: the web server can dispatch requests to any
http.Handler, regardless of which concrete type is behind it.

For a more complex application, several ServeMuxes may be composed to handle
more intricate dispatching requirements. Go doesn’t have a canonical web framework
analogous to Ruby’s Rails or Python’s Django. This is not to say that such
frameworks don’t exist, but the building blocks in Go’s standard library are flexible
enough that frameworks are often unnecessary. Furthermore, although frameworks
are convenient in the early phases of a project, their additional complexity can make
longer-term maintenance harder.
In the program below, we create a ServeMux and use it to associate the URLs with
the corresponding handlers for the /list and /price operations, which have been
split into separate methods. We then use the ServeMux as the main handler in the
call to ListenAndServe.

Click here to view code image

gopl.io/ch7/http3
func main() {

 db := database{"shoes": 50, "socks": 5}
 mux := http.NewServeMux()
 mux.Handle("/list", http.HandlerFunc(db.list))
 mux.Handle("/price", http.HandlerFunc(db.price))
 log.Fatal(http.ListenAndServe("localhost:8000",
mux))
}

type database map[string]dollars

func (db database) list(w http.ResponseWriter, req
*http.Request) {
 for item, price := range db {
 fmt.Fprintf(w, "%s: %s\n", item, price)
 }
}

func (db database) price(w http.ResponseWriter, req
*http.Request) {
 item := req.URL.Query().Get("item")
 price, ok := db[item]
 if !ok {
 w.WriteHeader(http.StatusNotFound) // 404
 fmt.Fprintf(w, "no such item: %q\n", item)
 return
 }
 fmt.Fprintf(w, "%s\n", price)
}

Let’s focus on the two calls to mux.Handle that register the handlers. In the first
one, db.list is a method value (§6.4), that is, a value of type

Click here to view code image

func(w http.ResponseWriter, req *http.Request)

that, when called, invokes the database.list method with the receiver value
db. So db.list is a function that implements handler-like behavior, but since it has
no methods, it doesn’t satisfy the http.Handler interface and can’t be passed
directly to mux.Handle.

The expression http.HandlerFunc(db.list) is a conversion, not a function
call, since http.HandlerFunc is a type. It has the following definition:

Click here to view code image

net/http
package http

type HandlerFunc func(w ResponseWriter, r *Request)

func (f HandlerFunc) ServeHTTP(w ResponseWriter, r
*Request) {
 f(w, r)
}

HandlerFunc demonstrates some unusual features of Go’s interface mechanism. It
is a function type that has methods and satisfies an interface, http.Handler. The
behavior of its ServeHTTP method is to call the underlying function.
HandlerFunc is thus an adapter that lets a function value satisfy an interface,
where the function and the interface’s sole method have the same signature. In effect,
this trick lets a single type such as database satisfy the http.Handler interface
several different ways: once through its list method, once through its price
method, and so on.
Because registering a handler this way is so common, ServeMux has a convenience
method called HandleFunc that does it for us, so we can simplify the handler
registration code to this:

Click here to view code image

gopl.io/ch7/http3a
mux.HandleFunc("/list", db.list)
mux.HandleFunc("/price", db.price)

It’s easy to see from the code above how one would construct a program in which
there are two different web servers, listening on different ports, defining different
URLs, and dispatching to different handlers. We would just construct another
ServeMux and make another call to ListenAndServe, perhaps concurrently.
But in most programs, one web server is plenty. Also, it’s typical to define HTTP
handlers across many files of an application, and it would be a nuisance if they all had

to be explicitly registered with the application’s ServeMux instance.

So, for convenience, net/http provides a global ServeMux instance called
DefaultServeMux and package-level functions called http.Handle and
http.HandleFunc. To use DefaultServeMux as the server’s main handler,
we needn’t pass it to ListenAndServe; nil will do.

The server’s main function can then be simplified to

Click here to view code image

gopl.io/ch7/http4
func main() {
 db := database{"shoes": 50, "socks": 5}
 http.HandleFunc("/list", db.list)
 http.HandleFunc("/price", db.price)
 log.Fatal(http.ListenAndServe("localhost:8000",
nil))
}

Finally, an important reminder: as we mentioned in Section 1.7, the web server
invokes each handler in a new goroutine, so handlers must take precautions such as
locking when accessing variables that other goroutines, including other requests to the
same handler, may be accessing. We’ll talk about concurrency in the next two
chapters.
Exercise 7.11: Add additional handlers so that clients can create, read, update, and
delete database entries. For example, a request of the form /update?
item=socks&price=6 will update the price of an item in the inventory and
report an error if the item does not exist or if the price is invalid. (Warning: this
change introduces concurrent variable updates.)
Exercise 7.12: Change the handler for /list to print its output as an HTML table,
not text. You may find the html/template package (§4.6) useful.

7.8 The error Interface
Since the beginning of this book, we’ve been using and creating values of the
mysterious predeclared error type without explaining what it really is. In fact, it’s
just an interface type with a single method that returns an error message:

type error interface {
 Error() string
}

The simplest way to create an error is by calling errors.New, which returns a
new error for a given error message. The entire errors package is only four lines
long:

Click here to view code image

package errors

func New(text string) error { return
&errorString{text} }

type errorString struct { text string }

func (e *errorString) Error() string { return e.text }

The underlying type of errorString is a struct, not a string, to protect its
representation from inadvertent (or premeditated) updates. And the reason that the
pointer type *errorString, not errorString alone, satisfies the error
interface is so that every call to New allocates a distinct error instance that is equal
to no other. We would not want a distinguished error such as io.EOF to compare
equal to one that merely happened to have the same message.

Click here to view code image

fmt.Println(errors.New("EOF") == errors.New("EOF")) //
"false"

Calls to errors.New are relatively infrequent because there’s a convenient wrapper
function, fmt.Errorf, that does string formatting too. We used it several times in
Chapter 5.

Click here to view code image

package fmt

import "errors"

func Errorf(format string, args ...interface{}) error
{
 return errors.New(Sprintf(format, args...))
}

Although *errorString may be the simplest type of error, it is far from the
only one. For example, the syscall package provides Go’s low-level system call
API. On many platforms, it defines a numeric type Errno that satisfies error, and
on Unix platforms, Errno’s Error method does a lookup in a table of strings, as
shown below:

Click here to view code image

package syscall

type Errno uintptr // operating system error code

var errors = [...]string{
 1: "operation not permitted", // EPERM
 2: "no such file or directory", // ENOENT
 3: "no such process", // ESRCH
 // ...
}

func (e Errno) Error() string {
 if 0 <= int(e) && int(e) < len(errors) {
 return errors[e]
 }
 return fmt.Sprintf("errno %d", e)
}

The following statement creates an interface value holding the Errno value 2,
signifying the POSIX ENOENT condition:

Click here to view code image

var err error = syscall.Errno(2)
fmt.Println(err.Error()) // "no such file or
directory"
fmt.Println(err) // "no such file or
directory"

The value of err is shown graphically in Figure 7.6.

Figure 7.6. An interface value holding a syscall.Errno integer.

Errno is an efficient representation of system call errors drawn from a finite set, and
it satisfies the standard error interface. We’ll see other types that satisfy this
interface in Section 7.11.

7.9 Example: Expression Evaluator
In this section, we’ll build an evaluator for simple arithmetic expressions. We’ll use an
interface, Expr, to represent any expression in this language. For now, this interface
needs no methods, but we’ll add some later.

Click here to view code image

// An Expr is an arithmetic expression.
type Expr interface{}

Our expression language consists of floating-point literals; the binary operators +, -,
*, and /; the unary operators -x and +x; function calls pow(x,y), sin(x), and
sqrt(x); variables such as x and pi; and of course parentheses and standard
operator precedence. All values are of type float64. Here are some example
expressions:

sqrt(A / pi)
pow(x, 3) + pow(y, 3)
(F - 32) * 5 / 9

The five concrete types below represent particular kinds of expression. A Var
represents a reference to a variable. (We’ll soon see why it is exported.) A literal
represents a floating-point constant. The unary and binary types represent
operator expressions with one or two operands, which can be any kind of Expr. A
call represents a function call; we’ll restrict its fn field to pow, sin, or sqrt.

Click here to view code image

gopl.io/ch7/eval
// A Var identifies a variable, e.g., x.
type Var string

// A literal is a numeric constant, e.g., 3.141.
type literal float64

// A unary represents a unary operator expression,
e.g., -x.
type unary struct {

 op rune // one of '+', '-'
 x Expr
}

// A binary represents a binary operator expression,
e.g., x+y.
type binary struct {
 op rune // one of '+', '-', '*', '/'
 x, y Expr
}

// A call represents a function call expression, e.g.,
sin(x).
type call struct {
 fn string // one of "pow", "sin", "sqrt"
 args []Expr
}

To evaluate an expression containing variables, we’ll need an environment that maps
variable names to values:

type Env map[Var]float64

We’ll also need each kind of expression to define an Eval method that returns the
expression’s value in a given environment. Since every expression must provide this
method, we add it to the Expr interface. The package exports only the types Expr,
Env, and Var; clients can use the evaluator without access to the other expression
types.

Click here to view code image

type Expr interface {
 // Eval returns the value of this Expr in the
environment env.
 Eval(env Env) float64
}

The concrete Eval methods are shown below. The method for Var performs an
environment lookup, which returns zero if the variable is not defined, and the method
for literal simply returns the literal value.

Click here to view code image

func (v Var) Eval(env Env) float64 {
 return env[v]
}

func (l literal) Eval(_ Env) float64 {
 return float64(l)
}

The Eval methods for unary and binary recursively evaluate their operands,
then apply the operation op to them. We don’t consider divisions by zero or infinity
to be errors, since they produce a result, albeit non-finite. Finally, the method for
call evaluates the arguments to the pow, sin, or sqrt function, then calls the
corresponding function in the math package.

Click here to view code image

func (u unary) Eval(env Env) float64 {
 switch u.op {
 case '+':
 return +u.x.Eval(env)
 case '-':
 return -u.x.Eval(env)
 }
 panic(fmt.Sprintf("unsupported unary operator:
%q", u.op))
}

func (b binary) Eval(env Env) float64 {
 switch b.op {
 case '+':
 return b.x.Eval(env) + b.y.Eval(env)
 case '-':
 return b.x.Eval(env) - b.y.Eval(env)
 case '*':
 return b.x.Eval(env) * b.y.Eval(env)
 case '/':
 return b.x.Eval(env) / b.y.Eval(env)
 }
 panic(fmt.Sprintf("unsupported binary operator:
%q", b.op))

}

func (c call) Eval(env Env) float64 {
 switch c.fn {
 case "pow":
 return math.Pow(c.args[0].Eval(env),
c.args[1].Eval(env))
 case "sin":
 return math.Sin(c.args[0].Eval(env))
 case "sqrt":
 return math.Sqrt(c.args[0].Eval(env))
 }
 panic(fmt.Sprintf("unsupported function call: %s",
c.fn))
}

Several of these methods can fail. For example, a call expression could have an
unknown function or the wrong number of arguments. It’s also possible to construct a
unary or binary expression with an invalid operator such as ! or < (although the
Parse function mentioned below will never do this). These errors cause Eval to
panic. Other errors, like evaluating a Var not present in the environment, merely
cause Eval to return the wrong result. All of these errors could be detected by
inspecting the Expr before evaluating it. That will be the job of the Check method,
which we will show soon, but first let’s test Eval.

The TestEval function below is a test of the evaluator. It uses the testing
package, which we’ll explain in Chapter 11, but for now it’s enough to know that
calling t.Errorf reports an error. The function loops over a table of inputs that
defines three expressions and different environments for each one. The first
expression computes the radius of a circle given its area A, the second computes the
sum of the cubes of two variables x and y, and the third converts a Fahrenheit
temperature F to Celsius.

Click here to view code image

func TestEval(t *testing.T) {
 tests := []struct {
 expr string
 env Env
 want string

 }{
 {"sqrt(A / pi)", Env{"A": 87616, "pi":
math.Pi}, "167"},
 {"pow(x, 3) + pow(y, 3)", Env{"x": 12, "y":
1}, "1729"},
 {"pow(x, 3) + pow(y, 3)", Env{"x": 9, "y":
10}, "1729"},
 {"5 / 9 * (F - 32)", Env{"F": -40}, "-40"},
 {"5 / 9 * (F - 32)", Env{"F": 32}, "0"},
 {"5 / 9 * (F - 32)", Env{"F": 212}, "100"},
 }
 var prevExpr string
 for _, test := range tests {
 // Print expr only when it changes.
 if test.expr != prevExpr {
 fmt.Printf("\n%s\n", test.expr)
 prevExpr = test.expr
 }
 expr, err := Parse(test.expr)
 if err != nil {
 t.Error(err) // parse error
 continue
 }
 got := fmt.Sprintf("%.6g",
expr.Eval(test.env))
 fmt.Printf("\t%v => %s\n", test.env, got)
 if got != test.want {
 t.Errorf("%s.Eval() in %s = %q, want
%q\n",
 test.expr, test.env, got, test.want)
 }
 }
}

For each entry in the table, the test parses the expression, evaluates it in the
environment, and prints the result. We don’t have space to show the Parse function
here, but you’ll find it if you download the package using go get .

The go test command (§11.1) runs a package’s tests:
$ go test -v gopl.io/ch7/eval

The -v flag lets us see the printed output of the test, which is normally suppressed
for a successful test like this one. Here is the output of the test’s fmt.Printf
statements:

Click here to view code image

sqrt(A / pi)
 map[A:87616 pi:3.141592653589793] => 167

pow(x, 3) + pow(y, 3)
 map[x:12 y:1] => 1729
 map[x:9 y:10] => 1729

5 / 9 * (F - 32)
 map[F:-40] => -40
 map[F:32] => 0
 map[F:212] => 100

Fortunately the inputs so far have all been well formed, but our luck is unlikely to
last. Even in interpreted languages, it is common to check the syntax for static errors,
that is, mistakes that can be detected without running the program. By separating the
static checks from the dynamic ones, we can detect errors sooner and perform many
checks only once instead of each time an expression is evaluated.
Let’s add another method to the Expr interface. The Check method checks for
static errors in an expression syntax tree. We’ll explain its vars parameter in a
moment.

Click here to view code image

type Expr interface {
 Eval(env Env) float64
 // Check reports errors in this Expr and adds its
Vars to the set.
 Check(vars map[Var]bool) error
}

The concrete Check methods are shown below. Evaluation of literal and Var
cannot fail, so the Check methods for these types return nil. The methods for
unary and binary first check that the operator is valid, then recursively check the
operands. Similarly, the method for call first checks that the function is known and

has the right number of arguments, then recursively checks each argument.

Click here to view code image

func (v Var) Check(vars map[Var]bool) error {
 vars[v] = true
 return nil
}

func (literal) Check(vars map[Var]bool) error {
 return nil
}

func (u unary) Check(vars map[Var]bool) error {
 if !strings.ContainsRune("+-", u.op) {
 return fmt.Errorf("unexpected unary op %q",
u.op)
 }
 return u.x.Check(vars)
}

func (b binary) Check(vars map[Var]bool) error {
 if !strings.ContainsRune("+-*/", b.op) {
 return fmt.Errorf("unexpected binary op %q",
b.op)
 }
 if err := b.x.Check(vars); err != nil {
 return err
 }
 return b.y.Check(vars)
}

func (c call) Check(vars map[Var]bool) error {
 arity, ok := numParams[c.fn]
 if !ok {
 return fmt.Errorf("unknown function %q", c.fn)
 }
 if len(c.args) != arity {
 return fmt.Errorf("call to %s has %d args,
want %d",

 c.fn, len(c.args), arity)
 }
 for _, arg := range c.args {
 if err := arg.Check(vars); err != nil {
 return err
 }
 }
 return nil
}

var numParams = map[string]int{"pow": 2, "sin": 1,
"sqrt": 1}

We’ve listed a selection of flawed inputs and the errors they elicit, in two groups. The
Parse function (not shown) reports syntax errors and the Check function reports
semantic errors.

Click here to view code image

x % 2 unexpected '%'
math.Pi unexpected '.'
!true unexpected '!'
"hello" unexpected '"'

log(10) unknown function "log"
sqrt(1, 2) call to sqrt has 2 args, want 1

Check’s argument, a set of Vars, accumulates the set of variable names found
within the expression. Each of these variables must be present in the environment for
evaluation to succeed. This set is logically the result of the call to Check, but
because the method is recursive, it is more convenient for Check to populate a set
passed as a parameter. The client must provide an empty set in the initial call.
In Section 3.2, we plotted a function f(x,y) that was fixed at compile time. Now
that we can parse, check, and evaluate expressions in strings, we can build a web
application that receives an expression at run time from the client and plots the
surface of that function. We can use the vars set to check that the expression is a
function of only two variables, x and y—three, actually, since we’ll provide r, the
radius, as a convenience. And we’ll use the Check method to reject ill-formed
expressions before evaluation begins so that we don’t repeat those checks during the

40,000 evaluations (100×100 cells, each with four corners) of the function that
follow.
The parseAndCheck function combines these parsing and checking steps:

Click here to view code image

gopl.io/ch7/surface
import "gopl.io/ch7/eval"

func parseAndCheck(s string) (eval.Expr, error) {
 if s == "" {
 return nil, fmt.Errorf("empty expression")
 }
 expr, err := eval.Parse(s)
 if err != nil {
 return nil, err
 }
 vars := make(map[eval.Var]bool)
 if err := expr.Check(vars); err != nil {
 return nil, err
 }
 for v := range vars {
 if v != "x" && v != "y" && v != "r" {
 return nil, fmt.Errorf("undefined
variable: %s", v)
 }
 }
 return expr, nil
}

To make this a web application, all we need is the plot function below, which has
the familiar signature of an http.HandlerFunc:

Click here to view code image

func plot(w http.ResponseWriter, r *http.Request) {
 r.ParseForm()
 expr, err := parseAndCheck(r.Form.Get("expr"))
 if err != nil {
 http.Error(w, "bad expr: "+err.Error(),

http.StatusBadRequest)
 return
 }
 w.Header().Set("Content-Type", "image/svg+xml")
 surface(w, func(x, y float64) float64 {
 r := math.Hypot(x, y) // distance from (0,0)
 return expr.Eval(eval.Env{"x": x, "y": y, "r":
r})
 })
}

Figure 7.7. The surfaces of three functions: (a) sin(-x)*pow(1.5,-r); (b)
pow(2,sin(y))*pow(2,sin(x))/12; (c) sin(x*y/10)/10.

The plot function parses and checks the expression specified in the HTTP request
and uses it to create an anonymous function of two variables. The anonymous
function has the same signature as the fixed function f from the original surface-
plotting program, but it evaluates the user-supplied expression. The environment
defines x, y, and the radius r. Finally, plot calls surface, which is just the
main function from gopl.io/ch3/surface, modified to take the function to
plot and the output io.Writer as parameters, instead of using the fixed function f
and os.Stdout. Figure 7.7 shows three surfaces produced by the program.

Exercise 7.13: Add a String method to Expr to pretty-print the syntax tree.
Check that the results, when parsed again, yield an equivalent tree.
Exercise 7.14: Define a new concrete type that satisfies the Expr interface and
provides a new operation such as computing the minimum value of its operands.
Since the Parse function does not create instances of this new type, to use it you
will need to construct a syntax tree directly (or extend the parser).
Exercise 7.15: Write a program that reads a single expression from the standard input,
prompts the user to provide values for any variables, then evaluates the expression in
the resulting environment. Handle all errors gracefully.
Exercise 7.16: Write a web-based calculator program.

7.10 Type Assertions
A type assertion is an operation applied to an interface value. Syntactically, it looks
like x.(T), where x is an expression of an interface type and T is a type, called the
“asserted” type. A type assertion checks that the dynamic type of its operand matches
the asserted type.
There are two possibilities. First, if the asserted type T is a concrete type, then the
type assertion checks whether x’s dynamic type is identical to T. If this check
succeeds, the result of the type assertion is x’s dynamic value, whose type is of
course T. In other words, a type assertion to a concrete type extracts the concrete
value from its operand. If the check fails, then the operation panics. For example:

Click here to view code image

var w io.Writer
w = os.Stdout
f := w.(*os.File) // success: f == os.Stdout
c := w.(*bytes.Buffer) // panic: interface holds
*os.File, not *bytes.Buffer

Second, if instead the asserted type T is an interface type, then the type assertion
checks whether x’s dynamic type satisfies T. If this check succeeds, the dynamic
value is not extracted; the result is still an interface value with the same type and
value components, but the result has the interface type T. In other words, a type
assertion to an interface type changes the type of the expression, making a different
(and usually larger) set of methods accessible, but it preserves the dynamic type and
value components inside the interface value.
After the first type assertion below, both w and rw hold os.Stdout so each has a
dynamic type of *os.File, but w, an io.Writer, exposes only the file’s Write
method, whereas rw exposes its Read method too.

Click here to view code image

var w io.Writer
w = os.Stdout
rw := w.(io.ReadWriter) // success: *os.File has both
Read and Write

w = new(ByteCounter)
rw = w.(io.ReadWriter) // panic: *ByteCounter has no
Read method

No matter what type was asserted, if the operand is a nil interface value, the type
assertion fails. A type assertion to a less restrictive interface type (one with fewer
methods) is rarely needed, as it behaves just like an assignment, except in the nil case.

Click here to view code image

w = rw // io.ReadWriter is assignable to
io.Writer
w = rw.(io.Writer) // fails only if rw == nil

Often we’re not sure of the dynamic type of an interface value, and we’d like to test
whether it is some particular type. If the type assertion appears in an assignment in
which two results are expected, such as the following declarations, the operation does
not panic on failure but instead returns an additional second result, a boolean
indicating success:

Click here to view code image

var w io.Writer = os.Stdout
f, ok := w.(*os.File) // success: ok, f ==
os.Stdout
b, ok := w.(*bytes.Buffer) // failure: !ok, b == nil

The second result is conventionally assigned to a variable named ok. If the operation
failed, ok is false, and the first result is equal to the zero value of the asserted type,
which in this example is a nil *bytes.Buffer.

The ok result is often immediately used to decide what to do next. The extended
form of the if statement makes this quite compact:

if f, ok := w.(*os.File); ok {
 // ...use f...
}

When the operand of a type assertion is a variable, rather than invent another name
for the new local variable, you’ll sometimes see the original name reused, shadowing
the original, like this:

if w, ok := w.(*os.File); ok {

 // ...use w...
}

7.11 Discriminating Errors with Type
Assertions
Consider the set of errors returned by file operations in the os package. I/O can fail
for any number of reasons, but three kinds of failure often must be handled
differently: file already exists (for create operations), file not found (for read
operations), and permission denied. The os package provides these three helper
functions to classify the failure indicated by a given error value:

Click here to view code image

package os

func IsExist(err error) bool
func IsNotExist(err error) bool
func IsPermission(err error) bool

A naïve implementation of one of these predicates might check that the error message
contains a certain substring,

Click here to view code image

func IsNotExist(err error) bool {
 // NOTE: not robust!
 return strings.Contains(err.Error(), "file does
not exist")
}

but because the logic for handling I/O errors can vary from one platform to another,
this approach is not robust and the same failure may be reported with a variety of
different error messages. Checking for substrings of error messages may be useful
during testing to ensure that functions fail in the expected manner, but it’s inadequate
for production code.
A more reliable approach is to represent structured error values using a dedicated
type. The os package defines a type called PathError to describe failures
involving an operation on a file path, like Open or Delete, and a variant called
LinkError to describe failures of operations involving two file paths, like

Symlink and Rename. Here’s os.PathError:

Click here to view code image

package os

// PathError records an error and the operation and
file path that caused it.
type PathError struct {
 Op string
 Path string
 Err error
}

func (e *PathError) Error() string {
 return e.Op + " " + e.Path + ": " + e.Err.Error()
}

Most clients are oblivious to PathError and deal with all errors in a uniform way
by calling their Error methods. Although PathError’s Error method forms a
message by simply concatenating the fields, PathError’s structure preserves the
underlying components of the error. Clients that need to distinguish one kind of failure
from another can use a type assertion to detect the specific type of the error; the
specific type provides more detail than a simple string.

Click here to view code image

_, err := os.Open("/no/such/file")
fmt.Println(err) // "open /no/such/file: No such file
or directory"
fmt.Printf("%#v\n", err)
// Output:
// &os.PathError{Op:"open", Path:"/no/such/file",
Err:0x2}

That’s how the three helper functions work. For example, IsNotExist, shown
below, reports whether an error is equal to syscall.ENOENT (§7.8) or to the
distinguished error os.ErrNotExist (see io.EOF in §5.4.2), or is a
*PathError whose underlying error is one of those two.

Click here to view code image

import (
 "errors"
 "syscall"
)

var ErrNotExist = errors.New("file does not exist")

// IsNotExist returns a boolean indicating whether the
error is known to
// report that a file or directory does not exist. It
is satisfied by
// ErrNotExist as well as some syscall errors.
func IsNotExist(err error) bool {
 if pe, ok := err.(*PathError); ok {
 err = pe.Err
 }
 return err == syscall.ENOENT || err == ErrNotExist
}

And here it is in action:

Click here to view code image

_, err := os.Open("/no/such/file")
fmt.Println(os.IsNotExist(err)) // "true"

Of course, PathError’s structure is lost if the error message is combined into a
larger string, for instance by a call to fmt.Errorf. Error discrimination must
usually be done immediately after the failing operation, before an error is propagated
to the caller.

7.12 Querying Behaviors with Interface
Type Assertions
The logic below is similar to the part of the net/http web server responsible for
writing HTTP header fields such as "Content-type: text/html" . The
io.Writer w represents the HTTP response; the bytes written to it are ultimately
sent to someone’s web browser.

Click here to view code image

func writeHeader(w io.Writer, contentType string)
error {
 if _, err := w.Write([]byte("Content-Type: "));
err != nil {
 return err
 }
 if _, err := w.Write([]byte(contentType)); err !=
nil {
 return err
 }
 // ...
}

Because the Write method requires a byte slice, and the value we wish to write is a
string, a []byte(...) conversion is required. This conversion allocates memory
and makes a copy, but the copy is thrown away almost immediately after. Let’s
pretend that this is a core part of the web server and that our profiling has revealed
that this memory allocation is slowing it down. Can we avoid allocating memory here?
The io.Writer interface tells us only one fact about the concrete type that w
holds: that bytes may be written to it. If we look behind the curtains of the
net/http package, we see that the dynamic type that w holds in this program also
has a WriteString method that allows strings to be efficiently written to it,
avoiding the need to allocate a temporary copy. (This may seem like a shot in the
dark, but a number of important types that satisfy io.Writer also have a
WriteString method, including *bytes.Buffer, *os.File and
*bufio.Writer.)

We cannot assume that an arbitrary io.Writer w also has the WriteString
method. But we can define a new interface that has just this method and use a type
assertion to test whether the dynamic type of w satisfies this new interface.

Click here to view code image

// writeString writes s to w.
// If w has a WriteString method, it is invoked
instead of w.Write.
func writeString(w io.Writer, s string) (n int, err
error) {
 type stringWriter interface {
 WriteString(string) (n int, err error)
 }
 if sw, ok := w.(stringWriter); ok {
 return sw.WriteString(s) // avoid a copy
 }
 return w.Write([]byte(s)) // allocate temporary
copy
}

func writeHeader(w io.Writer, contentType string)
error {
 if _, err := writeString(w, "Content-Type: "); err
!= nil {
 return err
 }
 if _, err := writeString(w, contentType); err !=
nil {
 return err
 }
 // ...
}

To avoid repeating ourselves, we’ve moved the check into the utility function
writeString, but it is so useful that the standard library provides it as
io.WriteString. It is the recommended way to write a string to an
io.Writer.

What’s curious in this example is that there is no standard interface that defines the

WriteString method and specifies its required behavior. Furthermore, whether or
not a concrete type satisfies the stringWriter interface is determined only by its
methods, not by any declared relationship between it and the interface type. What this
means is that the technique above relies on the assumption that if a type satisfies the
interface below, then WriteString(s) must have the same effect as
Write([]byte(s)).

Click here to view code image

interface {
 io.Writer
 WriteString(s string) (n int, err error)
}

Although io.WriteString documents its assumption, few functions that call it
are likely to document that they too make the same assumption. Defining a method of
a particular type is taken as an implicit assent for a certain behavioral contract.
Newcomers to Go, especially those from a background in strongly typed languages,
may find this lack of explicit intention unsettling, but it is rarely a problem in practice.
With the exception of the empty interface interface{}, interface types are
seldom satisfied by unintended coincidence.
The writeString function above uses a type assertion to see whether a value of a
general interface type also satisfies a more specific interface type, and if so, it uses the
behaviors of the specific interface. This technique can be put to good use whether or
not the queried interface is standard like io.ReadWriter or user-defined like
stringWriter.

It’s also how fmt.Fprintf distinguishes values that satisfy error or
fmt.Stringer from all other values. Within fmt.Fprintf, there is a step that
converts a single operand to a string, something like this:

Click here to view code image

package fmt

func formatOneValue(x interface{}) string {
 if err, ok := x.(error); ok {
 return err.Error()
 }
 if str, ok := x.(Stringer); ok {

 return str.String()
 }
 // ...all other types...
}

If x satisfies either of the two interfaces, that determines the formatting of the value.
If not, the default case handles all other types more or less uniformly using reflection;
we’ll find out how in Chapter 12.
Again, this makes the assumption that any type with a String method satisfies the
behavioral contract of fmt.Stringer, which is to return a string suitable for
printing.

7.13 Type Switches
Interfaces are used in two distinct styles. In the first style, exemplified by
io.Reader, io.Writer, fmt.Stringer, sort.Interface,
http.Handler, and error, an interface’s methods express the similarities of the
concrete types that satisfy the interface but hide the representation details and intrinsic
operations of those concrete types. The emphasis is on the methods, not on the
concrete types.
The second style exploits the ability of an interface value to hold values of a variety
of concrete types and considers the interface to be the union of those types. Type
assertions are used to discriminate among these types dynamically and treat each case
differently. In this style, the emphasis is on the concrete types that satisfy the
interface, not on the interface’s methods (if indeed it has any), and there is no hiding
of information. We’ll describe interfaces used this way as discriminated unions.
If you’re familiar with object-oriented programming, you may recognize these two
styles as subtype polymorphism and ad hoc polymorphism, but you needn’t
remember those terms. For the remainder of this chapter, we’ll present examples of
the second style.
Go’s API for querying an SQL database, like those of other languages, lets us cleanly
separate the fixed part of a query from the variable parts. An example client might
look like this:

Click here to view code image

import "database/sql"

func listTracks(db sql.DB, artist string, minYear,
maxYear int) {
 result, err := db.Exec(
 "SELECT * FROM tracks WHERE artist = ? AND ?
<= year AND year <= ?",
 artist, minYear, maxYear)
 // ...
}

The Exec method replaces each '?' in the query string with an SQL literal denoting

the corresponding argument value, which may be a boolean, a number, a string, or
nil. Constructing queries this way helps avoid SQL injection attacks, in which an
adversary takes control of the query by exploiting improper quotation of input data.
Within Exec, we might find a function like the one below, which converts each
argument value to its literal SQL notation.

Click here to view code image

func sqlQuote(x interface{}) string {
 if x == nil {
 return "NULL"
 } else if _, ok := x.(int); ok {
 return fmt.Sprintf("%d", x)
 } else if _, ok := x.(uint); ok {
 return fmt.Sprintf("%d", x)
 } else if b, ok := x.(bool); ok {
 if b {
 return "TRUE"
 }
 return "FALSE"
 } else if s, ok := x.(string); ok {
 return sqlQuoteString(s) // (not shown)
 } else {
 panic(fmt.Sprintf("unexpected type %T: %v", x,
x))
 }
}

A switch statement simplifies an if-else chain that performs a series of value
equality tests. An analogous type switch statement simplifies an if-else chain of
type assertions.
In its simplest form, a type switch looks like an ordinary switch statement in which
the operand is x.(type)—that’s literally the keyword type—and each case has
one or more types. A type switch enables a multi-way branch based on the interface
value’s dynamic type. The nil case matches if x == nil , and the default case
matches if no other case does. A type switch for sqlQuote would have these cases:

switch x.(type) {
case nil: // ...
case int, uint: // ...

case bool: // ...
case string: // ...
default: // ...
}

As with an ordinary switch statement (§1.8), cases are considered in order and, when
a match is found, the case’s body is executed. Case order becomes significant when
one or more case types are interfaces, since then there is a possibility of two cases
matching. The position of the default case relative to the others is immaterial. No
fallthrough is allowed.

Notice that in the original function, the logic for the bool and string cases needs
access to the value extracted by the type assertion. Since this is typical, the type
switch statement has an extended form that binds the extracted value to a new
variable within each case:

Click here to view code image

switch x := x.(type) { /* ... */ }

Here we’ve called the new variables x too; as with type assertions, reuse of variable
names is common. Like a switch statement, a type switch implicitly creates a
lexical block, so the declaration of the new variable called x does not conflict with a
variable x in an outer block. Each case also implicitly creates a separate lexical
block.
Rewriting sqlQuote to use the extended form of type switch makes it significantly
clearer:

Click here to view code image

func sqlQuote(x interface{}) string {
 switch x := x.(type) {
 case nil:
 return "NULL"
 case int, uint:
 return fmt.Sprintf("%d", x) // x has type
interface{} here.
 case bool:
 if x {
 return "TRUE"
 }

 return "FALSE"
 case string:
 return sqlQuoteString(x) // (not shown)
 default:
 panic(fmt.Sprintf("unexpected type %T: %v", x,
x))
 }
}

In this version, within the block of each single-type case, the variable x has the same
type as the case. For instance, x has type bool within the bool case and string
within the string case. In all other cases, x has the (interface) type of the switch
operand, which is interface{} in this example. When the same action is required
for multiple cases, like int and uint, the type switch makes it easy to combine
them.
Although sqlQuote accepts an argument of any type, the function runs to
completion only if the argument’s type matches one of the cases in the type switch;
otherwise it panics with an “unexpected type” message. Although the type of x is
interface{}, we consider it a discriminated union of int, uint, bool,
string, and nil.

7.14 Example: Token-Based XML
Decoding
Section 4.5 showed how to decode JSON documents into Go data structures with the
Marshal and Unmarshal functions from the encoding/json package. The
encoding/xml package provides a similar API. This approach is convenient when
we want to construct a representation of the document tree, but that’s unnecessary
for many programs. The encoding/xml package also provides a lower-level
token-based API for decoding XML. In the token-based style, the parser consumes
the input and produces a stream of tokens, primarily of four kinds
—StartElement, EndElement, CharData, and Comment—each being a
concrete type in the encoding/xml package. Each call to
(*xml.Decoder).Token returns a token.

The relevant parts of the API are shown here:

Click here to view code image

encoding/xml
package xml

type Name struct {
 Local string // e.g., "Title" or "id"
}

type Attr struct { // e.g., name="value"
 Name Name
 Value string
}

// A Token includes StartElement, EndElement,
CharData,
// and Comment, plus a few esoteric types (not shown).
type Token interface{}
type StartElement struct { // e.g., <name>
 Name Name

 Attr []Attr
}
type EndElement struct { Name Name } // e.g., </name>
type CharData []byte // e.g.,
<p>CharData</p>
type Comment []byte // e.g., <!--
Comment -->

type Decoder struct{ /* ... */ }

func NewDecoder(io.Reader) *Decoder
func (*Decoder) Token() (Token, error) // returns next
Token in sequence

The Token interface, which has no methods, is also an example of a discriminated
union. The purpose of a traditional interface like io.Reader is to hide details of the
concrete types that satisfy it so that new implementations can be created; each
concrete type is treated uniformly. By contrast, the set of concrete types that satisfy a
discriminated union is fixed by the design and exposed, not hidden. Discriminated
union types have few methods; functions that operate on them are expressed as a set
of cases using a type switch, with different logic in each case.
The xmlselect program below extracts and prints the text found beneath certain
elements in an XML document tree. Using the API above, it can do its job in a single
pass over the input without ever materializing the tree.

Click here to view code image

gopl.io/ch7/xmlselect
// Xmlselect prints the text of selected elements of
an XML document.
package main

import (
 "encoding/xml"
 "fmt"
 "io"
 "os"
 "strings"
)

func main() {
 dec := xml.NewDecoder(os.Stdin)
 var stack []string // stack of element names
 for {
 tok, err := dec.Token()
 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Fprintf(os.Stderr, "xmlselect: %v\n",
err)
 os.Exit(1)
 }
 switch tok := tok.(type) {
 case xml.StartElement:
 stack = append(stack, tok.Name.Local) //
push
 case xml.EndElement:
 stack = stack[:len(stack)-1] // pop
 case xml.CharData:
 if containsAll(stack, os.Args[1:]) {
 fmt.Printf("%s: %s\n",
strings.Join(stack, " "), tok)
 }
 }
 }
}

// containsAll reports whether x contains the elements
of y, in order.
func containsAll(x, y []string) bool {
 for len(y) <= len(x) {
 if len(y) == 0 {
 return true
 }
 if x[0] == y[0] {
 y = y[1:]
 }
 x = x[1:]

 }
 return false
}

Each time the loop in main encounters a StartElement, it pushes the element’s
name onto a stack, and for each EndElement it pops the name from the stack. The
API guarantees that the sequence of StartElement and EndElement tokens
will be properly matched, even in ill-formed documents. Comments are ignored.
When xmlselect encounters a CharData, it prints the text only if the stack
contains all the elements named by the command-line arguments, in order.
The command below prints the text of any h2 elements appearing beneath two levels
of div elements. Its input is the XML specification, itself an XML document.

Click here to view code image

$ go build gopl.io/ch1/fetch
$./fetch http://www.w3.org/TR/2006/REC-xml11-20060816
|
 ./xmlselect div div h2
html body div div h2: 1 Introduction
html body div div h2: 2 Documents
html body div div h2: 3 Logical Structures
html body div div h2: 4 Physical Structures
html body div div h2: 5 Conformance
html body div div h2: 6 Notation
html body div div h2: A References
html body div div h2: B Definitions for Character
Normalization
...

Exercise 7.17: Extend xmlselect so that elements may be selected not just by
name, but by their attributes too, in the manner of CSS, so that, for instance, an
element like <div id="page" class="wide"> could be selected by a
matching id or class as well as its name.

Exercise 7.18: Using the token-based decoder API, write a program that will read an
arbitrary XML document and construct a tree of generic nodes that represents it.
Nodes are of two kinds: CharData nodes represent text strings, and Element
nodes represent named elements and their attributes. Each element node has a slice of
child nodes.

You may find the following declarations helpful.

Click here to view code image

import "encoding/xml"

type Node interface{} // CharData or *Element

type CharData string

type Element struct {
 Type xml.Name
 Attr []xml.Attr
 Children []Node
}

7.15 A Few Words of Advice
When designing a new package, novice Go programmers often start by creating a set
of interfaces and only later define the concrete types that satisfy them. This approach
results in many interfaces, each of which has only a single implementation. Don’t do
that. Such interfaces are unnecessary abstractions; they also have a run-time cost.
You can restrict which methods of a type or fields of a struct are visible outside a
package using the export mechanism (§6.6). Interfaces are only needed when there
are two or more concrete types that must be dealt with in a uniform way.
We make an exception to this rule when an interface is satisfied by a single concrete
type but that type cannot live in the same package as the interface because of its
dependencies. In that case, an interface is a good way to decouple two packages.
Because interfaces are used in Go only when they are satisfied by two or more types,
they necessarily abstract away from the details of any particular implementation. The
result is smaller interfaces with fewer, simpler methods, often just one as with
io.Writer or fmt.Stringer. Small interfaces are easier to satisfy when new
types come along. A good rule of thumb for interface design is ask only for what you
need.
This concludes our tour of methods and interfaces. Go has great support for the
object-oriented style of programming, but this does not mean you need to use it
exclusively. Not everything need be an object; standalone functions have their place,
as do unencapsulated data types. Observe that together, the examples in the first five
chapters of this book call no more than two dozen methods, like input.Scan, as
opposed to ordinary function calls like fmt.Printf.

8. Goroutines and Channels
Concurrent programming, the expression of a program as a composition of several
autonomous activities, has never been more important than it is today. Web servers
handle requests for thousands of clients at once. Tablet and phone apps render
animations in the user interface while simultaneously performing computation and
network requests in the background. Even traditional batch problems—read some
data, compute, write some output—use concurrency to hide the latency of I/O
operations and to exploit a modern computer’s many processors, which every year
grow in number but not in speed.
Go enables two styles of concurrent programming. This chapter presents goroutines
and channels, which support communicating sequential processes or CSP, a model
of concurrency in which values are passed between independent activities
(goroutines) but variables are for the most part confined to a single activity. Chapter 9
covers some aspects of the more traditional model of shared memory multithreading,
which will be familiar if you’ve used threads in other mainstream languages.
Chapter 9 also points out some important hazards and pitfalls of concurrent
programming that we won’t delve into in this chapter.
Even though Go’s support for concurrency is one of its great strengths, reasoning
about concurrent programs is inherently harder than about sequential ones, and
intuitions acquired from sequential programming may at times lead us astray. If this is
your first encounter with concurrency, we recommend spending a little extra time
thinking about the examples in these two chapters.

8.1 Goroutines
In Go, each concurrently executing activity is called a goroutine. Consider a program
that has two functions, one that does some computation and one that writes some
output, and assume that neither function calls the other. A sequential program may
call one function and then call the other, but in a concurrent program with two or
more goroutines, calls to both functions can be active at the same time. We’ll see such
a program in a moment.
If you have used operating system threads or threads in other languages, then you can
assume for now that a goroutine is similar to a thread, and you’ll be able to write
correct programs. The differences between threads and goroutines are essentially
quantitative, not qualitative, and will be described in Section 9.8.
When a program starts, its only goroutine is the one that calls the main function, so
we call it the main goroutine. New goroutines are created by the go statement.
Syntactically, a go statement is an ordinary function or method call prefixed by the
keyword go. A go statement causes the function to be called in a newly created
goroutine. The go statement itself completes immediately:

Click here to view code image

f() // call f(); wait for it to return
go f() // create a new goroutine that calls f(); don't
wait

In the example below, the main goroutine computes the 45th Fibonacci number. Since
it uses the terribly inefficient recursive algorithm, it runs for an appreciable time,
during which we’d like to provide the user with a visual indication that the program is
still running, by displaying an animated textual “spinner.”

Click here to view code image

gopl.io/ch8/spinner
func main() {
 go spinner(100 * time.Millisecond)
 const n = 45
 fibN := fib(n) // slow
 fmt.Printf("\rFibonacci(%d) = %d\n", n, fibN)

}

func spinner(delay time.Duration) {
 for {
 for _, r := range `-\|/` {
 fmt.Printf("\r%c", r)
 time.Sleep(delay)
 }
 }
}

func fib(x int) int {
 if x < 2 {
 return x
 }
 return fib(x-1) + fib(x-2)
}

After several seconds of animation, the fib(45) call returns and the main function
prints its result:

Fibonacci(45) = 1134903170

The main function then returns. When this happens, all goroutines are abruptly
terminated and the program exits. Other than by returning from main or exiting the
program, there is no programmatic way for one goroutine to stop another, but as we
will see later, there are ways to communicate with a goroutine to request that it stop
itself.
Notice how the program is expressed as the composition of two autonomous
activities, spinning and Fibonacci computation. Each is written as a separate function
but both make progress concurrently.

8.2 Example: Concurrent Clock Server
Networking is a natural domain in which to use concurrency since servers typically
handle many connections from their clients at once, each client being essentially
independent of the others. In this section, we’ll introduce the net package, which
provides the components for building networked client and server programs that
communicate over TCP, UDP, or Unix domain sockets. The net/http package
we’ve been using since Chapter 1 is built on top of functions from the net package.

Our first example is a sequential clock server that writes the current time to the client
once per second:

Click here to view code image

gopl.io/ch8/clock1
// Clock1 is a TCP server that periodically writes the
time.
package main

import (
 "io"
 "log"
 "net"
 "time"
)

func main() {
 listener, err := net.Listen("tcp",
"localhost:8000")
 if err != nil {
 log.Fatal(err)
 }
 for {
 conn, err := listener.Accept()
 if err != nil {
 log.Print(err) // e.g., connection aborted
 continue
 }

 handleConn(conn) // handle one connection at a
time
 }
}

func handleConn(c net.Conn) {
 defer c.Close()
 for {
 _, err := io.WriteString(c,
time.Now().Format("15:04:05\n"))
 if err != nil {
 return // e.g., client disconnected
 }
 time.Sleep(1 * time.Second)
 }
}

The Listen function creates a net.Listener, an object that listens for
incoming connections on a network port, in this case TCP port localhost:8000.
The listener’s Accept method blocks until an incoming connection request is made,
then returns a net.Conn object representing the connection.

The handleConn function handles one complete client connection. In a loop, it
writes the current time, time.Now(), to the client. Since net.Conn satisfies the
io.Writer interface, we can write directly to it. The loop ends when the write
fails, most likely because the client has disconnected, at which point handleConn
closes its side of the connection using a deferred call to Close and goes back to
waiting for another connection request.
The time.Time.Format method provides a way to format date and time
information by example. Its argument is a template indicating how to format a
reference time, specifically Mon Jan 2 03:04:05PM 2006 UTC-0700. The
reference time has eight components (day of the week, month, day of the month, and
so on). Any collection of them can appear in the Format string in any order and in a
number of formats; the selected components of the date and time will be displayed in
the selected formats. Here we are just using the hour, minute, and second of the time.
The time package defines templates for many standard time formats, such as
time.RFC1123. The same mechanism is used in reverse when parsing a time using
time.Parse.

To connect to the server, we’ll need a client program such as nc (“netcat”), a
standard utility program for manipulating network connections:

Click here to view code image

$ go build gopl.io/ch8/clock1
$./clock1 &
$ nc localhost 8000
13:58:54
13:58:55
13:58:56
13:58:57
^C

The client displays the time sent by the server each second until we interrupt the
client with Control-C, which on Unix systems is echoed as ^C by the shell. If nc or
netcat is not installed on your system, you can use telnet or this simple Go
version of netcat that uses net.Dial to connect to a TCP server:

Click here to view code image

gopl.io/ch8/netcat1
// Netcat1 is a read-only TCP client.
package main

import (
 "io"
 "log"
 "net"
 "os"
)

func main() {
 conn, err := net.Dial("tcp", "localhost:8000")
 if err != nil {
 log.Fatal(err)
 }
 defer conn.Close()
 mustCopy(os.Stdout, conn)
}

func mustCopy(dst io.Writer, src io.Reader) {
 if _, err := io.Copy(dst, src); err != nil {
 log.Fatal(err)
 }
}

This program reads data from the connection and writes it to the standard output until
an end-of-file condition or an error occurs. The mustCopy function is a utility used
in several examples in this section. Let’s run two clients at the same time on different
terminals, one shown to the left and one to the right:

Click here to view code image

$ go build gopl.io/ch8/netcat1
$./netcat1
13:58:54 $./netcat1
13:58:55
13:58:56
^C
 13:58:57
 13:58:58
 13:58:59
 ^C
$ killall clock1

The killall command is a Unix utility that kills all processes with the given name.

The second client must wait until the first client is finished because the server is
sequential; it deals with only one client at a time. Just one small change is needed to
make the server concurrent: adding the go keyword to the call to handleConn
causes each call to run in its own goroutine.

Click here to view code image

gopl.io/ch8/clock2
for {
 conn, err := listener.Accept()
 if err != nil {
 log.Print(err) // e.g., connection aborted
 continue

 }
 go handleConn(conn) // handle connections
concurrently
}

Now, multiple clients can receive the time at once:

Click here to view code image

$ go build gopl.io/ch8/clock2
$./clock2 &
$ go build gopl.io/ch8/netcat1
$./netcat1
14:02:54 $./netcat1
14:02:55 14:02:55
14:02:56 14:02:56
14:02:57 ^C
14:02:58
14:02:59 $./netcat1
14:03:00 14:03:00
14:03:01 14:03:01
^C 14:03:02
 ^C
$ killall clock2

Exercise 8.1: Modify clock2 to accept a port number, and write a program,
clockwall, that acts as a client of several clock servers at once, reading the times
from each one and displaying the results in a table, akin to the wall of clocks seen in
some business offices. If you have access to geographically distributed computers,
run instances remotely; otherwise run local instances on different ports with fake time
zones.

Click here to view code image

$ TZ=US/Eastern ./clock2 -port 8010 &
$ TZ=Asia/Tokyo ./clock2 -port 8020 &
$ TZ=Europe/London ./clock2 -port 8030 &
$ clockwall NewYork=localhost:8010
London=localhost:8020 Tokyo=localhost:8030

Exercise 8.2: Implement a concurrent File Transfer Protocol (FTP) server. The
server should interpret commands from each client such as cd to change directory,

ls to list a directory, get to send the contents of a file, and close to close the
connection. You can use the standard ftp command as the client, or write your own.

8.3 Example: Concurrent Echo Server
The clock server used one goroutine per connection. In this section, we’ll build an
echo server that uses multiple goroutines per connection. Most echo servers merely
write whatever they read, which can be done with this trivial version of
handleConn:

Click here to view code image

func handleConn(c net.Conn) {
 io.Copy(c, c) // NOTE: ignoring errors
 c.Close()
}

A more interesting echo server might simulate the reverberations of a real echo, with
the response loud at first ("HELLO!"), then moderate ("Hello!") after a delay,
then quiet ("hello!") before fading to nothing, as in this version of
handleConn:

Click here to view code image

gopl.io/ch8/reverb1
func echo(c net.Conn, shout string, delay
time.Duration) {
 fmt.Fprintln(c, "\t", strings.ToUpper(shout))
 time.Sleep(delay)
 fmt.Fprintln(c, "\t", shout)
 time.Sleep(delay)
 fmt.Fprintln(c, "\t", strings.ToLower(shout))
}

func handleConn(c net.Conn) {
 input := bufio.NewScanner(c)
 for input.Scan() {
 echo(c, input.Text(), 1*time.Second)
 }
 // NOTE: ignoring potential errors from
input.Err()

 c.Close()
}

We’ll need to upgrade our client program so that it sends terminal input to the server
while also copying the server response to the output, which presents another
opportunity to use concurrency:

Click here to view code image

gopl.io/ch8/netcat2
func main() {
 conn, err := net.Dial("tcp", "localhost:8000")
 if err != nil {
 log.Fatal(err)
 }
 defer conn.Close()
 go mustCopy(os.Stdout, conn)
 mustCopy(conn, os.Stdin)
}

While the main goroutine reads the standard input and sends it to the server, a second
goroutine reads and prints the server’s response. When the main goroutine encounters
the end of the input, for example, after the user types Control-D (^D) at the terminal
(or the equivalent Control-Z on Microsoft Windows), the program stops, even if the
other goroutine still has work to do. (We’ll see how to make the program wait for
both sides to finish once we’ve introduced channels in Section 8.4.1.)
In the session below, the client’s input is left-aligned and the server’s responses are
indented. The client shouts at the echo server three times:

$ go build gopl.io/ch8/reverb1
$./reverb1 &
$ go build gopl.io/ch8/netcat2
$./netcat2
Hello?
 HELLO?
 Hello?
 hello?
Is there anybody there?
 IS THERE ANYBODY THERE?
Yooo-hooo!

 Is there anybody there?
 is there anybody there?
 YOOO-HOOO!
 Yooo-hooo!
 yooo-hooo!
^D
$ killall reverb1

Notice that the third shout from the client is not dealt with until the second shout has
petered out, which is not very realistic. A real echo would consist of the composition
of the three independent shouts. To simulate it, we’ll need more goroutines. Again, all
we need to do is add the go keyword, this time to the call to echo:

Click here to view code image

gopl.io/ch8/reverb2
func handleConn(c net.Conn) {
 input := bufio.NewScanner(c)
 for input.Scan() {
 go echo(c, input.Text(), 1*time.Second)
 }
 // NOTE: ignoring potential errors from
input.Err()
 c.Close()
}

The arguments to the function started by go are evaluated when the go statement
itself is executed; thus input.Text() is evaluated in the main goroutine.

Now the echoes are concurrent and overlap in time:
$ go build gopl.io/ch8/reverb2
$./reverb2 &
$./netcat2
Is there anybody there?
 IS THERE ANYBODY THERE?

Yooo-hooo!
 Is there anybody there?
 YOOO-HOOO!
 is there anybody there?

 Yooo-hooo!
 yooo-hooo!
^D
$ killall reverb2

All that was required to make the server use concurrency, not just to handle
connections from multiple clients but even within a single connection, was the
insertion of two go keywords.

However in adding these keywords, we had to consider carefully that it is safe to call
methods of net.Conn concurrently, which is not true for most types. We’ll discuss
the crucial concept of concurrency safety in the next chapter.

8.4 Channels
If goroutines are the activities of a concurrent Go program, channels are the
connections between them. A channel is a communication mechanism that lets one
goroutine send values to another goroutine. Each channel is a conduit for values of a
particular type, called the channel’s element type. The type of a channel whose
elements have type int is written chan int .

To create a channel, we use the built-in make function:

Click here to view code image

ch := make(chan int) // ch has type 'chan int'

As with maps, a channel is a reference to the data structure created by make. When
we copy a channel or pass one as an argument to a function, we are copying a
reference, so caller and callee refer to the same data structure. As with other
reference types, the zero value of a channel is nil.

Two channels of the same type may be compared using ==. The comparison is true if
both are references to the same channel data structure. A channel may also be
compared to nil.

A channel has two principal operations, send and receive, collectively known as
communications. A send statement transmits a value from one goroutine, through the
channel, to another goroutine executing a corresponding receive expression. Both
operations are written using the <- operator. In a send statement, the <- separates
the channel and value operands. In a receive expression, <- precedes the channel
operand. A receive expression whose result is not used is a valid statement.

Click here to view code image

ch <- x // a send statement

x = <-ch // a receive expression in an assignment
statement
<-ch // a receive statement; result is discarded

Channels support a third operation, close, which sets a flag indicating that no more
values will ever be sent on this channel; subsequent attempts to send will panic.

Receive operations on a closed channel yield the values that have been sent until no
more values are left; any receive operations thereafter complete immediately and yield
the zero value of the channel’s element type.
To close a channel, we call the built-in close function:

close(ch)

A channel created with a simple call to make is called an unbuffered channel, but
make accepts an optional second argument, an integer called the channel’s capacity.
If the capacity is non-zero, make creates a buffered channel.

Click here to view code image

ch = make(chan int) // unbuffered channel
ch = make(chan int, 0) // unbuffered channel
ch = make(chan int, 3) // buffered channel with
capacity 3

We’ll look at unbuffered channels first and buffered channels in Section 8.4.4.

8.4.1 Unbuffered Channels

A send operation on an unbuffered channel blocks the sending goroutine until another
goroutine executes a corresponding receive on the same channel, at which point the
value is transmitted and both goroutines may continue. Conversely, if the receive
operation was attempted first, the receiving goroutine is blocked until another
goroutine performs a send on the same channel.
Communication over an unbuffered channel causes the sending and receiving
goroutines to synchronize. Because of this, unbuffered channels are sometimes called
synchronous channels. When a value is sent on an unbuffered channel, the receipt of
the value happens before the reawakening of the sending goroutine.
In discussions of concurrency, when we say x happens before y, we don’t mean
merely that x occurs earlier in time than y; we mean that it is guaranteed to do so and
that all its prior effects, such as updates to variables, are complete and that you may
rely on them.
When x neither happens before y nor after y, we say that x is concurrent with y. This
doesn’t mean that x and y are necessarily simultaneous, merely that we cannot

assume anything about their ordering. As we’ll see in the next chapter, it’s necessary
to order certain events during the program’s execution to avoid the problems that arise
when two goroutines access the same variable concurrently.
The client program in Section 8.3 copies input to the server in its main goroutine, so
the client program terminates as soon as the input stream closes, even if the
background goroutine is still working. To make the program wait for the background
goroutine to complete before exiting, we use a channel to synchronize the two
goroutines:

Click here to view code image

gopl.io/ch8/netcat3
func main() {
 conn, err := net.Dial("tcp", "localhost:8000")
 if err != nil {
 log.Fatal(err)
 }
 done := make(chan struct{})
 go func() {
 io.Copy(os.Stdout, conn) // NOTE: ignoring
errors
 log.Println("done")
 done <- struct{}{} // signal the main
goroutine
 }()
 mustCopy(conn, os.Stdin)
 conn.Close()
 <-done // wait for background goroutine to finish
}

When the user closes the standard input stream, mustCopy returns and the main
goroutine calls conn.Close(), closing both halves of the network connection.
Closing the write half of the connection causes the server to see an end-of-file
condition. Closing the read half causes the background goroutine’s call to io.Copy
to return a “read from closed connection” error, which is why we’ve removed the
error logging; Exercise 8.3 suggests a better solution. (Notice that the go statement
calls a literal function, a common construction.)
Before it returns, the background goroutine logs a message, then sends a value on the

done channel. The main goroutine waits until it has received this value before
returning. As a result, the program always logs the "done" message before exiting.

Messages sent over channels have two important aspects. Each message has a value,
but sometimes the fact of communication and the moment at which it occurs are just
as important. We call messages events when we wish to stress this aspect. When the
event carries no additional information, that is, its sole purpose is synchronization,
we’ll emphasize this by using a channel whose element type is struct{}, though
it’s common to use a channel of bool or int for the same purpose since done <-
1 is shorter than done <- struct{}{}.

Exercise 8.3: In netcat3, the interface value conn has the concrete type
*net.TCPConn, which represents a TCP connection. A TCP connection consists
of two halves that may be closed independently using its CloseRead and
CloseWrite methods. Modify the main goroutine of netcat3 to close only the
write half of the connection so that the program will continue to print the final echoes
from the reverb1 server even after the standard input has been closed. (Doing this
for the reverb2 server is harder; see Exercise 8.4.)

8.4.2 Pipelines

Channels can be used to connect goroutines together so that the output of one is the
input to another. This is called a pipeline. The program below consists of three
goroutines connected by two channels, as shown schematically in Figure 8.1.

Figure 8.1. A three-stage pipeline.

The first goroutine, counter, generates the integers 0, 1, 2, ..., and sends them over a
channel to the second goroutine, squarer, which receives each value, squares it, and
sends the result over another channel to the third goroutine, printer, which receives
the squared values and prints them. For clarity of this example, we have intentionally
chosen very simple functions, though of course they are too computationally trivial to

warrant their own goroutines in a realistic program.

Click here to view code image

gopl.io/ch8/pipeline1
func main() {
 naturals := make(chan int)
 squares := make(chan int)

 // Counter
 go func() {
 for x := 0; ; x++ {
 naturals <- x
 }
 }()

 // Squarer
 go func() {
 for {
 x := <-naturals
 squares <- x * x
 }
 }()

 // Printer (in main goroutine)
 for {
 fmt.Println(<-squares)
 }
}

As you might expect, the program prints the infinite series of squares 0, 1, 4, 9, and
so on. Pipelines like this may be found in long-running server programs where
channels are used for lifelong communication between goroutines containing infinite
loops. But what if we want to send only a finite number of values through the
pipeline?
If the sender knows that no further values will ever be sent on a channel, it is useful
to communicate this fact to the receiver goroutines so that they can stop waiting. This
is accomplished by closing the channel using the built-in close function:

close(naturals)

After a channel has been closed, any further send operations on it will panic. After the
closed channel has been drained, that is, after the last sent element has been
received, all subsequent receive operations will proceed without blocking but will yield
a zero value. Closing the naturals channel above would cause the squarer’s loop
to spin as it receives a never-ending stream of zero values, and to send these zeros to
the printer.
There is no way to test directly whether a channel has been closed, but there is a
variant of the receive operation that produces two results: the received channel
element, plus a boolean value, conventionally called ok, which is true for a
successful receive and false for a receive on a closed and drained channel. Using
this feature, we can modify the squarer’s loop to stop when the naturals channel
is drained and close the squares channel in turn.

Click here to view code image

// Squarer
go func() {
 for {
 x, ok := <-naturals
 if !ok {
 break // channel was closed and drained
 }
 squares <- x * x
 }
 close(squares)
}()

Because the syntax above is clumsy and this pattern is common, the language lets us
use a range loop to iterate over channels too. This is a more convenient syntax for
receiving all the values sent on a channel and terminating the loop after the last one.
In the pipeline below, when the counter goroutine finishes its loop after 100 elements,
it closes the naturals channel, causing the squarer to finish its loop and close the
squares channel. (In a more complex program, it might make sense for the counter
and squarer functions to defer the calls to close at the outset.) Finally, the main
goroutine finishes its loop and the program exits.

Click here to view code image

gopl.io/ch8/pipeline2

func main() {
 naturals := make(chan int)
 squares := make(chan int)

 // Counter
 go func() {
 for x := 0; x < 100; x++ {
 naturals <- x
 }
 close(naturals)
 }()

 // Squarer
 go func() {
 for x := range naturals {
 squares <- x * x
 }
 close(squares)
 }()

 // Printer (in main goroutine)
 for x := range squares {
 fmt.Println(x)
 }
}

You needn’t close every channel when you’ve finished with it. It’s only necessary to
close a channel when it is important to tell the receiving goroutines that all data have
been sent. A channel that the garbage collector determines to be unreachable will have
its resources reclaimed whether or not it is closed. (Don’t confuse this with the close
operation for open files. It is important to call the Close method on every file when
you’ve finished with it.)
Attempting to close an already-closed channel causes a panic, as does closing a nil
channel. Closing channels has another use as a broadcast mechanism, which we’ll
cover in Section 8.9.

8.4.3 Unidirectional Channel Types

As programs grow, it is natural to break up large functions into smaller pieces. Our
previous example used three goroutines, communicating over two channels, which
were local variables of main. The program naturally divides into three functions:

func counter(out chan int)
func squarer(out, in chan int)
func printer(in chan int)

The squarer function, sitting in the middle of the pipeline, takes two parameters,
the input channel and the output channel. Both have the same type, but their intended
uses are opposite: in is only to be received from, and out is only to be sent to. The
names in and out convey this intention, but still, nothing prevents squarer from
sending to in or receiving from out.

This arrangement is typical. When a channel is supplied as a function parameter, it is
nearly always with the intent that it be used exclusively for sending or exclusively for
receiving.
To document this intent and prevent misuse, the Go type system provides
unidirectional channel types that expose only one or the other of the send and
receive operations. The type chan<- int , a send-only channel of int, allows
sends but not receives. Conversely, the type <-chan int , a receive-only channel
of int, allows receives but not sends. (The position of the <- arrow relative to the
chan keyword is a mnemonic.) Violations of this discipline are detected at compile
time.
Since the close operation asserts that no more sends will occur on a channel, only
the sending goroutine is in a position to call it, and for this reason it is a compile-time
error to attempt to close a receive-only channel.
Here’s the squaring pipeline once more, this time with unidirectional channel types:

Click here to view code image

gopl.io/ch8/pipeline3
func counter(out chan<- int) {
 for x := 0; x < 100; x++ {
 out <- x
 }
 close(out)
}

func squarer(out chan<- int, in <-chan int) {
 for v := range in {
 out <- v * v
 }
 close(out)
}

func printer(in <-chan int) {
 for v := range in {
 fmt.Println(v)
 }
}

func main() {
 naturals := make(chan int)
 squares := make(chan int)

 go counter(naturals)
 go squarer(squares, naturals)
 printer(squares)
}

The call counter(naturals) implicitly converts naturals, a value of type
chan int , to the type of the parameter, chan<- int . The
printer(squares) call does a similar implicit conversion to <-chan int .
Conversions from bidirectional to unidirectional channel types are permitted in any
assignment. There is no going back, however: once you have a value of a
unidirectional type such as chan<- int , there is no way to obtain from it a value
of type chan int that refers to the same channel data structure.

8.4.4 Buffered Channels

A buffered channel has a queue of elements. The queue’s maximum size is
determined when it is created, by the capacity argument to make. The statement
below creates a buffered channel capable of holding three string values. Figure 8.2
is a graphical representation of ch and the channel to which it refers.

ch = make(chan string, 3)

Figure 8.2. An empty buffered channel.

A send operation on a buffered channel inserts an element at the back of the queue,
and a receive operation removes an element from the front. If the channel is full, the
send operation blocks its goroutine until space is made available by another
goroutine’s receive. Conversely, if the channel is empty, a receive operation blocks
until a value is sent by another goroutine.
We can send up to three values on this channel without the goroutine blocking:

ch <- "A"
ch <- "B"
ch <- "C"

At this point, the channel is full (Figure 8.3), and a fourth send statement would
block.

Figure 8.3. A full buffered channel.

If we receive one value,
fmt.Println(<-ch) // "A"

the channel is neither full nor empty (Figure 8.4), so either a send operation or a
receive operation could proceed without blocking. In this way, the channel’s buffer
decouples the sending and receiving goroutines.

Figure 8.4. A partially full buffered channel.

In the unlikely event that a program needs to know the channel’s buffer capacity, it
can be obtained by calling the built-in cap function:

fmt.Println(cap(ch)) // "3"

When applied to a channel, the built-in len function returns the number of elements
currently buffered. Since in a concurrent program this information is likely to be stale
as soon as it is retrieved, its value is limited, but it could conceivably be useful during
fault diagnosis or performance optimization.

fmt.Println(len(ch)) // "2"

After two more receive operations the channel is empty again, and a fourth would
block:

fmt.Println(<-ch) // "B"
fmt.Println(<-ch) // "C"

In this example, the send and receive operations were all performed by the same
goroutine, but in real programs they are usually executed by different goroutines.
Novices are sometimes tempted to use buffered channels within a single goroutine as
a queue, lured by their pleasingly simple syntax, but this is a mistake. Channels are
deeply connected to goroutine scheduling, and without another goroutine receiving
from the channel, a sender—and perhaps the whole program—risks becoming
blocked forever. If all you need is a simple queue, make one using a slice.
The example below shows an application of a buffered channel. It makes parallel
requests to three mirrors, that is, equivalent but geographically distributed servers. It
sends their responses over a buffered channel, then receives and returns only the first
response, which is the quickest one to arrive. Thus mirroredQuery returns a
result even before the two slower servers have responded. (Incidentally, it’s quite
normal for several goroutines to send values to the same channel concurrently, as in
this example, or to receive from the same channel.)

Click here to view code image

func mirroredQuery() string {
 responses := make(chan string, 3)
 go func() { responses <- request("asia.gopl.io") }
()
 go func() { responses <- request("europe.gopl.io")

}()
 go func() { responses <-
request("americas.gopl.io") }()
 return <-responses // return the quickest response
}

func request(hostname string) (response string) { /*
... */ }

Had we used an unbuffered channel, the two slower goroutines would have gotten
stuck trying to send their responses on a channel from which no goroutine will ever
receive. This situation, called a goroutine leak, would be a bug. Unlike garbage
variables, leaked goroutines are not automatically collected, so it is important to make
sure that goroutines terminate themselves when no longer needed.
The choice between unbuffered and buffered channels, and the choice of a buffered
channel’s capacity, may both affect the correctness of a program. Unbuffered
channels give stronger synchronization guarantees because every send operation is
synchronized with its corresponding receive; with buffered channels, these operations
are decoupled. Also, when we know an upper bound on the number of values that
will be sent on a channel, it’s not unusual to create a buffered channel of that size and
perform all the sends before the first value is received. Failure to allocate sufficient
buffer capacity would cause the program to deadlock.
Channel buffering may also affect program performance. Imagine three cooks in a
cake shop, one baking, one icing, and one inscribing each cake before passing it on to
the next cook in the assembly line. In a kitchen with little space, each cook that has
finished a cake must wait for the next cook to become ready to accept it; this
rendezvous is analogous to communication over an unbuffered channel.
If there is space for one cake between each cook, a cook may place a finished cake
there and immediately start work on the next; this is analogous to a buffered channel
with capacity 1. So long as the cooks work at about the same rate on average, most
of these handovers proceed quickly, smoothing out transient differences in their
respective rates. More space between cooks—larger buffers—can smooth out bigger
transient variations in their rates without stalling the assembly line, such as happens
when one cook takes a short break, then later rushes to catch up.
On the other hand, if an earlier stage of the assembly line is consistently faster than
the following stage, the buffer between them will spend most of its time full.
Conversely, if the later stage is faster, the buffer will usually be empty. A buffer

provides no benefit in this case.
The assembly line metaphor is a useful one for channels and goroutines. For example,
if the second stage is more elaborate, a single cook may not be able to keep up with
the supply from the first cook or meet the demand from the third. To solve the
problem, we could hire another cook to help the second, performing the same task
but working independently. This is analogous to creating another goroutine
communicating over the same channels.
We don’t have space to show it here, but the gopl.io/ch8/cake package
simulates this cake shop, with several parameters you can vary. It includes
benchmarks (§11.4) for a few of the scenarios described above.

8.5 Looping in Parallel
In this section, we’ll explore some common concurrency patterns for executing all the
iterations of a loop in parallel. We’ll consider the problem of producing thumbnail-size
images from a set of full-size ones. The gopl.io/ch8/thumbnail package
provides an ImageFile function that can scale a single image. We won’t show its
implementation but it can be downloaded from gopl.io.

Click here to view code image

gopl.io/ch8/thumbnail
package thumbnail

// ImageFile reads an image from infile and writes
// a thumbnail-size version of it in the same
directory.
// It returns the generated file name, e.g.,
"foo.thumb.jpg".
func ImageFile(infile string) (string, error)

The program below loops over a list of image file names and produces a thumbnail
for each one:

Click here to view code image

gopl.io/ch8/thumbnail
// makeThumbnails makes thumbnails of the specified
files.
func makeThumbnails(filenames []string) {
 for _, f := range filenames {
 if _, err := thumbnail.ImageFile(f); err !=
nil {
 log.Println(err)
 }
 }
}

Obviously the order in which we process the files doesn’t matter, since each scaling

operation is independent of all the others. Problems like this that consist entirely of
subproblems that are completely independent of each other are described as
embarrassingly parallel. Embarrassingly parallel problems are the easiest kind to
implement concurrently and enjoy performance that scales linearly with the amount
of parallelism.
Let’s execute all these operations in parallel, thereby hiding the latency of the file I/O
and using multiple CPUs for the image-scaling computations. Our first attempt at a
concurrent version just adds a go keyword. We’ll ignore errors for now and address
them later.

Click here to view code image

// NOTE: incorrect!
func makeThumbnails2(filenames []string) {
 for _, f := range filenames {
 go thumbnail.ImageFile(f) // NOTE: ignoring
errors
 }
}

This version runs really fast—too fast, in fact, since it takes less time than the
original, even when the slice of file names contains only a single element. If there’s no
parallelism, how can the concurrent version possibly run faster? The answer is that
makeThumbnails returns before it has finished doing what it was supposed to do.
It starts all the goroutines, one per file name, but doesn’t wait for them to finish.
There is no direct way to wait until a goroutine has finished, but we can change the
inner goroutine to report its completion to the outer goroutine by sending an event on
a shared channel. Since we know that there are exactly len(filenames) inner
goroutines, the outer goroutine need only count that many events before it returns:

Click here to view code image

// makeThumbnails3 makes thumbnails of the specified
files in parallel.
func makeThumbnails3(filenames []string) {
 ch := make(chan struct{})
 for _, f := range filenames {
 go func(f string) {
 thumbnail.ImageFile(f) // NOTE: ignoring

errors
 ch <- struct{}{}
 }(f)
 }

 // Wait for goroutines to complete.
 for range filenames {
 <-ch
 }
}

Notice that we passed the value of f as an explicit argument to the literal function
instead of using the declaration of f from the enclosing for loop:

Click here to view code image

for _, f := range filenames {
 go func() {
 thumbnail.ImageFile(f) // NOTE: incorrect!
 // ...
 }()
}

Recall the problem of loop variable capture inside an anonymous function, described
in Section 5.6.1. Above, the single variable f is shared by all the anonymous function
values and updated by successive loop iterations. By the time the new goroutines start
executing the literal function, the for loop may have updated f and started another
iteration or (more likely) finished entirely, so when these goroutines read the value of
f, they all observe it to have the value of the final element of the slice. By adding an
explicit parameter, we ensure that we use the value of f that is current when the go
statement is executed.
What if we want to return values from each worker goroutine to the main one? If the
call to thumbnail.ImageFile fails to create a file, it returns an error. The next
version of makeThumbnails returns the first error it receives from any of the
scaling operations:

Click here to view code image

// makeThumbnails4 makes thumbnails for the specified
files in parallel.

// It returns an error if any step failed.
func makeThumbnails4(filenames []string) error {
 errors := make(chan error)

 for _, f := range filenames {
 go func(f string) {
 _, err := thumbnail.ImageFile(f)
 errors <- err
 }(f)
 }

 for range filenames {
 if err := <-errors; err != nil {
 return err // NOTE: incorrect: goroutine
leak!
 }
 }

 return nil
}

This function has a subtle bug. When it encounters the first non-nil error, it returns
the error to the caller, leaving no goroutine draining the errors channel. Each
remaining worker goroutine will block forever when it tries to send a value on that
channel, and will never terminate. This situation, a goroutine leak (§8.4.4), may cause
the whole program to get stuck or to run out of memory.
The simplest solution is to use a buffered channel with sufficient capacity that no
worker goroutine will block when it sends a message. (An alternative solution is to
create another goroutine to drain the channel while the main goroutine returns the first
error without delay.)
The next version of makeThumbnails uses a buffered channel to return the
names of the generated image files along with any errors.

Click here to view code image

// makeThumbnails5 makes thumbnails for the specified
files in parallel.
// It returns the generated file names in an arbitrary
order,

// or an error if any step failed.
func makeThumbnails5(filenames []string) (thumbfiles
[]string, err error) {
 type item struct {
 thumbfile string
 err error
 }

 ch := make(chan item, len(filenames))
 for _, f := range filenames {
 go func(f string) {
 var it item
 it.thumbfile, it.err =
thumbnail.ImageFile(f)
 ch <- it
 }(f)
 }

 for range filenames {
 it := <-ch
 if it.err != nil {
 return nil, it.err
 }
 thumbfiles = append(thumbfiles, it.thumbfile)
 }

 return thumbfiles, nil
}

Our final version of makeThumbnails, below, returns the total number of bytes
occupied by the new files. Unlike the previous versions, however, it receives the file
names not as a slice but over a channel of strings, so we cannot predict the number of
loop iterations.
To know when the last goroutine has finished (which may not be the last one to
start), we need to increment a counter before each goroutine starts and decrement it
as each goroutine finishes. This demands a special kind of counter, one that can be
safely manipulated from multiple goroutines and that provides a way to wait until it
becomes zero. This counter type is known as sync.WaitGroup, and the code
below shows how to use it:

Click here to view code image

// makeThumbnails6 makes thumbnails for each file
received from the channel.
// It returns the number of bytes occupied by the
files it creates.
func makeThumbnails6(filenames <-chan string) int64 {
 sizes := make(chan int64)
 var wg sync.WaitGroup // number of working
goroutines
 for f := range filenames {
 wg.Add(1)
 // worker
 go func(f string) {
 defer wg.Done()
 thumb, err := thumbnail.ImageFile(f)
 if err != nil {
 log.Println(err)
 return
 }
 info, _ := os.Stat(thumb) // OK to ignore
error
 sizes <- info.Size()
 }(f)
 }

 // closer
 go func() {
 wg.Wait()
 close(sizes)
 }()

 var total int64
 for size := range sizes {
 total += size
 }
 return total
}

Note the asymmetry in the Add and Done methods. Add, which increments the

counter, must be called before the worker goroutine starts, not within it; otherwise we
would not be sure that the Add happens before the “closer” goroutine calls Wait.
Also, Add takes a parameter, but Done does not; it’s equivalent to Add(-1). We
use defer to ensure that the counter is decremented even in the error case. The
structure of the code above is a common and idiomatic pattern for looping in parallel
when we don’t know the number of iterations.
The sizes channel carries each file size back to the main goroutine, which receives
them using a range loop and computes the sum. Observe how we create a closer
goroutine that waits for the workers to finish before closing the sizes channel.
These two operations, wait and close, must be concurrent with the loop over sizes.
Consider the alternatives: if the wait operation were placed in the main goroutine
before the loop, it would never end, and if placed after the loop, it would be
unreachable since with nothing closing the channel, the loop would never terminate.

Figure 8.5. The sequence of events in makeThumbnails6.

Figure 8.5 illustrates the sequence of events in the makeThumbnails6 function.
The vertical lines represent goroutines. The thin segments indicate sleep, the thick
segments activity. The diagonal arrows indicate events that synchronize one goroutine

with another. Time flows down. Notice how the main goroutine spends most of its
time in the range loop asleep, waiting for a worker to send a value or the closer to
close the channel.
Exercise 8.4: Modify the reverb2 server to use a sync.WaitGroup per
connection to count the number of active echo goroutines. When it falls to zero,
close the write half of the TCP connection as described in Exercise 8.3. Verify that
your modified netcat3 client from that exercise waits for the final echoes of
multiple concurrent shouts, even after the standard input has been closed.
Exercise 8.5: Take an existing CPU-bound sequential program, such as the
Mandelbrot program of Section 3.3 or the 3-D surface computation of Section 3.2,
and execute its main loop in parallel using channels for communication. How much
faster does it run on a multiprocessor machine? What is the optimal number of
goroutines to use?

8.6 Example: Concurrent Web Crawler
In Section 5.6, we made a simple web crawler that explored the link graph of the web
in breadth-first order. In this section, we’ll make it concurrent so that independent
calls to crawl can exploit the I/O parallelism available in the web. The crawl
function remains exactly as it was in gopl.io/ch5/findlinks3:

Click here to view code image

gopl.io/ch8/crawl1
func crawl(url string) []string {
 fmt.Println(url)
 list, err := links.Extract(url)
 if err != nil {
 log.Print(err)
 }
 return list
}

The main function resembles breadthFirst (§5.6). As before, a worklist records
the queue of items that need processing, each item being a list of URLs to crawl, but
this time, instead of representing the queue using a slice, we use a channel. Each call
to crawl occurs in its own goroutine and sends the links it discovers back to the
worklist.

Click here to view code image

func main() {
 worklist := make(chan []string)

 // Start with the command-line arguments.
 go func() { worklist <- os.Args[1:] }()

 // Crawl the web concurrently.
 seen := make(map[string]bool)
 for list := range worklist {
 for _, link := range list {
 if !seen[link] {

 seen[link] = true
 go func(link string) {
 worklist <- crawl(link)
 }(link)
 }
 }
 }
}

Notice that the crawl goroutine takes link as an explicit parameter to avoid the
problem of loop variable capture we first saw in Section 5.6.1. Also notice that the
initial send of the command-line arguments to the worklist must run in its own
goroutine to avoid deadlock, a stuck situation in which both the main goroutine and a
crawler goroutine attempt to send to each other while neither is receiving. An
alternative solution would be to use a buffered channel.
The crawler is now highly concurrent and prints a storm of URLs, but it has two
problems. The first problem manifests itself as error messages in the log after a few
seconds of operation:

Click here to view code image

$ go build gopl.io/ch8/crawl1
$./crawl1 http://gopl.io/
http://gopl.io/
https://golang.org/help/

https://golang.org/doc/
https://golang.org/blog/
...
2015/07/15 18:22:12 Get ...: dial tcp: lookup
blog.golang.org: no such host
2015/07/15 18:22:12 Get ...: dial tcp
23.21.222.120:443: socket:

too many open files
...

The initial error message is a surprising report of a DNS lookup failure for a reliable
domain. The subsequent error message reveals the cause: the program created so
many network connections at once that it exceeded the per-process limit on the

number of open files, causing operations such as DNS lookups and calls to
net.Dial to start failing.

The program is too parallel. Unbounded parallelism is rarely a good idea since there is
always a limiting factor in the system, such as the number of CPU cores for compute-
bound workloads, the number of spindles and heads for local disk I/O operations, the
bandwidth of the network for streaming downloads, or the serving capacity of a web
service. The solution is to limit the number of parallel uses of the resource to match
the level of parallelism that is available. A simple way to do that in our example is to
ensure that no more than n calls to links.Extract are active at once, where n is
comfortably less than the file descriptor limit—20, say. This is analogous to the way a
doorman at a crowded nightclub admits a guest only when some other guest leaves.
We can limit parallelism using a buffered channel of capacity n to model a
concurrency primitive called a counting semaphore. Conceptually, each of the n
vacant slots in the channel buffer represents a token entitling the holder to proceed.
Sending a value into the channel acquires a token, and receiving a value from the
channel releases a token, creating a new vacant slot. This ensures that at most n
sends can occur without an intervening receive. (Although it might be more intuitive
to treat filled slots in the channel buffer as tokens, using vacant slots avoids the need
to fill the channel buffer after creating it.) Since the channel element type is not
important, we’ll use struct{}, which has size zero.

Let’s rewrite the crawl function so that the call to links.Extract is bracketed
by operations to acquire and release a token, thus ensuring that at most 20 calls to it
are active at one time. It’s good practice to keep the semaphore operations as close as
possible to the I/O operation they regulate.

Click here to view code image

gopl.io/ch8/crawl2
// tokens is a counting semaphore used to
// enforce a limit of 20 concurrent requests.
var tokens = make(chan struct{}, 20)

func crawl(url string) []string {
 fmt.Println(url)
 tokens <- struct{}{} // acquire a token
 list, err := links.Extract(url)
 <-tokens // release the token

 if err != nil {
 log.Print(err)
 }
 return list
}

The second problem is that the program never terminates, even when it has
discovered all the links reachable from the initial URLs. (Of course, you’re unlikely to
notice this problem unless you choose the initial URLs carefully or implement the
depth-limiting feature of Exercise 8.6.) For the program to terminate, we need to
break out of the main loop when the worklist is empty and no crawl goroutines are
active.

Click here to view code image

func main() {
 worklist := make(chan []string)
 var n int // number of pending sends to worklist

 // Start with the command-line arguments.
 n++
 go func() { worklist <- os.Args[1:] }()

 // Crawl the web concurrently.
 seen := make(map[string]bool)
 for ; n > 0; n-- {
 list := <-worklist
 for _, link := range list {
 if !seen[link] {
 seen[link] = true
 n++
 go func(link string) {
 worklist <- crawl(link)
 }(link)
 }
 }
 }
}

In this version, the counter n keeps track of the number of sends to the worklist that

are yet to occur. Each time we know that an item needs to be sent to the worklist, we
increment n, once before we send the initial command-line arguments, and again each
time we start a crawler goroutine. The main loop terminates when n falls to zero,
since there is no more work to be done.
Now the concurrent crawler runs about 20 times faster than the breadth-first crawler
from Section 5.6, without errors, and terminates correctly if it should complete its
task.
The program below shows an alternative solution to the problem of excessive
concurrency. This version uses the original crawl function that has no counting
semaphore, but calls it from one of 20 long-lived crawler goroutines, thus ensuring
that at most 20 HTTP requests are active concurrently.

Click here to view code image

gopl.io/ch8/crawl3
func main() {
 worklist := make(chan []string) // lists of URLs,
may have duplicates
 unseenLinks := make(chan string) // de-duplicated
URLs

 // Add command-line arguments to worklist.
 go func() { worklist <- os.Args[1:] }()

 // Create 20 crawler goroutines to fetch each
unseen link.
 for i := 0; i < 20; i++ {
 go func() {
 for link := range unseenLinks {
 foundLinks := crawl(link)
 go func() { worklist <- foundLinks }()
 }
 }()
 }

 // The main goroutine de-duplicates worklist items
 // and sends the unseen ones to the crawlers.
 seen := make(map[string]bool)

 for list := range worklist {
 for _, link := range list {
 if !seen[link] {
 seen[link] = true
 unseenLinks <- link
 }
 }
 }
}

The crawler goroutines are all fed by the same channel, unseenLinks. The main
goroutine is responsible for de-duplicating items it receives from the worklist, and
then sending each unseen one over the unseenLinks channel to a crawler
goroutine.
The seen map is confined within the main goroutine; that is, it can be accessed only
by that goroutine. Like other forms of information hiding, confinement helps us
reason about the correctness of a program. For example, local variables cannot be
mentioned by name from outside the function in which they are declared; variables
that do not escape (§2.3.4) from a function cannot be accessed from outside that
function; and encapsulated fields of an object cannot be accessed except by the
methods of that object. In all cases, information hiding helps to limit unintended
interactions between parts of the program.
Links found by crawl are sent to the worklist from a dedicated goroutine to avoid
deadlock.
To save space, we have not addressed the problem of termination in this example.
Exercise 8.6: Add depth-limiting to the concurrent crawler. That is, if the user sets -
depth=3, then only URLs reachable by at most three links will be fetched.

Exercise 8.7: Write a concurrent program that creates a local mirror of a web site,
fetching each reachable page and writing it to a directory on the local disk. Only pages
within the original domain (for instance, golang.org) should be fetched. URLs
within mirrored pages should be altered as needed so that they refer to the mirrored
page, not the original.

8.7 Multiplexing with select
The program below does the countdown for a rocket launch. The time.Tick
function returns a channel on which it sends events periodically, acting like a
metronome. The value of each event is a timestamp, but it is rarely as interesting as
the fact of its delivery.

Click here to view code image

gopl.io/ch8/countdown1
func main() {
 fmt.Println("Commencing countdown.")
 tick := time.Tick(1 * time.Second)
 for countdown := 10; countdown > 0; countdown-- {
 fmt.Println(countdown)
 <-tick
 }
 launch()
}

Now let’s add the ability to abort the launch sequence by pressing the return key
during the countdown. First, we start a goroutine that tries to read a single byte from
the standard input and, if it succeeds, sends a value on a channel called abort.

Click here to view code image

gopl.io/ch8/countdown2
abort := make(chan struct{})
go func() {
 os.Stdin.Read(make([]byte, 1)) // read a single
byte
 abort <- struct{}{}
}()

Now each iteration of the countdown loop needs to wait for an event to arrive on one
of the two channels: the ticker channel if everything is fine (“nominal” in NASA
jargon) or an abort event if there was an “anomaly.” We can’t just receive from each
channel because whichever operation we try first will block until completion. We need

to multiplex these operations, and to do that, we need a select statement.
select {
case <-ch1:
 // ...
case x := <-ch2:
 // ...use x...
case ch3 <- y:
 // ...
default:
 // ...
}

The general form of a select statement is shown above. Like a switch statement, it
has a number of cases and an optional default. Each case specifies a
communication (a send or receive operation on some channel) and an associated
block of statements. A receive expression may appear on its own, as in the first case,
or within a short variable declaration, as in the second case; the second form lets you
refer to the received value.
A select waits until a communication for some case is ready to proceed. It then
performs that communication and executes the case’s associated statements; the other
communications do not happen. A select with no cases, select{}, waits
forever.
Let’s return to our rocket launch program. The time.After function immediately
returns a channel, and starts a new goroutine that sends a single value on that channel
after the specified time. The select statement below waits until the first of two events
arrives, either an abort event or the event indicating that 10 seconds have elapsed. If
10 seconds go by with no abort, the launch proceeds.

Click here to view code image

func main() {
 // ...create abort channel...

 fmt.Println("Commencing countdown. Press return
to abort.")
 select {
 case <-time.After(10 * time.Second):
 // Do nothing.

 case <-abort:
 fmt.Println("Launch aborted!")
 return
 }
 launch()
}

The example below is more subtle. The channel ch, whose buffer size is 1, is
alternately empty then full, so only one of the cases can proceed, either the send
when i is even, or the receive when i is odd. It always prints 0 2 4 6 8 .

Click here to view code image

ch := make(chan int, 1)
for i := 0; i < 10; i++ {
 select {
 case x := <-ch:
 fmt.Println(x) // "0" "2" "4" "6" "8"
 case ch <- i:
 }
}

If multiple cases are ready, select picks one at random, which ensures that every
channel has an equal chance of being selected. Increasing the buffer size of the
previous example makes its output nondeterministic, because when the buffer is
neither full nor empty, the select statement figuratively tosses a coin.
Let’s make our launch program print the countdown. The select statement below
causes each iteration of the loop to wait up to 1 second for an abort, but no longer.

Click here to view code image

gopl.io/ch8/countdown3
func main() {
 // ...create abort channel...

 fmt.Println("Commencing countdown. Press return
to abort.")
 tick := time.Tick(1 * time.Second)
 for countdown := 10; countdown > 0; countdown-- {
 fmt.Println(countdown)

 select {
 case <-tick:
 // Do nothing.
 case <-abort:
 fmt.Println("Launch aborted!")
 return
 }
 }
 launch()
}

The time.Tick function behaves as if it creates a goroutine that calls
time.Sleep in a loop, sending an event each time it wakes up. When the
countdown function above returns, it stops receiving events from tick, but the
ticker goroutine is still there, trying in vain to send on a channel from which no
goroutine is receiving—a goroutine leak (§8.4.4).
The Tick function is convenient, but it’s appropriate only when the ticks will be
needed throughout the lifetime of the application. Otherwise, we should use this
pattern:

Click here to view code image

ticker := time.NewTicker(1 * time.Second)

<-ticker.C // receive from the ticker's channel

ticker.Stop() // cause the ticker's goroutine to
terminate

Sometimes we want to try to send or receive on a channel but avoid blocking if the
channel is not ready—a non-blocking communication. A select statement can do that
too. A select may have a default, which specifies what to do when none of the
other communications can proceed immediately.
The select statement below receives a value from the abort channel if there is one
to receive; otherwise it does nothing. This is a non-blocking receive operation; doing it
repeatedly is called polling a channel.

Click here to view code image

select {

case <-abort:
 fmt.Printf("Launch aborted!\n")
 return
default:
 // do nothing
}

The zero value for a channel is nil. Perhaps surprisingly, nil channels are sometimes
useful. Because send and receive operations on a nil channel block forever, a case in
a select statement whose channel is nil is never selected. This lets us use nil to
enable or disable cases that correspond to features like handling timeouts or
cancellation, responding to other input events, or emitting output. We’ll see an
example in the next section.
Exercise 8.8: Using a select statement, add a timeout to the echo server from
Section 8.3 so that it disconnects any client that shouts nothing within 10 seconds.

8.8 Example: Concurrent Directory
Traversal
In this section, we’ll build a program that reports the disk usage of one or more
directories specified on the command line, like the Unix du command. Most of its
work is done by the walkDir function below, which enumerates the entries of the
directory dir using the dirents helper function.

Click here to view code image

gopl.io/ch8/du1
// walkDir recursively walks the file tree rooted at
dir
// and sends the size of each found file on fileSizes.
func walkDir(dir string, fileSizes chan<- int64) {
 for _, entry := range dirents(dir) {
 if entry.IsDir() {
 subdir := filepath.Join(dir, entry.Name())
 walkDir(subdir, fileSizes)
 } else {
 fileSizes <- entry.Size()
 }
 }
}

// dirents returns the entries of directory dir.
func dirents(dir string) []os.FileInfo {
 entries, err := ioutil.ReadDir(dir)
 if err != nil {
 fmt.Fprintf(os.Stderr, "du1: %v\n", err)
 return nil
 }
 return entries
}

The ioutil.ReadDir function returns a slice of os.FileInfo—the same
information that a call to os.Stat returns for a single file. For each subdirectory,

walkDir recursively calls itself, and for each file, walkDir sends a message on
the fileSizes channel. The message is the size of the file in bytes.

The main function, shown below, uses two goroutines. The background goroutine
calls walkDir for each directory specified on the command line and finally closes
the fileSizes channel. The main goroutine computes the sum of the file sizes it
receives from the channel and finally prints the total.

Click here to view code image

// The du1 command computes the disk usage of the
files in a directory.
package main

import (
 "flag"
 "fmt"
 "io/ioutil"
 "os"
 "path/filepath"
)

func main() {
 // Determine the initial directories.
 flag.Parse()
 roots := flag.Args()
 if len(roots) == 0 {
 roots = []string{"."}
 }

 // Traverse the file tree.
 fileSizes := make(chan int64)
 go func() {
 for _, root := range roots {
 walkDir(root, fileSizes)
 }
 close(fileSizes)
 }()

 // Print the results.

 var nfiles, nbytes int64
 for size := range fileSizes {
 nfiles++
 nbytes += size
 }
 printDiskUsage(nfiles, nbytes)
}

func printDiskUsage(nfiles, nbytes int64) {
 fmt.Printf("%d files %.1f GB\n", nfiles,
float64(nbytes)/1e9)
}

This program pauses for a long while before printing its result:
$ go build gopl.io/ch8/du1
$./du1 $HOME /usr /bin /etc
213201 files 62.7 GB

The program would be nicer if it kept us informed of its progress. However, simply
moving the printDiskUsage call into the loop would cause it to print thousands
of lines of output.
The variant of du below prints the totals periodically, but only if the -v flag is
specified since not all users will want to see progress messages. The background
goroutine that loops over roots remains unchanged. The main goroutine now uses a
ticker to generate events every 500ms, and a select statement to wait for either a file
size message, in which case it updates the totals, or a tick event, in which case it
prints the current totals. If the -v flag is not specified, the tick channel remains nil,
and its case in the select is effectively disabled.

Click here to view code image

gopl.io/ch8/du2
var verbose = flag.Bool("v", false, "show verbose
progress messages")

func main() {
 // ...start background goroutine...

 // Print the results periodically.

 var tick <-chan time.Time
 if *verbose {
 tick = time.Tick(500 * time.Millisecond)
 }
 var nfiles, nbytes int64
loop:
 for {
 select {
 case size, ok := <-fileSizes:
 if !ok {
 break loop // fileSizes was closed
 }
 nfiles++
 nbytes += size
 case <-tick:
 printDiskUsage(nfiles, nbytes)
 }
 }
 printDiskUsage(nfiles, nbytes) // final totals
}

Since the program no longer uses a range loop, the first select case must
explicitly test whether the fileSizes channel has been closed, using the two-result
form of receive operation. If the channel has been closed, the program breaks out of
the loop. The labeled break statement breaks out of both the select and the for
loop; an unlabeled break would break out of only the select, causing the loop to
begin the next iteration.
The program now gives us a leisurely stream of updates:

$ go build gopl.io/ch8/du2
$./du2 -v $HOME /usr /bin /etc
28608 files 8.3 GB
54147 files 10.3 GB
93591 files 15.1 GB
127169 files 52.9 GB
175931 files 62.2 GB
213201 files 62.7 GB

However, it still takes too long to finish. There’s no reason why all the calls to
walkDir can’t be done concurrently, thereby exploiting parallelism in the disk

system. The third version of du, below, creates a new goroutine for each call to
walkDir. It uses a sync.WaitGroup (§8.5) to count the number of calls to
walkDir that are still active, and a closer goroutine to close the fileSizes
channel when the counter drops to zero.

Click here to view code image

gopl.io/ch8/du3
func main() {
 // ...determine roots...

 // Traverse each root of the file tree in
parallel.
 fileSizes := make(chan int64)
 var n sync.WaitGroup
 for _, root := range roots {
 n.Add(1)
 go walkDir(root, &n, fileSizes)
 }
 go func() {
 n.Wait()
 close(fileSizes)
 }()
 // ...select loop...
}

Click here to view code image

func walkDir(dir string, n *sync.WaitGroup, fileSizes
chan<- int64) {
 defer n.Done()
 for _, entry := range dirents(dir) {
 if entry.IsDir() {
 n.Add(1)
 subdir := filepath.Join(dir, entry.Name())
 go walkDir(subdir, n, fileSizes)
 } else {
 fileSizes <- entry.Size()
 }
 }

}

Since this program creates many thousands of goroutines at its peak, we have to
change dirents to use a counting semaphore to prevent it from opening too many
files at once, just as we did for the web crawler in Section 8.6:

Click here to view code image

// sema is a counting semaphore for limiting
concurrency in dirents.
var sema = make(chan struct{}, 20)

// dirents returns the entries of directory dir.
func dirents(dir string) []os.FileInfo {
 sema <- struct{}{} // acquire token
 defer func() { <-sema }() // release token
 // ...

This version runs several times faster than the previous one, though there is a lot of
variability from system to system.
Exercise 8.9: Write a version of du that computes and periodically displays separate
totals for each of the root directories.

8.9 Cancellation
Sometimes we need to instruct a goroutine to stop what it is doing, for example, in a
web server performing a computation on behalf of a client that has disconnected.
There is no way for one goroutine to terminate another directly, since that would
leave all its shared variables in undefined states. In the rocket launch program (§8.7)
we sent a single value on a channel named abort, which the countdown goroutine
interpreted as a request to stop itself. But what if we need to cancel two goroutines,
or an arbitrary number?
One possibility might be to send as many events on the abort channel as there are
goroutines to cancel. If some of the goroutines have already terminated themselves,
however, our count will be too large, and our sends will get stuck. On the other hand,
if those goroutines have spawned other goroutines, our count will be too small, and
some goroutines will remain unaware of the cancellation. In general, it’s hard to know
how many goroutines are working on our behalf at any given moment. Moreover,
when a goroutine receives a value from the abort channel, it consumes that value
so that other goroutines won’t see it. For cancellation, what we need is a reliable
mechanism to broadcast an event over a channel so that many goroutines can see it
as it occurs and can later see that it has occurred.
Recall that after a channel has been closed and drained of all sent values, subsequent
receive operations proceed immediately, yielding zero values. We can exploit this to
create a broadcast mechanism: don’t send a value on the channel, close it.
We can add cancellation to the du program from the previous section with a few
simple changes. First, we create a cancellation channel on which no values are ever
sent, but whose closure indicates that it is time for the program to stop what it is
doing. We also define a utility function, cancelled, that checks or polls the
cancellation state at the instant it is called.

Click here to view code image

gopl.io/ch8/du4
var done = make(chan struct{})

func cancelled() bool {
 select {

 case <-done:
 return true
 default:
 return false
 }
}

Next, we create a goroutine that will read from the standard input, which is typically
connected to the terminal. As soon as any input is read (for instance, the user presses
the return key), this goroutine broadcasts the cancellation by closing the done
channel.

Click here to view code image

// Cancel traversal when input is detected.
go func() {
 os.Stdin.Read(make([]byte, 1)) // read a single
byte
 close(done)
}()

Now we need to make our goroutines respond to the cancellation. In the main
goroutine, we add a third case to the select statement that tries to receive from the
done channel. The function returns if this case is ever selected, but before it returns
it must first drain the fileSizes channel, discarding all values until the channel is
closed. It does this to ensure that any active calls to walkDir can run to completion
without getting stuck sending to fileSizes.

Click here to view code image

for {
 select {
 case <-done:
 // Drain fileSizes to allow existing
goroutines to finish.
 for range fileSizes {
 // Do nothing.
 }
 return
 case size, ok := <-fileSizes:
 // ...

 }
}

The walkDir goroutine polls the cancellation status when it begins, and returns
without doing anything if the status is set. This turns all goroutines created after
cancellation into no-ops:

Click here to view code image

func walkDir(dir string, n *sync.WaitGroup, fileSizes
chan<- int64) {
 defer n.Done()
 if cancelled() {
 return
 }
 for _, entry := range dirents(dir) {
 // ...
 }
}

It might be profitable to poll the cancellation status again within walkDir’s loop, to
avoid creating goroutines after the cancellation event. Cancellation involves a trade-
off; a quicker response often requires more intrusive changes to program logic.
Ensuring that no expensive operations ever occur after the cancellation event may
require updating many places in your code, but often most of the benefit can be
obtained by checking for cancellation in a few important places.
A little profiling of this program revealed that the bottleneck was the acquisition of a
semaphore token in dirents. The select below makes this operation cancellable
and reduces the typical cancellation latency of the program from hundreds of
milliseconds to tens:

Click here to view code image

func dirents(dir string) []os.FileInfo {
 select {
 case sema <- struct{}{}: // acquire token
 case <-done:
 return nil // cancelled
 }
 defer func() { <-sema }() // release token

 // ...read directory...
}

Now, when cancellation occurs, all the background goroutines quickly stop and the
main function returns. Of course, when main returns, a program exits, so it can be
hard to tell a main function that cleans up after itself from one that does not. There’s
a handy trick we can use during testing: if instead of returning from main in the
event of cancellation, we execute a call to panic, then the runtime will dump the
stack of every goroutine in the program. If the main goroutine is the only one left,
then it has cleaned up after itself. But if other goroutines remain, they may not have
been properly cancelled, or perhaps they have been cancelled but the cancellation
takes time; a little investigation may be worthwhile. The panic dump often contains
sufficient information to distinguish these cases.
Exercise 8.10: HTTP requests may be cancelled by closing the optional Cancel
channel in the http.Request struct. Modify the web crawler of Section 8.6 to
support cancellation.
Hint: the http.Get convenience function does not give you an opportunity to
customize a Request. Instead, create the request using http.NewRequest, set
its Cancel field, then perform the request by calling
http.DefaultClient.Do(req).

Exercise 8.11: Following the approach of mirroredQuery in Section 8.4.4,
implement a variant of fetch that requests several URLs concurrently. As soon as
the first response arrives, cancel the other requests.

8.10 Example: Chat Server
We’ll finish this chapter with a chat server that lets several users broadcast textual
messages to each other. There are four kinds of goroutine in this program. There is
one instance apiece of the main and broadcaster goroutines, and for each client
connection there is one handleConn and one clientWriter goroutine. The
broadcaster is a good illustration of how select is used, since it has to respond to
three different kinds of messages.
The job of the main goroutine, shown below, is to listen for and accept incoming
network connections from clients. For each one, it creates a new handleConn
goroutine, just as in the concurrent echo server we saw at the start of this chapter.

Click here to view code image

gopl.io/ch8/chat
func main() {
 listener, err := net.Listen("tcp",
"localhost:8000")
 if err != nil {
 log.Fatal(err)
 }

 go broadcaster()
 for {
 conn, err := listener.Accept()
 if err != nil {
 log.Print(err)
 continue
 }
 go handleConn(conn)
 }
}

Next is the broadcaster. Its local variable clients records the current set of
connected clients. The only information recorded about each client is the identity of
its outgoing message channel, about which more later.

Click here to view code image

type client chan<- string // an outgoing message
channel

var (
 entering = make(chan client)
 leaving = make(chan client)
 messages = make(chan string) // all incoming
client messages
)

func broadcaster() {
 clients := make(map[client]bool) // all connected
clients
 for {
 select {
 case msg := <-messages:
 // Broadcast incoming message to all
 // clients' outgoing message channels.
 for cli := range clients {
 cli <- msg
 }

 case cli := <-entering:
 clients[cli] = true

 case cli := <-leaving:
 delete(clients, cli)
 close(cli)
 }
 }
}

The broadcaster listens on the global entering and leaving channels for
announcements of arriving and departing clients. When it receives one of these
events, it updates the clients set, and if the event was a departure, it closes the
client’s outgoing message channel. The broadcaster also listens for events on the
global messages channel, to which each client sends all its incoming messages.
When the broadcaster receives one of these events, it broadcasts the message to

every connected client.
Now let’s look at the per-client goroutines. The handleConn function creates a
new outgoing message channel for its client and announces the arrival of this client to
the broadcaster over the entering channel. Then it reads every line of text from
the client, sending each line to the broadcaster over the global incoming message
channel, prefixing each message with the identity of its sender. Once there is nothing
more to read from the client, handleConn announces the departure of the client
over the leaving channel and closes the connection.

Click here to view code image

func handleConn(conn net.Conn) {
 ch := make(chan string) // outgoing client
messages
 go clientWriter(conn, ch)

 who := conn.RemoteAddr().String()
 ch <- "You are " + who
 messages <- who + " has arrived"
 entering <- ch

 input := bufio.NewScanner(conn)
 for input.Scan() {
 messages <- who + ": " + input.Text()
 }
 // NOTE: ignoring potential errors from
input.Err()

 leaving <- ch
 messages <- who + " has left"
 conn.Close()
}

func clientWriter(conn net.Conn, ch <-chan string) {
 for msg := range ch {
 fmt.Fprintln(conn, msg) // NOTE: ignoring
network errors
 }
}

In addition, handleConn creates a clientWriter goroutine for each client that
receives messages broadcast to the client’s outgoing message channel and writes them
to the client’s network connection. The client writer’s loop terminates when the
broadcaster closes the channel after receiving a leaving notification.

The display below shows the server in action with two clients in separate windows on
the same computer, using netcat to chat:

Click here to view code image

$ go build gopl.io/ch8/chat
$ go build gopl.io/ch8/netcat3
$./chat &
$./netcat3
You are 127.0.0.1:64208 $./netcat3
127.0.0.1:64211 has arrived You are
127.0.0.1:64211
Hi!
127.0.0.1:64208: Hi! 127.0.0.1:64208:
Hi!
 Hi yourself.
127.0.0.1:64211: Hi yourself. 127.0.0.1:64211:
Hi yourself.
^C
 127.0.0.1:64208
has left
$./netcat3
You are 127.0.0.1:64216 127.0.0.1:64216
has arrived
 Welcome.
127.0.0.1:64211: Welcome. 127.0.0.1:64211:
Welcome.
 ^C
127.0.0.1:64211 has left

While hosting a chat session for n clients, this program runs 2n+2 concurrently
communicating goroutines, yet it needs no explicit locking operations (§9.2). The
clients map is confined to a single goroutine, the broadcaster, so it cannot be
accessed concurrently. The only variables that are shared by multiple goroutines are
channels and instances of net.Conn, both of which are concurrency safe. We’ll talk

more about confinement, concurrency safety, and the implications of sharing variables
across goroutines in the next chapter.
Exercise 8.12: Make the broadcaster announce the current set of clients to each new
arrival. This requires that the clients set and the entering and leaving
channels record the client name too.
Exercise 8.13: Make the chat server disconnect idle clients, such as those that have
sent no messages in the last five minutes. Hint: calling conn.Close() in another
goroutine unblocks active Read calls such as the one done by input.Scan().

Exercise 8.14: Change the chat server’s network protocol so that each client provides
its name on entering. Use that name instead of the network address when prefixing
each message with its sender’s identity.
Exercise 8.15: Failure of any client program to read data in a timely manner
ultimately causes all clients to get stuck. Modify the broadcaster to skip a message
rather than wait if a client writer is not ready to accept it. Alternatively, add buffering
to each client’s outgoing message channel so that most messages are not dropped; the
broadcaster should use a non-blocking send to this channel.

9. Concurrency with Shared Variables
In the previous chapter, we presented several programs that use goroutines and
channels to express concurrency in a direct and natural way. However, in doing so,
we glossed over a number of important and subtle issues that programmers must bear
in mind when writing concurrent code.
In this chapter, we’ll take a closer look at the mechanics of concurrency. In particular,
we’ll point out some of the problems associated with sharing variables among multiple
goroutines, the analytical techniques for recognizing those problems, and the patterns
for solving them. Finally, we’ll explain some of the technical differences between
goroutines and operating system threads.

9.1 Race Conditions
In a sequential program, that is, a program with only one goroutine, the steps of the
program happen in the familiar execution order determined by the program logic. For
instance, in a sequence of statements, the first one happens before the second one,
and so on. In a program with two or more goroutines, the steps within each goroutine
happen in the familiar order, but in general we don’t know whether an event x in one
goroutine happens before an event y in another goroutine, or happens after it, or is
simultaneous with it. When we cannot confidently say that one event happens before
the other, then the events x and y are concurrent.
Consider a function that works correctly in a sequential program. That function is
concurrency-safe if it continues to work correctly even when called concurrently, that
is, from two or more goroutines with no additional synchronization. We can generalize
this notion to a set of collaborating functions, such as the methods and operations of a
particular type. A type is concurrency-safe if all its accessible methods and operations
are concurrency-safe.
We can make a program concurrency-safe without making every concrete type in that
program concurrency-safe. Indeed, concurrency-safe types are the exception rather
than the rule, so you should access a variable concurrently only if the documentation
for its type says that this is safe. We avoid concurrent access to most variables either
by confining them to a single goroutine or by maintaining a higher-level invariant of
mutual exclusion. We’ll explain these terms in this chapter.
In contrast, exported package-level functions are generally expected to be
concurrency-safe. Since package-level variables cannot be confined to a single
goroutine, functions that modify them must enforce mutual exclusion.
There are many reasons a function might not work when called concurrently,
including deadlock, livelock, and resource starvation. We don’t have space to discuss
all of them, so we’ll focus on the most important one, the race condition.
A race condition is a situation in which the program does not give the correct result
for some interleavings of the operations of multiple goroutines. Race conditions are
pernicious because they may remain latent in a program and appear infrequently,
perhaps only under heavy load or when using certain compilers, platforms, or
architectures. This makes them hard to reproduce and diagnose.
It is traditional to explain the seriousness of race conditions through the metaphor of

financial loss, so we’ll consider a simple bank account program.

Click here to view code image

// Package bank implements a bank with only one
account.
package bank

var balance int

func Deposit(amount int) { balance = balance + amount
}

func Balance() int { return balance }

(We could have written the body of the Deposit function as balance +=
amount, which is equivalent, but the longer form will simplify the explanation.)

For a program this trivial, we can see at a glance that any sequence of calls to
Deposit and Balance will give the right answer, that is, Balance will report the
sum of all amounts previously deposited. However, if we call these functions not in a
sequence but concurrently, Balance is no longer guaranteed to give the right
answer. Consider the following two goroutines, which represent two transactions on a
joint bank account:

Click here to view code image

// Alice:
go func() {
 bank.Deposit(200) // A1
 fmt.Println("=", bank.Balance()) // A2
}()

// Bob:
go bank.Deposit(100) // B

Alice deposits $200, then checks her balance, while Bob deposits $100. Since the
steps A1 and A2 occur concurrently with B, we cannot predict the order in which
they happen. Intuitively, it might seem that there are only three possible orderings,
which we’ll call “Alice first,” “Bob first,” and “Alice/Bob/Alice.” The following table
shows the value of the balance variable after each step. The quoted strings

represent the printed balance slips.

Click here to view code image

Alice first Bob first
Alice/Bob/Alice
 0 0
0
 A1 200 B 100 A1
200
 A2 "= 200" A1 300 B
300
 B 300 A2 "= 300" A2 "=
300"

In all cases the final balance is $300. The only variation is whether Alice’s balance
slip includes Bob’s transaction or not, but the customers are satisfied either way.
But this intuition is wrong. There is a fourth possible outcome, in which Bob’s deposit
occurs in the middle of Alice’s deposit, after the balance has been read (balance +
amount) but before it has been updated (balance = ...), causing Bob’s
transaction to disappear. This is because Alice’s deposit operation A1 is really a
sequence of two operations, a read and a write; call them A1r and A1w. Here’s the
problematic interleaving:

Click here to view code image

Data race
 0
A1r 0 ... = balance + amount
B 100
A1w 200 balance = ...
A2 "= 200"

After A1r, the expression balance + amount evaluates to 200, so this is the
value written during A1w, despite the intervening deposit. The final balance is only
$200. The bank is $100 richer at Bob’s expense.
This program contains a particular kind of race condition called a data race. A data
race occurs whenever two goroutines access the same variable concurrently and at
least one of the accesses is a write.

Things get even messier if the data race involves a variable of a type that is larger
than a single machine word, such as an interface, a string, or a slice. This code
updates x concurrently to two slices of different lengths:

Click here to view code image

var x []int
go func() { x = make([]int, 10) }()
go func() { x = make([]int, 1000000) }()
x[999999] = 1 // NOTE: undefined behavior; memory
corruption possible!

The value of x in the final statement is not defined; it could be nil, or a slice of length
10, or a slice of length 1,000,000. But recall that there are three parts to a slice: the
pointer, the length, and the capacity. If the pointer comes from the first call to make
and the length comes from the second, x would be a chimera, a slice whose nominal
length is 1,000,000 but whose underlying array has only 10 elements. In this
eventuality, storing to element 999,999 would clobber an arbitrary faraway memory
location, with consequences that are impossible to predict and hard to debug and
localize. This semantic minefield is called undefined behavior and is well known to C
programmers; fortunately it is rarely as troublesome in Go as in C.
Even the notion that a concurrent program is an interleaving of several sequential
programs is a false intuition. As we’ll see in Section 9.4, data races may have even
stranger outcomes. Many programmers—even some very clever ones—will
occasionally offer justifications for known data races in their programs: “the cost of
mutual exclusion is too high,” “this logic is only for logging,” “I don’t mind if I drop
some messages,” and so on. The absence of problems on a given compiler and
platform may give them false confidence. A good rule of thumb is that there is no
such thing as a benign data race. So how do we avoid data races in our programs?
We’ll repeat the definition, since it is so important: A data race occurs whenever two
goroutines access the same variable concurrently and at least one of the accesses is a
write. It follows from this definition that there are three ways to avoid a data race.
The first way is not to write the variable. Consider the map below, which is lazily
populated as each key is requested for the first time. If Icon is called sequentially,
the program works fine, but if Icon is called concurrently, there is a data race
accessing the map.

Click here to view code image

var icons = make(map[string]image.Image)

func loadIcon(name string) image.Image

// NOTE: not concurrency-safe!
func Icon(name string) image.Image {
 icon, ok := icons[name]
 if !ok {
 icon = loadIcon(name)
 icons[name] = icon
 }
 return icon
}

If instead we initialize the map with all necessary entries before creating additional
goroutines and never modify it again, then any number of goroutines may safely call
Icon concurrently since each only reads the map.

Click here to view code image

var icons = map[string]image.Image{
 "spades.png": loadIcon("spades.png"),
 "hearts.png": loadIcon("hearts.png"),
 "diamonds.png": loadIcon("diamonds.png"),
 "clubs.png": loadIcon("clubs.png"),
}

// Concurrency-safe.
func Icon(name string) image.Image { return
icons[name] }

In the example above, the icons variable is assigned during package initialization,
which happens before the program’s main function starts running. Once initialized,
icons is never modified. Data structures that are never modified or are immutable
are inherently concurrency-safe and need no synchronization. But obviously we can’t
use this approach if updates are essential, as with a bank account.
The second way to avoid a data race is to avoid accessing the variable from multiple
goroutines. This is the approach taken by many of the programs in the previous
chapter. For example, the main goroutine in the concurrent web crawler (§8.6) is the
sole goroutine that accesses the seen map, and the broadcaster goroutine in the

chat server (§8.10) is the only goroutine that accesses the clients map. These
variables are confined to a single goroutine.
Since other goroutines cannot access the variable directly, they must use a channel to
send the confining goroutine a request to query or update the variable. This is what is
meant by the Go mantra “Do not communicate by sharing memory; instead, share
memory by communicating.” A goroutine that brokers access to a confined variable
using channel requests is called a monitor goroutine for that variable. For example,
the broadcaster goroutine monitors access to the clients map.

Here’s the bank example rewritten with the balance variable confined to a monitor
goroutine called teller:

Click here to view code image

gopl.io/ch9/bank1
// Package bank provides a concurrency-safe bank with
one account.
package bank

var deposits = make(chan int) // send amount to
deposit
var balances = make(chan int) // receive balance

func Deposit(amount int) { deposits <- amount }
func Balance() int { return <-balances }

func teller() {
 var balance int // balance is confined to teller
goroutine
 for {
 select {
 case amount := <-deposits:
 balance += amount
 case balances <- balance:
 }
 }
}

func init() {

 go teller() // start the monitor goroutine
}

Even when a variable cannot be confined to a single goroutine for its entire lifetime,
confinement may still be a solution to the problem of concurrent access. For example,
it’s common to share a variable between goroutines in a pipeline by passing its
address from one stage to the next over a channel. If each stage of the pipeline
refrains from accessing the variable after sending it to the next stage, then all accesses
to the variable are sequential. In effect, the variable is confined to one stage of the
pipeline, then confined to the next, and so on. This discipline is sometimes called
serial confinement.
In the example below, Cakes are serially confined, first to the baker goroutine,
then to the icer goroutine:

Click here to view code image

type Cake struct{ state string }

func baker(cooked chan<- *Cake) {
 for {
 cake := new(Cake)
 cake.state = "cooked"
 cooked <- cake // baker never touches this
cake again
 }
}

func icer(iced chan<- *Cake, cooked <-chan *Cake) {
 for cake := range cooked {
 cake.state = "iced"
 iced <- cake // icer never touches this cake
again
 }
}

The third way to avoid a data race is to allow many goroutines to access the variable,
but only one at a time. This approach is known as mutual exclusion and is the subject
of the next section.
Exercise 9.1: Add a function Withdraw(amount int) bool to the

gopl.io/ch9/bank1 program. The result should indicate whether the
transaction succeeded or failed due to insufficient funds. The message sent to the
monitor goroutine must contain both the amount to withdraw and a new channel over
which the monitor goroutine can send the boolean result back to Withdraw.

9.2 Mutual Exclusion: sync.Mutex
In Section 8.6, we used a buffered channel as a counting semaphore to ensure that
no more than 20 goroutines made simultaneous HTTP requests. With the same idea,
we can use a channel of capacity 1 to ensure that at most one goroutine accesses a
shared variable at a time. A semaphore that counts only to 1 is called a binary
semaphore.

Click here to view code image

gopl.io/ch9/bank2
var (
 sema = make(chan struct{}, 1) // a binary
semaphore guarding balance
 balance int
)

func Deposit(amount int) {
 sema <- struct{}{} // acquire token
 balance = balance + amount
 <-sema // release token
}

func Balance() int {
 sema <- struct{}{} // acquire token
 b := balance
 <-sema // release token
 return b
}

This pattern of mutual exclusion is so useful that it is supported directly by the
Mutex type from the sync package. Its Lock method acquires the token (called a
lock) and its Unlock method releases it:

Click here to view code image

gopl.io/ch9/bank3
import "sync"

var (
 mu sync.Mutex // guards balance
 balance int
)

func Deposit(amount int) {
 mu.Lock()
 balance = balance + amount
 mu.Unlock()
}

func Balance() int {
 mu.Lock()
 b := balance
 mu.Unlock()
 return b
}

Each time a goroutine accesses the variables of the bank (just balance here), it
must call the mutex’s Lock method to acquire an exclusive lock. If some other
goroutine has acquired the lock, this operation will block until the other goroutine calls
Unlock and the lock becomes available again. The mutex guards the shared
variables. By convention, the variables guarded by a mutex are declared immediately
after the declaration of the mutex itself. If you deviate from this, be sure to document
it.
The region of code between Lock and Unlock in which a goroutine is free to read
and modify the shared variables is called a critical section. The lock holder’s call to
Unlock happens before any other goroutine can acquire the lock for itself. It is
essential that the goroutine release the lock once it is finished, on all paths through the
function, including error paths.
The bank program above exemplifies a common concurrency pattern. A set of
exported functions encapsulates one or more variables so that the only way to access
the variables is through these functions (or methods, for the variables of an object).
Each function acquires a mutex lock at the beginning and releases it at the end,
thereby ensuring that the shared variables are not accessed concurrently. This
arrangement of functions, mutex lock, and variables is called a monitor. (This older
use of the word “monitor” inspired the term “monitor goroutine.” Both uses share the

meaning of a broker that ensures variables are accessed sequentially.)
Since the critical sections in the Deposit and Balance functions are so short—a
single line, no branching—calling Unlock at the end is straightforward. In more
complex critical sections, especially those in which errors must be dealt with by
returning early, it can be hard to tell that calls to Lock and Unlock are strictly
paired on all paths. Go’s defer statement comes to the rescue: by deferring a call to
Unlock, the critical section implicitly extends to the end of the current function,
freeing us from having to remember to insert Unlock calls in one or more places far
from the call to Lock.

func Balance() int {
 mu.Lock()
 defer mu.Unlock()
 return balance
}

In the example above, the Unlock executes after the return statement has read the
value of balance, so the Balance function is concurrency-safe. As a bonus, we
no longer need the local variable b.

Furthermore, a deferred Unlock will run even if the critical section panics, which
may be important in programs that make use of recover (§5.10). A defer is
marginally more expensive than an explicit call to Unlock, but not enough to justify
less clear code. As always with concurrent programs, favor clarity and resist
premature optimization. Where possible, use defer and let critical sections extend to
the end of a function.
Consider the Withdraw function below. On success, it reduces the balance by the
specified amount and returns true. But if the account holds insufficient funds for
the transaction, Withdraw restores the balance and returns false.

Click here to view code image

// NOTE: not atomic!
func Withdraw(amount int) bool {
 Deposit(-amount)
 if Balance() < 0 {
 Deposit(amount)
 return false // insufficient funds
 }

 return true
}

This function eventually gives the correct result, but it has a nasty side effect. When
an excessive withdrawal is attempted, the balance transiently dips below zero. This
may cause a concurrent withdrawal for a modest sum to be spuriously rejected. So if
Bob tries to buy a sports car, Alice can’t pay for her morning coffee. The problem is
that Withdraw is not atomic: it consists of a sequence of three separate operations,
each of which acquires and then releases the mutex lock, but nothing locks the whole
sequence.
Ideally, Withdraw should acquire the mutex lock once around the whole operation.
However, this attempt won’t work:

Click here to view code image

// NOTE: incorrect!
func Withdraw(amount int) bool {
 mu.Lock()
 defer mu.Unlock()
 Deposit(-amount)
 if Balance() < 0 {
 Deposit(amount)
 return false // insufficient funds
 }
 return true
}

Deposit tries to acquire the mutex lock a second time by calling mu.Lock(), but
because mutex locks are not re-entrant—it’s not possible to lock a mutex that’s
already locked—this leads to a deadlock where nothing can proceed, and Withdraw
blocks forever.
There is a good reason Go’s mutexes are not re-entrant. The purpose of a mutex is to
ensure that certain invariants of the shared variables are maintained at critical points
during program execution. One of the invariants is “no goroutine is accessing the
shared variables,” but there may be additional invariants specific to the data structures
that the mutex guards. When a goroutine acquires a mutex lock, it may assume that
the invariants hold. While it holds the lock, it may update the shared variables so that
the invariants are temporarily violated. However, when it releases the lock, it must
guarantee that order has been restored and the invariants hold once again. Although a

re-entrant mutex would ensure that no other goroutines are accessing the shared
variables, it cannot protect the additional invariants of those variables.
A common solution is to divide a function such as Deposit into two: an unexported
function, deposit, that assumes the lock is already held and does the real work,
and an exported function Deposit that acquires the lock before calling deposit.
We can then express Withdraw in terms of deposit like this:

Click here to view code image

func Withdraw(amount int) bool {
 mu.Lock()
 defer mu.Unlock()
 deposit(-amount)
 if balance < 0 {
 deposit(amount)
 return false // insufficient funds
 }
 return true
}

func Deposit(amount int) {
 mu.Lock()
 defer mu.Unlock()
 deposit(amount)
}

func Balance() int {
 mu.Lock()
 defer mu.Unlock()
 return balance
}

// This function requires that the lock be held.
func deposit(amount int) { balance += amount }

Of course, the deposit function shown here is so trivial that a realistic Withdraw
function wouldn’t bother calling it, but nonetheless it illustrates the principle.
Encapsulation (§6.6), by reducing unexpected interactions in a program, helps us
maintain data structure invariants. For the same reason, encapsulation also helps us

maintain concurrency invariants. When you use a mutex, make sure that both it and
the variables it guards are not exported, whether they are package-level variables or
the fields of a struct.

9.3 Read/Write Mutexes:
sync.RWMutex

In a fit of anxiety after seeing his $100 deposit vanish without a trace, Bob writes a
program to check his bank balance hundreds of times a second. He runs it at home, at
work, and on his phone. The bank notices that the increased traffic is delaying
deposits and withdrawals, because all the Balance requests run sequentially,
holding the lock exclusively and temporarily preventing other goroutines from
running.
Since the Balance function only needs to read the state of the variable, it would in
fact be safe for multiple Balance calls to run concurrently, so long as no Deposit
or Withdraw call is running. In this scenario we need a special kind of lock that
allows read-only operations to proceed in parallel with each other, but write
operations to have fully exclusive access. This lock is called a multiple readers,
single writer lock, and in Go it’s provided by sync.RWMutex:

var mu sync.RWMutex
var balance int

func Balance() int {
 mu.RLock() // readers lock
 defer mu.RUnlock()
 return balance
}

The Balance function now calls the RLock and RUnlock methods to acquire
and release a readers or shared lock. The Deposit function, which is unchanged,
calls the mu.Lock and mu.Unlock methods to acquire and release a writer or
exclusive lock.
After this change, most of Bob’s Balance requests run in parallel with each other
and finish more quickly. The lock is available for more of the time, and Deposit
requests can proceed in a timely manner.
RLock can be used only if there are no writes to shared variables in the critical
section. In general, we should not assume that logically read-only functions or
methods don’t also update some variables. For example, a method that appears to be

a simple accessor might also increment an internal usage counter, or update a cache
so that repeat calls are faster. If in doubt, use an exclusive Lock.

It’s only profitable to use an RWMutex when most of the goroutines that acquire the
lock are readers, and the lock is under contention, that is, goroutines routinely have to
wait to acquire it. An RWMutex requires more complex internal bookkeeping, making
it slower than a regular mutex for uncontended locks.

9.4 Memory Synchronization
You may wonder why the Balance method needs mutual exclusion, either channel-
based or mutex-based. After all, unlike Deposit, it consists only of a single
operation, so there is no danger of another goroutine executing “in the middle” of it.
There are two reasons we need a mutex. The first is that it’s equally important that
Balance not execute in the middle of some other operation like Withdraw. The
second (and more subtle) reason is that synchronization is about more than just the
order of execution of multiple goroutines; synchronization also affects memory.
In a modern computer there may be dozens of processors, each with its own local
cache of the main memory. For efficiency, writes to memory are buffered within each
processor and flushed out to main memory only when necessary. They may even be
committed to main memory in a different order than they were written by the writing
goroutine. Synchronization primitives like channel communications and mutex
operations cause the processor to flush out and commit all its accumulated writes so
that the effects of goroutine execution up to that point are guaranteed to be visible to
goroutines running on other processors.
Consider the possible outputs of the following snippet of code:

Click here to view code image

var x, y int
go func() {
 x = 1 // A1
 fmt.Print("y:", y, " ") // A2
}()
go func() {
 y = 1 // B1
 fmt.Print("x:", x, " ") // B2
}()

Since these two goroutines are concurrent and access shared variables without mutual
exclusion, there is a data race, so we should not be surprised that the program is not
deterministic. We might expect it to print any one of these four results, which
correspond to intuitive interleavings of the labeled statements of the program:

y:0 x:1

x:0 y:1
x:1 y:1
y:1 x:1

The fourth line could be explained by the sequence A1,B1,A2,B2 or by
B1,A1,A2,B2, for example. However, these two outcomes might come as a
surprise:

x:0 y:0
y:0 x:0

but depending on the compiler, CPU, and many other factors, they can happen too.
What possible interleaving of the four statements could explain them?
Within a single goroutine, the effects of each statement are guaranteed to occur in the
order of execution; goroutines are sequentially consistent. But in the absence of
explicit synchronization using a channel or mutex, there is no guarantee that events
are seen in the same order by all goroutines. Although goroutine A must observe the
effect of the write x = 1 before it reads the value of y, it does not necessarily
observe the write to y done by goroutine B, so A may print a stale value of y.

It is tempting to try to understand concurrency as if it corresponds to some
interleaving of the statements of each goroutine, but as the example above shows, this
is not how a modern compiler or CPU works. Because the assignment and the
Print refer to different variables, a compiler may conclude that the order of the two
statements cannot affect the result, and swap them. If the two goroutines execute on
different CPUs, each with its own cache, writes by one goroutine are not visible to
the other goroutine’s Print until the caches are synchronized with main memory.

All these concurrency problems can be avoided by the consistent use of simple,
established patterns. Where possible, confine variables to a single goroutine; for all
other variables, use mutual exclusion.

9.5 Lazy Initialization: sync.Once
It is good practice to defer an expensive initialization step until the moment it is
needed. Initializing a variable up front increases the start-up latency of a program and
is unnecessary if execution doesn’t always reach the part of the program that uses
that variable. Let’s return to the icons variable we saw earlier in the chapter:

Click here to view code image

var icons map[string]image.Image

This version of Icon uses lazy initialization:

Click here to view code image

func loadIcons() {
 icons = map[string]image.Image{
 "spades.png": loadIcon("spades.png"),
 "hearts.png": loadIcon("hearts.png"),
 "diamonds.png": loadIcon("diamonds.png"),
 "clubs.png": loadIcon("clubs.png"),
 }
}

// NOTE: not concurrency-safe!
func Icon(name string) image.Image {
 if icons == nil {
 loadIcons() // one-time initialization
 }
 return icons[name]
}

For a variable accessed by only a single goroutine, we can use the pattern above, but
this pattern is not safe if Icon is called concurrently. Like the bank’s original
Deposit function, Icon consists of multiple steps: it tests whether icons is nil,
then it loads the icons, then it updates icons to a non-nil value. Intuition might
suggest that the worst possible outcome of the race condition above is that the
loadIcons function is called several times. While the first goroutine is busy loading
the icons, another goroutine entering Icon would find the variable still equal to nil,

and would also call loadIcons.

But this intuition is also wrong. (We hope that by now you are developing a new
intuition about concurrency, that intuitions about concurrency are not to be trusted!)
Recall the discussion of memory from Section 9.4. In the absence of explicit
synchronization, the compiler and CPU are free to reorder accesses to memory in any
number of ways, so long as the behavior of each goroutine is sequentially consistent.
One possible reordering of the statements of loadIcons is shown below. It stores
the empty map in the icons variable before populating it:

Click here to view code image

func loadIcons() {
 icons = make(map[string]image.Image)
 icons["spades.png"] = loadIcon("spades.png")
 icons["hearts.png"] = loadIcon("hearts.png")
 icons["diamonds.png"] = loadIcon("diamonds.png")
 icons["clubs.png"] = loadIcon("clubs.png")
}

Consequently, a goroutine finding icons to be non-nil may not assume that the
initialization of the variable is complete.
The simplest correct way to ensure that all goroutines observe the effects of
loadIcons is to synchronize them using a mutex:

Click here to view code image

var mu sync.Mutex // guards icons
var icons map[string]image.Image

// Concurrency-safe.
func Icon(name string) image.Image {
 mu.Lock()
 defer mu.Unlock()
 if icons == nil {
 loadIcons()
 }
 return icons[name]
}

However, the cost of enforcing mutually exclusive access to icons is that two

goroutines cannot access the variable concurrently, even once the variable has been
safely initialized and will never be modified again. This suggests a multiple-readers
lock:

Click here to view code image

var mu sync.RWMutex // guards icons
var icons map[string]image.Image

// Concurrency-safe.
func Icon(name string) image.Image {
 mu.RLock()
 if icons != nil {
 icon := icons[name]
 mu.RUnlock()
 return icon
 }
 mu.RUnlock()

 // acquire an exclusive lock
 mu.Lock()
 if icons == nil { // NOTE: must recheck for nil
 loadIcons()
 }
 icon := icons[name]
 mu.Unlock()
 return icon
}

There are now two critical sections. The goroutine first acquires a reader lock,
consults the map, then releases the lock. If an entry was found (the common case), it
is returned. If no entry was found, the goroutine acquires a writer lock. There is no
way to upgrade a shared lock to an exclusive one without first releasing the shared
lock, so we must recheck the icons variable in case another goroutine already
initialized it in the interim.
The pattern above gives us greater concurrency but is complex and thus error-prone.
Fortunately, the sync package provides a specialized solution to the problem of one-
time initialization: sync.Once. Conceptually, a Once consists of a mutex and a
boolean variable that records whether initialization has taken place; the mutex guards

both the boolean and the client’s data structures. The sole method, Do, accepts the
initialization function as its argument. Let’s use Once to simplify the Icon function:

Click here to view code image

var loadIconsOnce sync.Once
var icons map[string]image.Image

// Concurrency-safe.
func Icon(name string) image.Image {
 loadIconsOnce.Do(loadIcons)
 return icons[name]
}

Each call to Do(loadIcons) locks the mutex and checks the boolean variable. In
the first call, in which the variable is false, Do calls loadIcons and sets the
variable to true. Subsequent calls do nothing, but the mutex synchronization ensures
that the effects of loadIcons on memory (specifically, icons) become visible to
all goroutines. Using sync.Once in this way, we can avoid sharing variables with
other goroutines until they have been properly constructed.
Exercise 9.2: Rewrite the PopCount example from Section 2.6.2 so that it initializes
the lookup table using sync.Once the first time it is needed. (Realistically, the cost
of synchronization would be prohibitive for a small and highly optimized function like
PopCount.)

9.6 The Race Detector
Even with the greatest of care, it’s all too easy to make concurrency mistakes.
Fortunately, the Go runtime and toolchain are equipped with a sophisticated and easy-
to-use dynamic analysis tool, the race detector.
Just add the -race flag to your go build , go run , or go test command.
This causes the compiler to build a modified version of your application or test with
additional instrumentation that effectively records all accesses to shared variables that
occurred during execution, along with the identity of the goroutine that read or wrote
the variable. In addition, the modified program records all synchronization events,
such as go statements, channel operations, and calls to (*sync.Mutex).Lock,
(*sync.WaitGroup).Wait, and so on. (The complete set of synchronization
events is specified by the The Go Memory Model document that accompanies the
language specification.)
The race detector studies this stream of events, looking for cases in which one
goroutine reads or writes a shared variable that was most recently written by a
different goroutine without an intervening synchronization operation. This indicates a
concurrent access to the shared variable, and thus a data race. The tool prints a report
that includes the identity of the variable, and the stacks of active function calls in the
reading goroutine and the writing goroutine. This is usually sufficient to pinpoint the
problem. Section 9.7 contains an example of the race detector in action.
The race detector reports all data races that were actually executed. However, it can
only detect race conditions that occur during a run; it cannot prove that none will ever
occur. For best results, make sure that your tests exercise your packages using
concurrency.
Due to extra bookkeeping, a program built with race detection needs more time and
memory to run, but the overhead is tolerable even for many production jobs. For
infrequently occurring race conditions, letting the race detector do its job can save
hours or days of debugging.

9.7 Example: Concurrent Non-Blocking
Cache
In this section, we’ll build a concurrent non-blocking cache, an abstraction that
solves a problem that arises often in real-world concurrent programs but is not well
addressed by existing libraries. This is the problem of memoizing a function, that is,
caching the result of a function so that it need be computed only once. Our solution
will be concurrency-safe and will avoid the contention associated with designs based
on a single lock for the whole cache.
We’ll use the httpGetBody function below as an example of the type of function
we might want to memoize. It makes an HTTP GET request and reads the request
body. Calls to this function are relatively expensive, so we’d like to avoid repeating
them unnecessarily.

Click here to view code image

func httpGetBody(url string) (interface{}, error) {
 resp, err := http.Get(url)
 if err != nil {
 return nil, err
 }
 defer resp.Body.Close()
 return ioutil.ReadAll(resp.Body)
}

The final line hides a minor subtlety. ReadAll returns two results, a []byte and
an error, but since these are assignable to the declared result types of
httpGetBody—interface{} and error, respectively—we can return the
result of the call without further ado. We chose this return type for httpGetBody
so that it conforms to the type of functions that our cache is designed to memoize.
Here’s the first draft of the cache:

Click here to view code image

gopl.io/ch9/memo1
// Package memo provides a concurrency-unsafe

// memoization of a function of type Func.
package memo

// A Memo caches the results of calling a Func.
type Memo struct {
 f Func
 cache map[string]result
}

// Func is the type of the function to memoize.
type Func func(key string) (interface{}, error)

type result struct {
 value interface{}
 err error
}

func New(f Func) *Memo {
 return &Memo{f: f, cache: make(map[string]result)}
}

// NOTE: not concurrency-safe!
func (memo *Memo) Get(key string) (interface{}, error)
{
 res, ok := memo.cache[key]
 if !ok {
 res.value, res.err = memo.f(key)
 memo.cache[key] = res
 }
 return res.value, res.err
}

A Memo instance holds the function f to memoize, of type Func, and the cache,
which is a mapping from strings to results. Each result is simply the pair of
results returned by a call to f—a value and an error. We’ll show several variations of
Memo as the design progresses, but all will share these basic aspects.

An example of how to use Memo appears below. For each element in a stream of
incoming URLs, we call Get, logging the latency of the call and the amount of data it
returns:

Click here to view code image

m := memo.New(httpGetBody)
for url := range incomingURLs() {
 start := time.Now()
 value, err := m.Get(url)
 if err != nil {
 log.Print(err)
 }
 fmt.Printf("%s, %s, %d bytes\n",
 url, time.Since(start), len(value.([]byte)))
}

We can use the testing package (the topic of Chapter 11) to systematically
investigate the effect of memoization. From the test output below, we see that the
URL stream contains duplicates, and that although the first call to (*Memo).Get
for each URL takes hundreds of milliseconds, the second request returns the same
amount of data in under a millisecond.

Click here to view code image

$ go test -v gopl.io/ch9/memo1
=== RUN Test
https://golang.org, 175.026418ms, 7537 bytes
https://godoc.org, 172.686825ms, 6878 bytes
https://play.golang.org, 115.762377ms, 5767 bytes
http://gopl.io, 749.887242ms, 2856 bytes

https://golang.org, 721ns, 7537 bytes
https://godoc.org, 152ns, 6878 bytes
https://play.golang.org, 205ns, 5767 bytes
http://gopl.io, 326ns, 2856 bytes
--- PASS: Test (1.21s)
PASS
ok gopl.io/ch9/memo1 1.257s

This test executes all calls to Get sequentially.

Since HTTP requests are a great opportunity for parallelism, let’s change the test so
that it makes all requests concurrently. The test uses a sync.WaitGroup to wait
until the last request is complete before returning.

Click here to view code image

m := memo.New(httpGetBody)
var n sync.WaitGroup
for url := range incomingURLs() {
 n.Add(1)
 go func(url string) {
 start := time.Now()
 value, err := m.Get(url)
 if err != nil {
 log.Print(err)
 }
 fmt.Printf("%s, %s, %d bytes\n",
 url, time.Since(start), len(value.
([]byte)))
 n.Done()
 }(url)
}
n.Wait()

The test runs much faster, but unfortunately it is unlikely to work correctly all the
time. We may notice unexpected cache misses, or cache hits that return incorrect
values, or even crashes.
Worse, it is likely to work correctly some of the time, so we may not even notice that
it has a problem. But if we run it with the -race flag, the race detector (§9.6) often
prints a report such as this one:

Click here to view code image

$ go test -run=TestConcurrent -race -v
gopl.io/ch9/memo1
=== RUN TestConcurrent
...
WARNING: DATA RACE
Write by goroutine 36:
 runtime.mapassign1()
 ~/go/src/runtime/hashmap.go:411 +0x0
 gopl.io/ch9/memo1.(*Memo).Get()
 ~/gobook2/src/gopl.io/ch9/memo1/memo.go:32
+0x205

 ...

Previous write by goroutine 35:
 runtime.mapassign1()
 ~/go/src/runtime/hashmap.go:411 +0x0
 gopl.io/ch9/memo1.(*Memo).Get()
 ~/gobook2/src/gopl.io/ch9/memo1/memo.go:32
+0x205
...
Found 1 data race(s)
FAIL gopl.io/ch9/memo1 2.393s

The reference to memo.go:32 tells us that two goroutines have updated the
cache map without any intervening synchronization. Get is not concurrency-safe: it
has a data race.

Click here to view code image

28 func (memo *Memo) Get(key string) (interface{},
error) {
29 res, ok := memo.cache[key]
30 if !ok {
31 res.value, res.err = memo.f(key)
32 memo.cache[key] = res
33 }
34 return res.value, res.err
35 }

The simplest way to make the cache concurrency-safe is to use monitor-based
synchronization. All we need to do is add a mutex to the Memo, acquire the mutex
lock at the start of Get, and release it before Get returns, so that the two cache
operations occur within the critical section:

Click here to view code image

gopl.io/ch9/memo2
type Memo struct {
 f Func
 mu sync.Mutex // guards cache
 cache map[string]result
}

// Get is concurrency-safe.
func (memo *Memo) Get(key string) (value interface{},
err error) {
 memo.mu.Lock()
 res, ok := memo.cache[key]
 if !ok {
 res.value, res.err = memo.f(key)
 memo.cache[key] = res
 }
 memo.mu.Unlock()
 return res.value, res.err
}

Now the race detector is silent, even when running the tests concurrently.
Unfortunately this change to Memo reverses our earlier performance gains. By
holding the lock for the duration of each call to f, Get serializes all the I/O
operations we intended to parallelize. What we need is a non-blocking cache, one that
does not serialize calls to the function it memoizes.
In the next implementation of Get, below, the calling goroutine acquires the lock
twice: once for the lookup, and then a second time for the update if the lookup
returned nothing. In between, other goroutines are free to use the cache.

Click here to view code image

gopl.io/ch9/memo3
func (memo *Memo) Get(key string) (value interface{},
err error) {
 memo.mu.Lock()
 res, ok := memo.cache[key]
 memo.mu.Unlock()
 if !ok {
 res.value, res.err = memo.f(key)

 // Between the two critical sections, several
goroutines
 // may race to compute f(key) and update the
map.
 memo.mu.Lock()

 memo.cache[key] = res
 memo.mu.Unlock()
 }
 return res.value, res.err
}

The performance improves again, but now we notice that some URLs are being
fetched twice. This happens when two or more goroutines call Get for the same
URL at about the same time. Both consult the cache, find no value there, and then
call the slow function f. Then both of them update the map with the result they
obtained. One of the results is overwritten by the other.
Ideally we’d like to avoid this redundant work. This feature is sometimes called
duplicate suppression. In the version of Memo below, each map element is a pointer
to an entry struct. Each entry contains the memoized result of a call to the
function f, as before, but it additionally contains a channel called ready. Just after
the entry’s result has been set, this channel will be closed, to broadcast (§8.9)
to any other goroutines that it is now safe for them to read the result from the
entry.

Click here to view code image

gopl.io/ch9/memo4
type entry struct {
 res result
 ready chan struct{} // closed when res is ready
}

func New(f Func) *Memo {
 return &Memo{f: f, cache: make(map[string]*entry)}
}

type Memo struct {
 f Func
 mu sync.Mutex // guards cache
 cache map[string]*entry
}

func (memo *Memo) Get(key string) (value interface{},
err error) {

 memo.mu.Lock()
 e := memo.cache[key]
 if e == nil {
 // This is the first request for this key.
 // This goroutine becomes responsible for
computing
 // the value and broadcasting the ready
condition.
 e = &entry{ready: make(chan struct{})}
 memo.cache[key] = e
 memo.mu.Unlock()

 e.res.value, e.res.err = memo.f(key)

 close(e.ready) // broadcast ready condition
 } else {
 // This is a repeat request for this key.
 memo.mu.Unlock()

 <-e.ready // wait for ready condition
 }
 return e.res.value, e.res.err
}

A call to Get now involves acquiring the mutex lock that guards the cache map,
looking in the map for a pointer to an existing entry, allocating and inserting a new
entry if none was found, then releasing the lock. If there was an existing entry,
its value is not necessarily ready yet—another goroutine could still be calling the slow
function f—so the calling goroutine must wait for the entry’s “ready” condition
before it reads the entry’s result. It does this by reading a value from the
ready channel, since this operation blocks until the channel is closed.

If there was no existing entry, then by inserting a new “not ready” entry into the
map, the current goroutine becomes responsible for invoking the slow function,
updating the entry, and broadcasting the readiness of the new entry to any other
goroutines that might (by then) be waiting for it.
Notice that the variables e.res.value and e.res.err in the entry are shared
among multiple goroutines. The goroutine that creates the entry sets their values,
and other goroutines read their values once the “ready” condition has been broadcast.

Despite being accessed by multiple goroutines, no mutex lock is necessary. The
closing of the ready channel happens before any other goroutine receives the
broadcast event, so the write to those variables in the first goroutine happens before
they are read by subsequent goroutines. There is no data race.
Our concurrent, duplicate-suppressing, non-blocking cache is complete.
The implementation of Memo above uses a mutex to guard a map variable that is
shared by each goroutine that calls Get. It’s interesting to contrast this design with an
alternative one in which the map variable is confined to a monitor goroutine to which
callers of Get must send a message.

The declarations of Func, result, and entry remain as before:

Click here to view code image

// Func is the type of the function to memoize.
type Func func(key string) (interface{}, error)

// A result is the result of calling a Func.
type result struct {
 value interface{}
 err error
}

type entry struct {
 res result
 ready chan struct{} // closed when res is ready
}

However, the Memo type now consists of a channel, requests, through which the
caller of Get communicates with the monitor goroutine. The element type of the
channel is a request. Using this structure, the caller of Get sends the monitor
goroutine both the key, that is, the argument to the memoized function, and another
channel, response, over which the result should be sent back when it becomes
available. This channel will carry only a single value.

Click here to view code image

gopl.io/ch9/memo5
// A request is a message requesting that the Func be

applied to key.
type request struct {
 key string
 response chan<- result // the client wants a
single result
}

type Memo struct{ requests chan request }

// New returns a memoization of f. Clients must
subsequently call Close.
func New(f Func) *Memo {
 memo := &Memo{requests: make(chan request)}
 go memo.server(f)
 return memo
}

func (memo *Memo) Get(key string) (interface{}, error)
{
 response := make(chan result)
 memo.requests <- request{key, response}
 res := <-response
 return res.value, res.err
}

func (memo *Memo) Close() { close(memo.requests) }

The Get method, above, creates a response channel, puts it in the request, sends it to
the monitor goroutine, then immediately receives from it.
The cache variable is confined to the monitor goroutine (*Memo).server,
shown below. The monitor reads requests in a loop until the request channel is closed
by the Close method. For each request, it consults the cache, creating and inserting
a new entry if none was found.

Click here to view code image

func (memo *Memo) server(f Func) {
 cache := make(map[string]*entry)
 for req := range memo.requests {
 e := cache[req.key]

 if e == nil {
 // This is the first request for this key.
 e = &entry{ready: make(chan struct{})}
 cache[req.key] = e
 go e.call(f, req.key) // call f(key)
 }
 go e.deliver(req.response)
 }
}

func (e *entry) call(f Func, key string) {
 // Evaluate the function.
 e.res.value, e.res.err = f(key)
 // Broadcast the ready condition.
 close(e.ready)
}

func (e *entry) deliver(response chan<- result) {
 // Wait for the ready condition.
 <-e.ready
 // Send the result to the client.
 response <- e.res
}

In a similar manner to the mutex-based version, the first request for a given key
becomes responsible for calling the function f on that key, storing the result in the
entry, and broadcasting the readiness of the entry by closing the ready
channel. This is done by (*entry).call.

A subsequent request for the same key finds the existing entry in the map, waits for
the result to become ready, and sends the result through the response channel to the
client goroutine that called Get. This is done by (*entry).deliver. The call
and deliver methods must be called in their own goroutines to ensure that the
monitor goroutine does not stop processing new requests.
This example shows that it’s possible to build many concurrent structures using either
of the two approaches—shared variables and locks, or communicating sequential
processes—without excessive complexity.
It’s not always obvious which approach is preferable in a given situation, but it’s
worth knowing how they correspond. Sometimes switching from one approach to the

other can make your code simpler.
Exercise 9.3: Extend the Func type and the (*Memo).Get method so that callers
may provide an optional done channel through which they can cancel the operation
(§8.9). The results of a cancelled Func call should not be cached.

9.8 Goroutines and Threads
In the previous chapter we said that the difference between goroutines and operating
system (OS) threads could be ignored until later. Although the differences between
them are essentially quantitative, a big enough quantitative difference becomes a
qualitative one, and so it is with goroutines and threads. The time has now come to
distinguish them.

9.8.1 Growable Stacks

Each OS thread has a fixed-size block of memory (often as large as 2MB) for its
stack, the work area where it saves the local variables of function calls that are in
progress or temporarily suspended while another function is called. This fixed-size
stack is simultaneously too much and too little. A 2MB stack would be a huge waste
of memory for a little goroutine, such as one that merely waits for a WaitGroup
then closes a channel. It’s not uncommon for a Go program to create hundreds of
thousands of goroutines at one time, which would be impossible with stacks this large.
Yet despite their size, fixed-size stacks are not always big enough for the most
complex and deeply recursive of functions. Changing the fixed size can improve space
efficiency and allow more threads to be created, or it can enable more deeply
recursive functions, but it cannot do both.
In contrast, a goroutine starts life with a small stack, typically 2KB. A goroutine’s
stack, like the stack of an OS thread, holds the local variables of active and
suspended function calls, but unlike an OS thread, a goroutine’s stack is not fixed; it
grows and shrinks as needed. The size limit for a goroutine stack may be as much as
1GB, orders of magnitude larger than a typical fixed-size thread stack, though of
course few goroutines use that much.
Exercise 9.4: Construct a pipeline that connects an arbitrary number of goroutines
with channels. What is the maximum number of pipeline stages you can create
without running out of memory? How long does a value take to transit the entire
pipeline?

9.8.2 Goroutine Scheduling

OS threads are scheduled by the OS kernel. Every few milliseconds, a hardware timer
interrupts the processor, which causes a kernel function called the scheduler to be
invoked. This function suspends the currently executing thread and saves its registers
in memory, looks over the list of threads and decides which one should run next,
restores that thread’s registers from memory, then resumes the execution of that
thread. Because OS threads are scheduled by the kernel, passing control from one
thread to another requires a full context switch, that is, saving the state of one user
thread to memory, restoring the state of another, and updating the scheduler’s data
structures. This operation is slow, due to its poor locality and the number of memory
accesses required, and has historically only gotten worse as the number of CPU
cycles required to access memory has increased.
The Go runtime contains its own scheduler that uses a technique known as m:n
scheduling, because it multiplexes (or schedules) m goroutines on n OS threads. The
job of the Go scheduler is analogous to that of the kernel scheduler, but it is
concerned only with the goroutines of a single Go program.
Unlike the operating system’s thread scheduler, the Go scheduler is not invoked
periodically by a hardware timer, but implicitly by certain Go language constructs. For
example, when a goroutine calls time.Sleep or blocks in a channel or mutex
operation, the scheduler puts it to sleep and runs another goroutine until it is time to
wake the first one up. Because it doesn’t need a switch to kernel context,
rescheduling a goroutine is much cheaper than rescheduling a thread.
Exercise 9.5: Write a program with two goroutines that send messages back and forth
over two unbuffered channels in ping-pong fashion. How many communications per
second can the program sustain?

9.8.3 GOMAXPROCS

The Go scheduler uses a parameter called GOMAXPROCS to determine how many
OS threads may be actively executing Go code simultaneously. Its default value is the
number of CPUs on the machine, so on a machine with 8 CPUs, the scheduler will
schedule Go code on up to 8 OS threads at once. (GOMAXPROCS is the n in m:n

scheduling.) Goroutines that are sleeping or blocked in a communication do not need
a thread at all. Goroutines that are blocked in I/O or other system calls or are calling
non-Go functions, do need an OS thread, but GOMAXPROCS need not account for
them.
You can explicitly control this parameter using the GOMAXPROCS environment
variable or the runtime.GOMAXPROCS function. We can see the effect of
GOMAXPROCS on this little program, which prints an endless stream of zeros and
ones:

Click here to view code image

for {
 go fmt.Print(0)
 fmt.Print(1)
}

$ GOMAXPROCS=1 go run hacker-cliché.go
111111111111111111110000000000000000000011111...

$ GOMAXPROCS=2 go run hacker-cliché.go
010101010101010101011001100101011010010100110...

In the first run, at most one goroutine was executed at a time. Initially, it was the main
goroutine, which prints ones. After a period of time, the Go scheduler put it to sleep
and woke up the goroutine that prints zeros, giving it a turn to run on the OS thread.
In the second run, there were two OS threads available, so both goroutines ran
simultaneously, printing digits at about the same rate. We must stress that many
factors are involved in goroutine scheduling, and the runtime is constantly evolving,
so your results may differ from the ones above.
Exercise 9.6: Measure how the performance of a compute-bound parallel program
(see Exercise 8.5) varies with GOMAXPROCS. What is the optimal value on your
computer? How many CPUs does your computer have?

9.8.4 Goroutines Have No Identity

In most operating systems and programming languages that support multithreading,
the current thread has a distinct identity that can be easily obtained as an ordinary

value, typically an integer or pointer. This makes it easy to build an abstraction called
thread-local storage, which is essentially a global map keyed by thread identity, so
that each thread can store and retrieve values independent of other threads.
Goroutines have no notion of identity that is accessible to the programmer. This is by
design, since thread-local storage tends to be abused. For example, in a web server
implemented in a language with thread-local storage, it’s common for many functions
to find information about the HTTP request on whose behalf they are currently
working by looking in that storage. However, just as with programs that rely
excessively on global variables, this can lead to an unhealthy “action at a distance” in
which the behavior of a function is not determined by its arguments alone, but by the
identity of the thread in which it runs. Consequently, if the identity of the thread
should change—some worker threads are enlisted to help, say—the function
misbehaves mysteriously.
Go encourages a simpler style of programming in which parameters that affect the
behavior of a function are explicit. Not only does this make programs easier to read,
but it lets us freely assign subtasks of a given function to many different goroutines
without worrying about their identity.

You’ve now learned about all the language features you need for writing Go
programs. In the next two chapters, we’ll step back to look at some of the practices
and tools that support programming in the large: how to structure a project as a set of
packages, and how to obtain, build, test, benchmark, profile, document, and share
those packages.

10. Packages and the Go Tool
A modest-size program today might contain 10,000 functions. Yet its author need
think about only a few of them and design even fewer, because the vast majority
were written by others and made available for reuse through packages.
Go comes with over 100 standard packages that provide the foundations for most
applications. The Go community, a thriving ecosystem of package design, sharing,
reuse, and improvement, has published many more, and you can find a searchable
index of them at http://godoc.org. In this chapter, we’ll show how to use
existing packages and create new ones.
Go also comes with the go tool, a sophisticated but simple-to-use command for
managing workspaces of Go packages. Since the beginning of the book, we’ve been
showing how to use the go tool to download, build, and run example programs. In
this chapter, we’ll look at the tool’s underlying concepts and tour more of its
capabilities, which include printing documentation and querying metadata about the
packages in the workspace. In the next chapter we’ll explore its testing features.

10.1 Introduction
The purpose of any package system is to make the design and maintenance of large
programs practical by grouping related features together into units that can be easily
understood and changed, independent of the other packages of the program. This
modularity allows packages to be shared and reused by different projects, distributed
within an organization, or made available to the wider world.
Each package defines a distinct name space that encloses its identifiers. Each name is
associated with a particular package, letting us choose short, clear names for the
types, functions, and so on that we use most often, without creating conflicts with
other parts of the program.
Packages also provide encapsulation by controlling which names are visible or
exported outside the package. Restricting the visibility of package members hides the
helper functions and types behind the package’s API, allowing the package maintainer
to change the implementation with confidence that no code outside the package will
be affected. Restricting visibility also hides variables so that clients can access and
update them only through exported functions that preserve internal invariants or
enforce mutual exclusion in a concurrent program.
When we change a file, we must recompile the file’s package and potentially all the
packages that depend on it. Go compilation is notably faster than most other compiled
languages, even when building from scratch. There are three main reasons for the
compiler’s speed. First, all imports must be explicitly listed at the beginning of each
source file, so the compiler does not have to read and process an entire file to
determine its dependencies. Second, the dependencies of a package form a directed
acyclic graph, and because there are no cycles, packages can be compiled separately
and perhaps in parallel. Finally, the object file for a compiled Go package records
export information not just for the package itself, but for its dependencies too. When
compiling a package, the compiler must read one object file for each import but need
not look beyond these files.

10.2 Import Paths
Each package is identified by a unique string called its import path. Import paths are
the strings that appear in import declarations.

Click here to view code image

import (
 "fmt"
 "math/rand"
 "encoding/json"

 "golang.org/x/net/html"

 "github.com/go-sql-driver/mysql"
)

As we mentioned in Section 2.6.1, the Go language specification doesn’t define the
meaning of these strings or how to determine a package’s import path, but leaves
these issues to the tools. In this chapter, we’ll take a detailed look at how the go tool
interprets them, since that’s what the majority of Go programmers use for building,
testing, and so on. Other tools do exist, though. For example, Go programmers using
Google’s internal multi-language build system follow different rules for naming and
locating packages, specifying tests, and so on, that more closely match the
conventions of that system.
For packages you intend to share or publish, import paths should be globally unique.
To avoid conflicts, the import paths of all packages other than those from the
standard library should start with the Internet domain name of the organization that
owns or hosts the package; this also makes it possible to find packages. For example,
the declaration above imports an HTML parser maintained by the Go team and a
popular third-party MySQL database driver.

10.3 The Package Declaration
A package declaration is required at the start of every Go source file. Its main
purpose is to determine the default identifier for that package (called the package
name) when it is imported by another package.
For example, every file of the math/rand package starts with package rand ,
so when you import this package, you can access its members as rand.Int,
rand.Float64, and so on.

package main

import (
 "fmt"
 "math/rand"
)

func main() {
 fmt.Println(rand.Int())
}

Conventionally, the package name is the last segment of the import path, and as a
result, two packages may have the same name even though their import paths
necessarily differ. For example, the packages whose import paths are math/rand
and crypto/rand both have the name rand. We’ll see how to use both in the
same program in a moment.
There are three major exceptions to the “last segment” convention. The first is that a
package defining a command (an executable Go program) always has the name
main, regardless of the package’s import path. This is a signal to go build
(§10.7.3) that it must invoke the linker to make an executable file.
The second exception is that some files in the directory may have the suffix _test
on their package name if the file name ends with _test.go. Such a directory may
define two packages: the usual one, plus another one called an external test package.
The _test suffix signals to go test that it must build both packages, and it
indicates which files belong to each package. External test packages are used to avoid
cycles in the import graph arising from dependencies of the test; they are covered in
more detail in Section 11.2.4.

The third exception is that some tools for dependency management append version
number suffixes to package import paths, such as "gopkg.in/yaml.v2". The
package name excludes the suffix, so in this case it would be just yaml.

10.4 Import Declarations
A Go source file may contain zero or more import declarations immediately after
the package declaration and before the first non-import declaration. Each import
declaration may specify the import path of a single package, or multiple packages in a
parenthesized list. The two forms below are equivalent but the second form is more
common.

import "fmt"
import "os"

import (
 "fmt"
 "os"
)

Imported packages may be grouped by introducing blank lines; such groupings usually
indicate different domains. The order is not significant, but by convention the lines of
each group are sorted alphabetically. (Both gofmt and goimports will group and
sort for you.)

import (
 "fmt"
 "html/template"
 "os"

 "golang.org/x/net/html"
 "golang.org/x/net/ipv4"
)

If we need to import two packages whose names are the same, like math/rand and
crypto/rand, into a third package, the import declaration must specify an
alternative name for at least one of them to avoid a conflict. This is called a renaming
import.

Click here to view code image

import (
 "crypto/rand"
 mrand "math/rand" // alternative name mrand avoids

conflict
)

The alternative name affects only the importing file. Other files, even ones in the
same package, may import the package using its default name, or a different name.
A renaming import may be useful even when there is no conflict. If the name of the
imported package is unwieldy, as is sometimes the case for automatically generated
code, an abbreviated name may be more convenient. The same short name should be
used consistently to avoid confusion. Choosing an alternative name can help avoid
conflicts with common local variable names. For example, in a file with many local
variables named path, we might import the standard "path" package as
pathpkg.

Each import declaration establishes a dependency from the current package to the
imported package. The go build tool reports an error if these dependencies form a
cycle.

10.5 Blank Imports
It is an error to import a package into a file but not refer to the name it defines within
that file. However, on occasion we must import a package merely for the side effects
of doing so: evaluation of the initializer expressions of its package-level variables and
execution of its init functions (§2.6.2). To suppress the “unused import” error we
would otherwise encounter, we must use a renaming import in which the alternative
name is _, the blank identifier. As usual, the blank identifier can never be referenced.

Click here to view code image

import _ "image/png" // register PNG decoder

This is known as a blank import. It is most often used to implement a compile-time
mechanism whereby the main program can enable optional features by blank-
importing additional packages. First we’ll see how to use it, then we’ll see how it
works.
The standard library’s image package exports a Decode function that reads bytes
from an io.Reader, figures out which image format was used to encode the data,
invokes the appropriate decoder, then returns the resulting image.Image. Using
image.Decode, it’s easy to build a simple image converter that reads an image in
one format and writes it out in another:

Click here to view code image

gopl.io/ch10/jpeg
// The jpeg command reads a PNG image from the
standard input
// and writes it as a JPEG image to the standard
output.
package main

import (
 "fmt"
 "image"
 "image/jpeg"
 _ "image/png" // register PNG decoder
 "io"

 "os"
)

func main() {
 if err := toJPEG(os.Stdin, os.Stdout); err != nil
{
 fmt.Fprintf(os.Stderr, "jpeg: %v\n", err)
 os.Exit(1)
 }
}

func toJPEG(in io.Reader, out io.Writer) error {
 img, kind, err := image.Decode(in)
 if err != nil {
 return err
 }
 fmt.Fprintln(os.Stderr, "Input format =", kind)
 return jpeg.Encode(out, img,
&jpeg.Options{Quality: 95})
}

If we feed the output of gopl.io/ch3/mandelbrot (§3.3) to the converter
program, it detects the PNG input format and writes a JPEG version of Figure 3.3.

Click here to view code image

$ go build gopl.io/ch3/mandelbrot
$ go build gopl.io/ch10/jpeg
$./mandelbrot | ./jpeg >mandelbrot.jpg
Input format = png

Notice the blank import of image/png. Without that line, the program compiles and
links as usual but can no longer recognize or decode input in PNG format:

Click here to view code image

$ go build gopl.io/ch10/jpeg
$./mandelbrot | ./jpeg >mandelbrot.jpg
jpeg: image: unknown format

Here’s how it works. The standard library provides decoders for GIF, PNG, and
JPEG, and users may provide others, but to keep executables small, decoders are not

included in an application unless explicitly requested. The image.Decode function
consults a table of supported formats. Each entry in the table specifies four things: the
name of the format; a string that is a prefix of all images encoded this way, used to
detect the encoding; a function Decode that decodes an encoded image; and another
function DecodeConfig that decodes only the image metadata, such as its size and
color space. An entry is added to the table by calling image.RegisterFormat,
typically from within the package initializer of the supporting package for each
format, like this one in image/png:

Click here to view code image

package png // image/png

func Decode(r io.Reader) (image.Image, error)
func DecodeConfig(r io.Reader) (image.Config, error)

func init() {
 const pngHeader = "\x89PNG\r\n\x1a\n"
 image.RegisterFormat("png", pngHeader, Decode,
DecodeConfig)
}

The effect is that an application need only blank-import the package for the format it
needs to make the image.Decode function able to decode it.

The database/sql package uses a similar mechanism to let users install just the
database drivers they need. For example:

Click here to view code image

import (
 "database/mysql"
 _ "github.com/lib/pq" // enable
support for Postgres
 _ "github.com/go-sql-driver/mysql" // enable
support for MySQL
)

db, err = sql.Open("postgres", dbname) // OK
db, err = sql.Open("mysql", dbname) // OK
db, err = sql.Open("sqlite3", dbname) // returns

error:
 unknown
driver "sqlite3"

Exercise 10.1: Extend the jpeg program so that it converts any supported input
format to any output format, using image.Decode to detect the input format and a
flag to select the output format.
Exercise 10.2: Define a generic archive file-reading function capable of reading ZIP
files (archive/zip) and POSIX tar files (archive/tar). Use a registration
mechanism similar to the one described above so that support for each file format can
be plugged in using blank imports.

10.6 Packages and Naming
In this section, we’ll offer some advice on how to follow Go’s distinctive conventions
for naming packages and their members.
When creating a package, keep its name short, but not so short as to be cryptic. The
most frequently used packages in the standard library are named bufio, bytes,
flag, fmt, http, io, json, os, sort, sync, and time.

Be descriptive and unambiguous where possible. For example, don’t name a utility
package util when a name such as imageutil or ioutil is specific yet still
concise. Avoid choosing package names that are commonly used for related local
variables, or you may compel the package’s clients to use renaming imports, as with
the path package.

Package names usually take the singular form. The standard packages bytes,
errors, and strings use the plural to avoid hiding the corresponding predeclared
types and, in the case of go/types, to avoid conflict with a keyword.

Avoid package names that already have other connotations. For example, we
originally used the name temp for the temperature conversion package in
Section 2.5, but that didn’t last long. It was a terrible idea because “temp” is an
almost universal synonym for “temporary.” We went through a brief period with the
name temperature, but that was too long and didn’t say what the package did. In
the end, it became tempconv, which is shorter and parallel with strconv.

Now let’s turn to the naming of package members. Since each reference to a member
of another package uses a qualified identifier such as fmt.Println, the burden of
describing the package member is borne equally by the package name and the
member name. We need not mention the concept of formatting in Println because
the package name fmt does that already. When designing a package, consider how
the two parts of a qualified identifier work together, not the member name alone.
Here are some characteristic examples:

Click here to view code image

bytes.Equal flag.Int http.Get
json.Marshal

We can identify some common naming patterns. The strings package provides a

number of independent functions for manipulating strings:

Click here to view code image

package strings

func Index(needle, haystack string) int

type Replacer struct{ /* ... */ }
func NewReplacer(oldnew ...string) *Replacer

type Reader struct{ /* ... */ }
func NewReader(s string) *Reader

The word string does not appear in any of their names. Clients refer to them as
strings.Index, strings.Replacer, and so on.

Other packages that we might describe as single-type packages, such as
html/template and math/rand, expose one principal data type plus its
methods, and often a New function to create instances.

package rand // "math/rand"

type Rand struct{ /* ... */ }
func New(source Source) *Rand

This can lead to repetition, as in template.Template or rand.Rand, which is
why the names of these kinds of packages are often especially short.
At the other extreme, there are packages like net/http that have a lot of names
without a lot of structure, because they perform a complicated task. Despite having
over twenty types and many more functions, the package’s most important members
have the simplest names: Get, Post, Handle, Error, Client, Server.

10.7 The Go Tool
The rest of this chapter concerns the go tool, which is used for downloading,
querying, formatting, building, testing, and installing packages of Go code.
The go tool combines the features of a diverse set of tools into one command set. It
is a package manager (analogous to apt or rpm) that answers queries about its
inventory of packages, computes their dependencies, and downloads them from
remote version-control systems. It is a build system that computes file dependencies
and invokes compilers, assemblers, and linkers, although it is intentionally less
complete than the standard Unix make. And it is a test driver, as we will see in
Chapter 11.
Its command-line interface uses the “Swiss army knife” style, with over a dozen
subcommands, some of which we have already seen, like get, run, build, and
fmt. You can run go help to see the index of its built-in documentation, but for
reference, we’ve listed the most commonly used commands below:

Click here to view code image

$ go
...
 build compile packages and dependencies
 clean remove object files
 doc show documentation for package or
symbol
 env print Go environment information
 fmt run gofmt on package sources
 get download and install packages and
dependencies
 install compile and install packages and
dependencies
 list list packages
 run compile and run Go program
 test test packages
 version print Go version
 vet run go tool vet on packages

Use "go help [command]" for more information about a
command.
...

To keep the need for configuration to a minimum, the go tool relies heavily on
conventions. For example, given the name of a Go source file, the tool can find its
enclosing package, because each directory contains a single package and the import
path of a package corresponds to the directory hierarchy in the workspace. Given the
import path of a package, the tool can find the corresponding directory in which it
stores object files. It can also find the URL of the server that hosts the source code
repository.

10.7.1 Workspace Organization

The only configuration most users ever need is the GOPATH environment variable,
which specifies the root of the workspace. When switching to a different workspace,
users update the value of GOPATH. For instance, we set GOPATH to
$HOME/gobook while working on this book:

$ export GOPATH=$HOME/gobook
$ go get gopl.io/...

After you download all the programs for this book using the command above, your
workspace will contain a hierarchy like this one:

GOPATH/
 src/
 gopl.io/
 .git/
 ch1/
 helloworld/
 main.go
 dup/
 main.go
 ...
 golang.org/x/net/
 .git/
 html/
 parse.go

 node.go
 ...
 bin/
 helloworld
 dup
 pkg/
 darwin_amd64/
 ...

GOPATH has three subdirectories. The src subdirectory holds source code. Each
package resides in a directory whose name relative to $GOPATH/src is the
package’s import path, such as gopl.io/ch1/helloworld. Observe that a
single GOPATH workspace contains multiple version-control repositories beneath
src, such as gopl.io or golang.org. The pkg subdirectory is where the build
tools store compiled packages, and the bin subdirectory holds executable programs
like helloworld.

A second environment variable, GOROOT, specifies the root directory of the Go
distribution, which provides all the packages of the standard library. The directory
structure beneath GOROOT resembles that of GOPATH, so, for example, the source
files of the fmt package reside in the $GOROOT/src/fmt directory. Users never
need to set GOROOT since, by default, the go tool will use the location where it was
installed.
The go env command prints the effective values of the environment variables
relevant to the toolchain, including the default values for the missing ones. GOOS
specifies the target operating system (for example, android, linux, darwin, or
windows) and GOARCH specifies the target processor architecture, such as amd64,
386, or arm. Although GOPATH is the only variable you must set, the others
occasionally appear in our explanations.

$ go env
GOPATH="/home/gopher/gobook"
GOROOT="/usr/local/go"
GOARCH="amd64"
GOOS="darwin"
...

10.7.2 Downloading Packages

When using the go tool, a package’s import path indicates not only where to find it in
the local workspace, but where to find it on the Internet so that go get can retrieve
and update it.
The go get command can download a single package or an entire subtree or
repository using the ... notation, as in the previous section. The tool also computes
and downloads all the dependencies of the initial packages, which is why the
golang.org/x/net/html package appeared in the workspace in the previous
example.
Once go get has downloaded the packages, it builds them and then installs the
libraries and commands. We’ll look at the details in the next section, but an example
will show how straightforward the process is. The first command below gets the
golint tool, which checks for common style problems in Go source code. The
second command runs golint on gopl.io/ch2/popcount from
Section 2.6.2. It helpfully reports that we have forgotten to write a doc comment for
the package:

Click here to view code image

$ go get github.com/golang/lint/golint
$ $GOPATH/bin/golint gopl.io/ch2/popcount
src/gopl.io/ch2/popcount/main.go:1:1:
 package comment should be of the form "Package
popcount ..."

The go get command has support for popular code-hosting sites like GitHub,
Bitbucket, and Launchpad and can make the appropriate requests to their version-
control systems. For less well-known sites, you may have to indicate which version-
control protocol to use in the import path, such as Git or Mercurial. Run go help
importpath for the details.

The directories that go get creates are true clients of the remote repository, not just
copies of the files, so you can use version-control commands to see a diff of local
edits you’ve made or to update to a different revision. For example, the
golang.org/x/net directory is a Git client:

Click here to view code image

$ cd $GOPATH/src/golang.org/x/net

$ git remote -v
origin https://go.googlesource.com/net (fetch)
origin https://go.googlesource.com/net (push)

Notice that the apparent domain name in the package’s import path, golang.org,
differs from the actual domain name of the Git server, go.googlesource.com.
This is a feature of the go tool that lets packages use a custom domain name in their
import path while being hosted by a generic service such as googlesource.com
or github.com. HTML pages beneath
https://golang.org/x/net/html include the metadata shown below,
which redirects the go tool to the Git repository at the actual hosting site:

Click here to view code image

$ go build gopl.io/ch1/fetch
$./fetch https://golang.org/x/net/html | grep go-
import
<meta name="go-import"
 content="golang.org/x/net git
https://go.googlesource.com/net">

If you specify the -u flag, go get will ensure that all packages it visits, including
dependencies, are updated to their latest version before being built and installed.
Without that flag, packages that already exist locally will not be updated.
The go get -u command generally retrieves the latest version of each package,
which is convenient when you’re getting started but may be inappropriate for
deployed projects, where precise control of dependencies is critical for release
hygiene. The usual solution to this problem is to vendor the code, that is, to make a
persistent local copy of all the necessary dependencies, and to update this copy
carefully and deliberately. Prior to Go 1.5, this required changing those packages’
import paths, so our copy of golang.org/x/net/html would become
gopl.io/vendor/golang.org/x/net/html. More recent versions of the
go tool support vendoring directly, though we don’t have space to show the details
here. See Vendor Directories in the output of the go help gopath command.

Exercise 10.3: Using fetch http://gopl.io/ch1/helloworld?go-
get=1, find out which service hosts the code samples for this book. (HTTP requests
from go get include the go-get parameter so that servers can distinguish them
from ordinary browser requests.)

10.7.3 Building Packages

The go build command compiles each argument package. If the package is a
library, the result is discarded; this merely checks that the package is free of compile
errors. If the package is named main, go build invokes the linker to create an
executable in the current directory; the name of the executable is taken from the last
segment of the package’s import path.
Since each directory contains one package, each executable program, or command in
Unix terminology, requires its own directory. These directories are sometimes children
of a directory named cmd, such as the golang.org/x/tools/cmd/godoc
command which serves Go package documentation through a web interface
(§10.7.4).
Packages may be specified by their import paths, as we saw above, or by a relative
directory name, which must start with a . or .. segment even if this would not
ordinarily be required. If no argument is provided, the current directory is assumed.
Thus the following commands build the same package, though each writes the
executable to the directory in which go build is run:

Click here to view code image

$ cd $GOPATH/src/gopl.io/ch1/helloworld
$ go build

and:

Click here to view code image

$ cd anywhere
$ go build gopl.io/ch1/helloworld

and:

Click here to view code image

$ cd $GOPATH
$ go build ./src/gopl.io/ch1/helloworld

but not:

Click here to view code image

$ cd $GOPATH
$ go build src/gopl.io/ch1/helloworld
Error: cannot find package
"src/gopl.io/ch1/helloworld".

Packages may also be specified as a list of file names, though this tends to be used
only for small programs and one-off experiments. If the package name is main, the
executable name comes from the basename of the first .go file.

Click here to view code image

$ cat quoteargs.go
package main

import (
 "fmt"
 "os"
)

func main() {
 fmt.Printf("%q\n", os.Args[1:])
}
$ go build quoteargs.go
$./quoteargs one "two three" four\ five
["one" "two three" "four five"]

Particularly for throwaway programs like this one, we want to run the executable as
soon as we’ve built it. The go run command combines these two steps:

Click here to view code image

$ go run quoteargs.go one "two three" four\ five
["one" "two three" "four five"]

The first argument that doesn’t end in .go is assumed to be the beginning of the list
of arguments to the Go executable.
By default, the go build command builds the requested package and all its
dependencies, then throws away all the compiled code except the final executable, if
any. Both the dependency analysis and the compilation are surprisingly fast, but as
projects grow to dozens of packages and hundreds of thousands of lines of code, the
time to recompile dependencies can become noticeable, potentially several seconds,

even when those dependencies haven’t changed at all.
The go install command is very similar to go build , except that it saves the
compiled code for each package and command instead of throwing it away. Compiled
packages are saved beneath the $GOPATH/pkg directory corresponding to the src
directory in which the source resides, and command executables are saved in the
$GOPATH/bin directory. (Many users put $GOPATH/bin on their executable
search path.) Thereafter, go build and go install do not run the compiler for
those packages and commands if they have not changed, making subsequent builds
much faster. For convenience, go build -i installs the packages that are
dependencies of the build target.
Since compiled packages vary by platform and architecture, go install saves
them beneath a subdirectory whose name incorporates the values of the GOOS and
GOARCH environment variables. For example, on a Mac the
golang.org/x/net/html package is compiled and installed in the file
golang.org/x/net/html.a under $GOPATH/pkg/darwin_amd64.

It is straightforward to cross-compile a Go program, that is, to build an executable
intended for a different operating system or CPU. Just set the GOOS or GOARCH
variables during the build. The cross program prints the operating system and
architecture for which it was built:

Click here to view code image

gopl.io/ch10/cross
func main() {
 fmt.Println(runtime.GOOS, runtime.GOARCH)
}

The following commands produce 64-bit and 32-bit executables respectively:

Click here to view code image

$ go build gopl.io/ch10/cross
$./cross
darwin amd64
$ GOARCH=386 go build gopl.io/ch10/cross
$./cross
darwin 386

Some packages may need to compile different versions of the code for certain
platforms or processors, to deal with low-level portability issues or to provide
optimized versions of important routines, for instance. If a file name includes an
operating system or processor architecture name like net_linux.go or
asm_amd64.s, then the go tool will compile the file only when building for that
target. Special comments called build tags give more fine-grained control. For
example, if a file contains this comment:

// +build linux darwin

before the package declaration (and its doc comment), go build will compile it
only when building for Linux or Mac OS X, and this comment says never to compile
the file:

// +build ignore

For more details, see the Build Constraints section of the go/build package’s
documentation:

$ go doc go/build

10.7.4 Documenting Packages

Go style strongly encourages good documentation of package APIs. Each declaration
of an exported package member and the package declaration itself should be
immediately preceded by a comment explaining its purpose and usage.
Go doc comments are always complete sentences, and the first sentence is usually a
summary that starts with the name being declared. Function parameters and other
identifiers are mentioned without quotation or markup. For example, here’s the doc
comment for fmt.Fprintf:

Click here to view code image

// Fprintf formats according to a format specifier and
writes to w.
// It returns the number of bytes written and any
write error encountered.
func Fprintf(w io.Writer, format string, a
...interface{}) (int, error)

The details of Fprintf’s formatting are explained in a doc comment associated with
the fmt package itself. A comment immediately preceding a package declaration is
considered the doc comment for the package as a whole. There must be only one,
though it may appear in any file. Longer package comments may warrant a file of
their own; fmt’s is over 300 lines. This file is usually called doc.go.

Good documentation need not be extensive, and documentation is no substitute for
simplicity. Indeed, Go’s conventions favor brevity and simplicity in documentation as
in all things, since documentation, like code, requires maintenance too. Many
declarations can be explained in one well-worded sentence, and if the behavior is truly
obvious, no comment is needed.
Throughout the book, as space permits, we’ve preceded many declarations by doc
comments, but you will find better examples as you browse the standard library. Two
tools can help you do that.
The go doc tool prints the declaration and doc comment of the entity specified on
the command line, which may be a package:

Click here to view code image

$ go doc time
package time // import "time"

Package time provides functionality for measuring and
displaying time.

const Nanosecond Duration = 1 ...
func After(d Duration) <-chan Time
func Sleep(d Duration)
func Since(t Time) Duration
func Now() Time
type Duration int64
type Time struct { ... }
...many more...

or a package member:

Click here to view code image

$ go doc time.Since
func Since(t Time) Duration

 Since returns the time elapsed since t.
 It is shorthand for time.Now().Sub(t).

or a method:

Click here to view code image

$ go doc time.Duration.Seconds
func (d Duration) Seconds() float64

 Seconds returns the duration as a floating-point
number of seconds.

The tool does not need complete import paths or correct identifier case. This
command prints the documentation of (*json.Decoder).Decode from the
encoding/json package:

Click here to view code image

$ go doc json.decode
func (dec *Decoder) Decode(v interface{}) error

 Decode reads the next JSON-encoded value from its
input and stores
 it in the value pointed to by v.

The second tool, confusingly named godoc, serves cross-linked HTML pages that
provide the same information as go doc and much more. The godoc server at
https://golang.org/pkg covers the standard library. Figure 10.1 shows the
documentation for the time package, and in Section 11.6 we’ll see godoc’s
interactive display of example programs. The godoc server at
https://godoc.org has a searchable index of thousands of open-source
packages.

Figure 10.1. The time package in godoc.

You can also run an instance of godoc in your workspace if you want to browse
your own packages. Visit http://localhost:8000/pkg in your browser
while running this command:

$ godoc -http :8000

Its -analysis=type and -analysis=pointer flags augment the
documentation and the source code with the results of advanced static analysis.

10.7.5 Internal Packages

The package is the most important mechanism for encapsulation in Go programs.
Unexported identifiers are visible only within the same package, and exported
identifiers are visible to the world.

Sometimes, though, a middle ground would be helpful, a way to define identifiers that
are visible to a small set of trusted packages, but not to everyone. For example, when
we’re breaking up a large package into more manageable parts, we may not want to
reveal the interfaces between those parts to other packages. Or we may want to share
utility functions across several packages of a project without exposing them more
widely. Or perhaps we just want to experiment with a new package without
prematurely committing to its API, by putting it “on probation” with a limited set of
clients.
To address these needs, the go build tool treats a package specially if its import
path contains a path segment named internal. Such packages are called internal
packages. An internal package may be imported only by another package that is
inside the tree rooted at the parent of the internal directory. For example, given
the packages below, net/http/internal/chunked can be imported from
net/http/httputil or net/http, but not from net/url. However,
net/url may import net/http/httputil.

net/http
net/http/internal/chunked
net/http/httputil
net/url

10.7.6 Querying Packages

The go list tool reports information about available packages. In its simplest
form, go list tests whether a package is present in the workspace and prints its
import path if so:

Click here to view code image

$ go list github.com/go-sql-driver/mysql
github.com/go-sql-driver/mysql

An argument to go list may contain the “...” wildcard, which matches any
substring of a package’s import path. We can use it to enumerate all the packages
within a Go workspace:

$ go list ...
archive/tar

archive/zip
bufio
bytes
cmd/addr2line
cmd/api
...many more...

or within a specific subtree:
$ go list gopl.io/ch3/...
gopl.io/ch3/basename1
gopl.io/ch3/basename2
gopl.io/ch3/comma
gopl.io/ch3/mandelbrot
gopl.io/ch3/netflag
gopl.io/ch3/printints
gopl.io/ch3/surface

or related to a particular topic:
$ go list ...xml...
encoding/xml
gopl.io/ch7/xmlselect

The go list command obtains the complete metadata for each package, not just
the import path, and makes this information available to users or other tools in a
variety of formats. The -json flag causes go list to print the entire record of
each package in JSON format:

Click here to view code image

$ go list -json hash
{
 "Dir": "/home/gopher/go/src/hash",
 "ImportPath": "hash",
 "Name": "hash",
 "Doc": "Package hash provides interfaces for hash
functions.",
 "Target":
"/home/gopher/go/pkg/darwin_amd64/hash.a",
 "Goroot": true,
 "Standard": true,

 "Root": "/home/gopher/go",
 "GoFiles": [
 "hash.go"
],
 "Imports": [
 "io"
],
 "Deps": [
 "errors",
 "io",
 "runtime",
 "sync",
 "sync/atomic",
 "unsafe"
]
}

The -f flag lets users customize the output format using the template language of
package text/template (§4.6). This command prints the transitive dependencies
of the strconv package, separated by spaces:

Click here to view code image

$ go list -f '{{join .Deps " "}}' strconv
errors math runtime unicode/utf8 unsafe

and this command prints the direct imports of each package in the compress
subtree of the standard library:

Click here to view code image

$ go list -f '{{.ImportPath}} -> {{join .Imports "
"}}' compress/...
compress/bzip2 -> bufio io sort
compress/flate -> bufio fmt io math sort strconv
compress/gzip -> bufio compress/flate errors fmt hash
hash/crc32 io time
compress/lzw -> bufio errors fmt io
compress/zlib -> bufio compress/flate errors fmt hash
hash/adler32 io

The go list command is useful for both one-off interactive queries and for build

and test automation scripts. We’ll use it again in Section 11.2.4. For more
information, including the set of available fields and their meaning, see the output of
go help list .

In this chapter, we’ve explained all the important subcommands of the go tool—
except one. In the next chapter, we’ll see how the go test command is used for
testing Go programs.
Exercise 10.4: Construct a tool that reports the set of all packages in the workspace
that transitively depend on the packages specified by the arguments. Hint: you will
need to run go list twice, once for the initial packages and once for all packages.
You may want to parse its JSON output using the encoding/json package
(§4.5).

11. Testing
Maurice Wilkes, the developer of EDSAC, the first stored-program computer, had a
startling insight while climbing the stairs of his laboratory in 1949. In Memoirs of a
Computer Pioneer, he recalled, “The realization came over me with full force that a
good part of the remainder of my life was going to be spent in finding errors in my
own programs.” Surely every programmer of a stored-program computer since then
can sympathize with Wilkes, though perhaps not without some bemusement at his
naïveté about the difficulties of software construction.
Programs today are far larger and more complex than in Wilkes’s time, of course, and
a great deal of effort has been spent on techniques to make this complexity
manageable. Two techniques in particular stand out for their effectiveness. The first is
routine peer review of programs before they are deployed. The second, the subject of
this chapter, is testing.
Testing, by which we implicitly mean automated testing, is the practice of writing
small programs that check that the code under test (the production code) behaves as
expected for certain inputs, which are usually either carefully chosen to exercise
certain features or randomized to ensure broad coverage.
The field of software testing is enormous. The task of testing occupies all
programmers some of the time and some programmers all of the time. The literature
on testing includes thousands of printed books and millions of words of blog posts. In
every mainstream programming language, there are dozens of software packages
intended for test construction, some with a great deal of theory, and the field seems to
attract more than a few prophets with cult-like followings. It is almost enough to
convince programmers that to write effective tests they must acquire a whole new set
of skills.
Go’s approach to testing can seem rather low-tech in comparison. It relies on one
command, go test , and a set of conventions for writing test functions that go
test can run. The comparatively lightweight mechanism is effective for pure testing,
and it extends naturally to benchmarks and systematic examples for documentation.
In practice, writing test code is not much different from writing the original program
itself. We write short functions that focus on one part of the task. We have to be
careful of boundary conditions, think about data structures, and reason about what

results a computation should produce from suitable inputs. But this is the same
process as writing ordinary Go code; it needn’t require new notations, conventions,
and tools.

11.1 The go test Tool
The go test subcommand is a test driver for Go packages that are organized
according to certain conventions. In a package directory, files whose names end with
_test.go are not part of the package ordinarily built by go build but are a part
of it when built by go test .

Within *_test.go files, three kinds of functions are treated specially: tests,
benchmarks, and examples. A test function, which is a function whose name begins
with Test, exercises some program logic for correct behavior; go test calls the
test function and reports the result, which is either PASS or FAIL. A benchmark
function has a name beginning with Benchmark and measures the performance of
some operation; go test reports the mean execution time of the operation. And an
example function, whose name starts with Example, provides machine-checked
documentation. We will cover tests in detail in Section 11.2, benchmarks in
Section 11.4, and examples in Section 11.6.
The go test tool scans the *_test.go files for these special functions,
generates a temporary main package that calls them all in the proper way, builds and
runs it, reports the results, and then cleans up.

11.2 Test Functions
Each test file must import the testing package. Test functions have the following
signature:

func TestName(t *testing.T) {
 // ...
}

Test function names must begin with Test; the optional suffix Name must begin
with a capital letter:

Click here to view code image

func TestSin(t *testing.T) { /* ... */ }
func TestCos(t *testing.T) { /* ... */ }
func TestLog(t *testing.T) { /* ... */ }

The t parameter provides methods for reporting test failures and logging additional
information. Let’s define an example package gopl.io/ch11/word1, containing
a single function IsPalindrome that reports whether a string reads the same
forward and backward. (This implementation tests every byte twice if the string is a
palindrome; we’ll come back to that shortly.)

Click here to view code image

gopl.io/ch11/word1
// Package word provides utilities for word games.
package word

// IsPalindrome reports whether s reads the same
forward and backward.
// (Our first attempt.)
func IsPalindrome(s string) bool {
 for i := range s {
 if s[i] != s[len(s)-1-i] {
 return false
 }
 }

 return true
}

In the same directory, the file word_test.go contains two test functions named
TestPalindrome and TestNonPalindrome. Each checks that
IsPalindrome gives the right answer for a single input and reports failures using
t.Error:

Click here to view code image

package word

import "testing"

func TestPalindrome(t *testing.T) {
 if !IsPalindrome("detartrated") {
 t.Error(`IsPalindrome("detartrated") = false`)
 }
 if !IsPalindrome("kayak") {
 t.Error(`IsPalindrome("kayak") = false`)
 }
}

func TestNonPalindrome(t *testing.T) {
 if IsPalindrome("palindrome") {
 t.Error(`IsPalindrome("palindrome") = true`)
 }
}

A go test (or go build) command with no package arguments operates on the
package in the current directory. We can build and run the tests with the following
command.

Click here to view code image

$ cd $GOPATH/src/gopl.io/ch11/word1
$ go test
ok gopl.io/ch11/word1 0.008s

Satisfied, we ship the program, but no sooner have the launch party guests departed
than the bug reports start to arrive. A French user named Noelle Eve Elleon
complains that IsPalindrome doesn’t recognize “été.” Another, from Central

America, is disappointed that it rejects “A man, a plan, a canal: Panama.” These
specific and small bug reports naturally lend themselves to new test cases.

Click here to view code image

func TestFrenchPalindrome(t *testing.T) {
 if !IsPalindrome("été") {
 t.Error(`IsPalindrome("été") = false`)
 }
}

func TestCanalPalindrome(t *testing.T) {
 input := "A man, a plan, a canal: Panama"
 if !IsPalindrome(input) {
 t.Errorf(`IsPalindrome(%q) = false`, input)
 }
}

To avoid writing the long input string twice, we use Errorf, which provides
formatting like Printf.

When the two new tests have been added, the go test command fails with
informative error messages.

Click here to view code image

$ go test
--- FAIL: TestFrenchPalindrome (0.00s)
 word_test.go:28: IsPalindrome("été") = false
--- FAIL: TestCanalPalindrome (0.00s)
 word_test.go:35: IsPalindrome("A man, a plan, a
canal: Panama") = false
FAIL
FAIL gopl.io/ch11/word1 0.014s

It’s good practice to write the test first and observe that it triggers the same failure
described by the user’s bug report. Only then can we be confident that whatever fix
we come up with addresses the right problem.
As a bonus, running go test is usually quicker than manually going through the
steps described in the bug report, allowing us to iterate more rapidly. If the test suite
contains many slow tests, we may make even faster progress if we’re selective about

which ones we run.
The -v flag prints the name and execution time of each test in the package:

Click here to view code image

$ go test -v
=== RUN TestPalindrome
--- PASS: TestPalindrome (0.00s)
=== RUN TestNonPalindrome
--- PASS: TestNonPalindrome (0.00s)
=== RUN TestFrenchPalindrome
--- FAIL: TestFrenchPalindrome (0.00s)
 word_test.go:28: IsPalindrome("été") = false
=== RUN TestCanalPalindrome
--- FAIL: TestCanalPalindrome (0.00s)
 word_test.go:35: IsPalindrome("A man, a plan, a
canal: Panama") = false
FAIL
exit status 1
FAIL gopl.io/ch11/word1 0.017s

and the -run flag, whose argument is a regular expression, causes go test to run
only those tests whose function name matches the pattern:

Click here to view code image

$ go test -v -run="French|Canal"
=== RUN TestFrenchPalindrome
--- FAIL: TestFrenchPalindrome (0.00s)
 word_test.go:28: IsPalindrome("été") = false
=== RUN TestCanalPalindrome
--- FAIL: TestCanalPalindrome (0.00s)
 word_test.go:35: IsPalindrome("A man, a plan, a
canal: Panama") = false
FAIL
exit status 1
FAIL gopl.io/ch11/word1 0.014s

Of course, once we’ve gotten the selected tests to pass, we should invoke go test
with no flags to run the entire test suite one last time before we commit the change.

Now our task is to fix the bugs. A quick investigation reveals the cause of the first bug
to be IsPalindrome’s use of byte sequences, not rune sequences, so that non-
ASCII characters such as the é in "été" confuse it. The second bug arises from not
ignoring spaces, punctuation, and letter case.
Chastened, we rewrite the function more carefully:

Click here to view code image

gopl.io/ch11/word2
// Package word provides utilities for word games.
package word

import "unicode"

// IsPalindrome reports whether s reads the same
forward and backward.
// Letter case is ignored, as are non-letters.
func IsPalindrome(s string) bool {
 var letters []rune
 for _, r := range s {
 if unicode.IsLetter(r) {
 letters = append(letters,
unicode.ToLower(r))
 }
 }
 for i := range letters {
 if letters[i] != letters[len(letters)-1-i] {
 return false
 }
 }
 return true
}

We also write a more comprehensive set of test cases that combines all the previous
ones and a number of new ones into a table.

Click here to view code image

func TestIsPalindrome(t *testing.T) {
 var tests = []struct {

 input string
 want bool
 }{
 {"", true},
 {"a", true},
 {"aa", true},
 {"ab", false},
 {"kayak", true},
 {"detartrated", true},
 {"A man, a plan, a canal: Panama", true},
 {"Evil I did dwell; lewd did I live.", true},
 {"Able was I ere I saw Elba", true},
 {"été", true},
 {"Et se resservir, ivresse reste.", true},
 {"palindrome", false}, // non-palindrome
 {"desserts", false}, // semi-palindrome
 }
 for _, test := range tests {
 if got := IsPalindrome(test.input); got !=
test.want {
 t.Errorf("IsPalindrome(%q) = %v",
test.input, got)
 }
 }
}

Our new tests pass:

Click here to view code image

$ go test gopl.io/ch11/word2
ok gopl.io/ch11/word2 0.015s

This style of table-driven testing is very common in Go. It is straightforward to add
new table entries as needed, and since the assertion logic is not duplicated, we can
invest more effort in producing a good error message.
The output of a failing test does not include the entire stack trace at the moment of
the call to t.Errorf. Nor does t.Errorf cause a panic or stop the execution of
the test, unlike assertion failures in many test frameworks for other languages. Tests
are independent of each other. If an early entry in the table causes the test to fail, later

table entries will still be checked, and thus we may learn about multiple failures during
a single run.
When we really must stop a test function, perhaps because some initialization code
failed or to prevent a failure already reported from causing a confusing cascade of
others, we use t.Fatal or t.Fatalf. These must be called from the same
goroutine as the Test function, not from another one created during the test.

Test failure messages are usually of the form "f(x) = y, want z" , where
f(x) explains the attempted operation and its input, y is the actual result, and z the
expected result. Where convenient, as in our palindrome example, actual Go syntax is
used for the f(x) part. Displaying x is particularly important in a table-driven test,
since a given assertion is executed many times with different values. Avoid boilerplate
and redundant information. When testing a boolean function such as
IsPalindrome, omit the want z part since it adds no information. If x, y, or z
is lengthy, print a concise summary of the relevant parts instead. The author of a test
should strive to help the programmer who must diagnose a test failure.
Exercise 11.1: Write tests for the charcount program in Section 4.3.

Exercise 11.2: Write a set of tests for IntSet (§6.5) that checks that its behavior
after each operation is equivalent to a set based on built-in maps. Save your
implementation for benchmarking in Exercise 11.7.

11.2.1 Randomized Testing

Table-driven tests are convenient for checking that a function works on inputs
carefully selected to exercise interesting cases in the logic. Another approach,
randomized testing, explores a broader range of inputs by constructing inputs at
random.
How do we know what output to expect from our function, given a random input?
There are two strategies. The first is to write an alternative implementation of the
function that uses a less efficient but simpler and clearer algorithm, and check that
both implementations give the same result. The second is to create input values
according to a pattern so that we know what output to expect.
The example below uses the second approach: the randomPalindrome function
generates words that are known to be palindromes by construction.

Click here to view code image

import "math/rand"

// randomPalindrome returns a palindrome whose length
and contents
// are derived from the pseudo-random number generator
rng.
func randomPalindrome(rng *rand.Rand) string {
 n := rng.Intn(25) // random length up to 24
 runes := make([]rune, n)
 for i := 0; i < (n+1)/2; i++ {
 r := rune(rng.Intn(0x1000)) // random rune up
to '\u0999'
 runes[i] = r
 runes[n-1-i] = r
 }
 return string(runes)
}

func TestRandomPalindromes(t *testing.T) {
 // Initialize a pseudo-random number generator.
 seed := time.Now().UTC().UnixNano()
 t.Logf("Random seed: %d", seed)
 rng := rand.New(rand.NewSource(seed))

 for i := 0; i < 1000; i++ {
 p := randomPalindrome(rng)
 if !IsPalindrome(p) {
 t.Errorf("IsPalindrome(%q) = false", p)
 }
 }
}

Since randomized tests are nondeterministic, it is critical that the log of the failing test
record sufficient information to reproduce the failure. In our example, the input p to
IsPalindrome tells us all we need to know, but for functions that accept more
complex inputs, it may be simpler to log the seed of the pseudo-random number
generator (as we do above) than to dump the entire input data structure. Armed with
that seed value, we can easily modify the test to replay the failure deterministically.

By using the current time as a source of randomness, the test will explore novel inputs
each time it is run, over the entire course of its lifetime. This is especially valuable if
your project uses an automated system to run all its tests periodically.
Exercise 11.3: TestRandomPalindromes only tests palindromes. Write a
randomized test that generates and verifies non-palindromes.
Exercise 11.4: Modify randomPalindrome to exercise IsPalindrome’s
handling of punctuation and spaces.

11.2.2 Testing a Command

The go test tool is useful for testing library packages, but with a little effort we
can use it to test commands as well. A package named main ordinarily produces an
executable program, but it can be imported as a library too.
Let’s write a test for the echo program of Section 2.3.2. We’ve split the program
into two functions: echo does the real work, while main parses and reads the flag
values and reports any errors returned by echo.

Click here to view code image

gopl.io/ch11/echo
// Echo prints its command-line arguments.
package main

import (
 "flag"
 "fmt"
 "io"
 "os"
 "strings"
)

var (
 n = flag.Bool("n", false, "omit trailing newline")
 s = flag.String("s", " ", "separator")
)

var out io.Writer = os.Stdout // modified during
testing

func main() {
 flag.Parse()
 if err := echo(!*n, *s, flag.Args()); err != nil {
 fmt.Fprintf(os.Stderr, "echo: %v\n", err)
 os.Exit(1)
 }
}

func echo(newline bool, sep string, args []string)
error {
 fmt.Fprint(out, strings.Join(args, sep))
 if newline {
 fmt.Fprintln(out)
 }
 return nil
}

From the test, we will call echo with a variety of arguments and flag settings and
check that it prints the correct output in each case, so we’ve added parameters to
echo to reduce its dependence on global variables. That said, we’ve also introduced
another global variable, out, the io.Writer to which the result will be written. By
having echo write through this variable, not directly to os.Stdout, the tests can
substitute a different Writer implementation that records what was written for later
inspection. Here’s the test, in file echo_test.go:

Click here to view code image

package main

import (
 "bytes"
 "fmt"
 "testing"
)

func TestEcho(t *testing.T) {

 var tests = []struct {
 newline bool
 sep string
 args []string
 want string
 }{
 {true, "", []string{}, "\n"},
 {false, "", []string{}, ""},
 {true, "\t", []string{"one", "two", "three"},
"one\ttwo\tthree\n"},
 {true, ",", []string{"a", "b", "c"},
"a,b,c\n"},
 {false, ":", []string{"1", "2", "3"},
"1:2:3"},
 }

 for _, test := range tests {
 descr := fmt.Sprintf("echo(%v, %q, %q)",
 test.newline, test.sep, test.args)

 out = new(bytes.Buffer) // captured output
 if err := echo(test.newline, test.sep,
test.args); err != nil {
 t.Errorf("%s failed: %v", descr, err)
 continue
 }
 got := out.(*bytes.Buffer).String()
 if got != test.want {
 t.Errorf("%s = %q, want %q", descr, got,
test.want)
 }
 }
}

Notice that the test code is in the same package as the production code. Although the
package name is main and it defines a main function, during testing this package
acts as a library that exposes the function TestEcho to the test driver; its main
function is ignored.
By organizing the test as a table, we can easily add new test cases. Let’s see what

happens when the test fails, by adding this line to the table:

Click here to view code image

{true, ",", []string{"a", "b", "c"}, "a b c\n"}, //
NOTE: wrong expectation!

go test prints

Click here to view code image

$ go test gopl.io/ch11/echo
--- FAIL: TestEcho (0.00s)
 echo_test.go:31: echo(true, ",", ["a" "b" "c"]) =
"a,b,c", want "a b c\n"
FAIL
FAIL gopl.io/ch11/echo 0.006s

The error message describes the attempted operation (using Go-like syntax), the
actual behavior, and the expected behavior, in that order. With an informative error
message such as this, you may have a pretty good idea about the root cause before
you’ve even located the source code of the test.
It’s important that code being tested not call log.Fatal or os.Exit, since these
will stop the process in its tracks; calling these functions should be regarded as the
exclusive right of main. If something totally unexpected happens and a function
panics, the test driver will recover, though the test will of course be considered a
failure. Expected errors such as those resulting from bad user input, missing files, or
improper configuration should be reported by returning a non-nil error value.
Fortunately (though unfortunate as an illustration), our echo example is so simple
that it will never return a non-nil error.

11.2.3 White-Box Testing

One way of categorizing tests is by the level of knowledge they require of the internal
workings of the package under test. A black-box test assumes nothing about the
package other than what is exposed by its API and specified by its documentation; the
package’s internals are opaque. In contrast, a white-box test has privileged access to
the internal functions and data structures of the package and can make observations

and changes that an ordinary client cannot. For example, a white-box test can check
that the invariants of the package’s data types are maintained after every operation.
(The name white box is traditional, but clear box would be more accurate.)
The two approaches are complementary. Black-box tests are usually more robust,
needing fewer updates as the software evolves. They also help the test author
empathize with the client of the package and can reveal flaws in the API design. In
contrast, white-box tests can provide more detailed coverage of the trickier parts of
the implementation.
We’ve already seen examples of both kinds. TestIsPalindrome calls only the
exported function IsPalindrome and is thus a black-box test. TestEcho calls
the echo function and updates the global variable out, both of which are
unexported, making it a white-box test.
While developing TestEcho, we modified the echo function to use the package-
level variable out when writing its output, so that the test could replace the standard
output with an alternative implementation that records the data for later inspection.
Using the same technique, we can replace other parts of the production code with
easy-to-test “fake” implementations. The advantage of fake implementations is that
they can be simpler to configure, more predictable, more reliable, and easier to
observe. They can also avoid undesirable side effects such as updating a production
database or charging a credit card.
The code below shows the quota-checking logic in a web service that provides
networked storage to users. When users exceed 90% of their quota, the system sends
them a warning email.

Click here to view code image

gopl.io/ch11/storage1
package storage

import (
 "fmt"
 "log"
 "net/smtp"
)

var usage = make(map[string]int64)

func bytesInUse(username string) int64 { return
usage[username] }

// Email sender configuration.
// NOTE: never put passwords in source code!
const sender = "notifications@example.com"
const password = "correcthorsebatterystaple"
const hostname = "smtp.example.com"

const template = `Warning: you are using %d bytes of
storage,
%d%% of your quota.`

func CheckQuota(username string) {
 used := bytesInUse(username)
 const quota = 1000000000 // 1GB
 percent := 100 * used / quota
 if percent < 90 {
 return // OK
 }
 msg := fmt.Sprintf(template, used, percent)
 auth := smtp.PlainAuth("", sender, password,
hostname)
 err := smtp.SendMail(hostname+":587", auth,
sender,
 []string{username}, []byte(msg))
 if err != nil {
 log.Printf("smtp.SendMail(%s) failed: %s",
username, err)
 }
}

We’d like to test it, but we don’t want the test to send out real email. So we move the
email logic into its own function and store that function in an unexported package-
level variable, notifyUser.

Click here to view code image

gopl.io/ch11/storage2
var notifyUser = func(username, msg string) {

 auth := smtp.PlainAuth("", sender, password,
hostname)
 err := smtp.SendMail(hostname+":587", auth,
sender,
 []string{username}, []byte(msg))
 if err != nil {
 log.Printf("smtp.SendEmail(%s) failed: %s",
username, err)
 }
}

func CheckQuota(username string) {
 used := bytesInUse(username)
 const quota = 1000000000 // 1GB
 percent := 100 * used / quota
 if percent < 90 {
 return // OK
 }
 msg := fmt.Sprintf(template, used, percent)
 notifyUser(username, msg)
}

We can now write a test that substitutes a simple fake notification mechanism instead
of sending real email. This one records the notified user and the contents of the
message.

Click here to view code image

package storage

import (
 "strings"
 "testing"
)

func TestCheckQuotaNotifiesUser(t *testing.T) {
 var notifiedUser, notifiedMsg string
 notifyUser = func(user, msg string) {
 notifiedUser, notifiedMsg = user, msg
 }

 const user = "joe@example.org"
 usage[user]= 980000000 // simulate a 980MB-used
condition

 CheckQuota(user)
 if notifiedUser == "" && notifiedMsg == "" {
 t.Fatalf("notifyUser not called")
 }
 if notifiedUser != user {
 t.Errorf("wrong user (%s) notified, want %s",
 notifiedUser, user)
 }
 const wantSubstring = "98% of your quota"
 if !strings.Contains(notifiedMsg, wantSubstring) {
 t.Errorf("unexpected notification message
<<%s>>, "+
 "want substring %q", notifiedMsg,
wantSubstring)
 }
}

There’s one problem: after this test function has returned, CheckQuota no longer
works as it should because it’s still using the test’s fake implementation of
notifyUsers. (There is always a risk of this kind when updating global variables.)
We must modify the test to restore the previous value so that subsequent tests
observe no effect, and we must do this on all execution paths, including test failures
and panics. This naturally suggests defer.

Click here to view code image

func TestCheckQuotaNotifiesUser(t *testing.T) {
 // Save and restore original notifyUser.
 saved := notifyUser
 defer func() { notifyUser = saved }()

 // Install the test's fake notifyUser.
 var notifiedUser, notifiedMsg string
 notifyUser = func(user, msg string) {
 notifiedUser, notifiedMsg = user, msg

 }
 // ...rest of test...
}

This pattern can be used to temporarily save and restore all kinds of global variables,
including command-line flags, debugging options, and performance parameters; to
install and remove hooks that cause the production code to call some test code when
something interesting happens; and to coax the production code into rare but
important states, such as timeouts, errors, and even specific interleavings of
concurrent activities.
Using global variables in this way is safe only because go test does not normally
run multiple tests concurrently.

11.2.4 External Test Packages

Consider the packages net/url, which provides a URL parser, and net/http,
which provides a web server and HTTP client library. As we might expect, the
higher-level net/http depends on the lower-level net/url. However, one of the
tests in net/url is an example demonstrating the interaction between URLs and the
HTTP client library. In other words, a test of the lower-level package imports the
higher-level package.

Figure 11.1. A test of net/url depends on net/http.

Declaring this test function in the net/url package would create a cycle in the
package import graph, as depicted by the upwards arrow in Figure 11.1, but as we
explained in Section 10.1, the Go specification forbids import cycles.
We resolve the problem by declaring the test function in an external test package, that
is, in a file in the net/url directory whose package declaration reads package
url_test. The extra suffix _test is a signal to go test that it should build an
additional package containing just these files and run its tests. It may be helpful to

think of this external test package as if it had the import path net/url_test, but it
cannot be imported under this or any other name.
Because external tests live in a separate package, they may import helper packages
that also depend on the package being tested; an in-package test cannot do this. In
terms of the design layers, the external test package is logically higher up than both of
the packages it depends upon, as shown in Figure 11.2.

Figure 11.2. External test packages break dependency cycles.

By avoiding import cycles, external test packages allow tests, especially integration
tests (which test the interaction of several components), to import other packages
freely, exactly as an application would.
We can use the go list tool to summarize which Go source files in a package
directory are production code, in-package tests, and external tests. We’ll use the fmt
package as an example. GoFiles is the list of files that contain the production code;
these are the files that go build will include in your application:

Click here to view code image

$ go list -f={{.GoFiles}} fmt
[doc.go format.go print.go scan.go]

TestGoFiles is the list of files that also belong to the fmt package, but these
files, whose names all end in _test.go, are included only when building tests:

Click here to view code image

$ go list -f={{.TestGoFiles}} fmt
[export_test.go]

The package’s tests would usually reside in these files, though unusually fmt has
none; we’ll explain the purpose of export_test.go in a moment.

XTestGoFiles is the list of files that constitute the external test package,
fmt_test, so these files must import the fmt package in order to use it. Again,
they are included only during testing:

Click here to view code image

$ go list -f={{.XTestGoFiles}} fmt
[fmt_test.go scan_test.go stringer_test.go]

Sometimes an external test package may need privileged access to the internals of the
package under test, if for example a white-box test must live in a separate package to
avoid an import cycle. In such cases, we use a trick: we add declarations to an in-
package _test.go file to expose the necessary internals to the external test. This
file thus offers the test a “back door” to the package. If the source file exists only for
this purpose and contains no tests itself, it is often called export_test.go.

For example, the implementation of the fmt package needs the functionality of
unicode.IsSpace as part of fmt.Scanf. To avoid creating an undesirable
dependency, fmt does not import the unicode package and its large tables of data;
instead, it contains a simpler implementation, which it calls isSpace.

To ensure that the behaviors of fmt.isSpace and unicode.IsSpace do not
drift apart, fmt prudently contains a test. It is an external test, and thus it cannot
access isSpace directly, so fmt opens a back door to it by declaring an exported
variable that holds the internal isSpace function. This is the entirety of the fmt
package’s export_test.go file.

package fmt

var IsSpace = isSpace

This test file defines no tests; it just declares the exported symbol fmt.IsSpace
for use by the external test. This trick can also be used whenever an external test
needs to use some of the techniques of white-box testing.

11.2.5 Writing Effective Tests

Many newcomers to Go are surprised by the minimalism of Go’s testing framework.
Other languages’ frameworks provide mechanisms for identifying test functions (often

using reflection or metadata), hooks for performing “setup” and “teardown”
operations before and after the tests run, and libraries of utility functions for asserting
common predicates, comparing values, formatting error messages, and aborting a
failed test (often using exceptions). Although these mechanisms can make tests very
concise, the resulting tests often seem like they are written in a foreign language.
Furthermore, although they may report PASS or FAIL correctly, their manner may
be unfriendly to the unfortunate maintainer, with cryptic failure messages like
"assert: 0 == 1" or page after page of stack traces.

Go’s attitude to testing stands in stark contrast. It expects test authors to do most of
this work themselves, defining functions to avoid repetition, just as they would for
ordinary programs. The process of testing is not one of rote form filling; a test has a
user interface too, albeit one whose only users are also its maintainers. A good test
does not explode on failure but prints a clear and succinct description of the symptom
of the problem, and perhaps other relevant facts about the context. Ideally, the
maintainer should not need to read the source code to decipher a test failure. A good
test should not give up after one failure but should try to report several errors in a
single run, since the pattern of failures may itself be revealing.
The assertion function below compares two values, constructs a generic error
message, and stops the program. It’s easy to use and it’s correct, but when it fails, the
error message is almost useless. It does not solve the hard problem of providing a
good user interface.

Click here to view code image

import (
 "fmt"
 "strings"
 "testing"
)

// A poor assertion function.
func assertEqual(x, y int) {
 if x != y {
 panic(fmt.Sprintf("%d != %d", x, y))
 }
}

func TestSplit(t *testing.T) {

 words := strings.Split("a:b:c", ":")
 assertEqual(len(words), 3)
 // ...
}

In this sense, assertion functions suffer from premature abstraction: by treating the
failure of this particular test as a mere difference of two integers, we forfeit the
opportunity to provide meaningful context. We can provide a better message by
starting from the concrete details, as in the example below. Only once repetitive
patterns emerge in a given test suite is it time to introduce abstractions.

Click here to view code image

func TestSplit(t *testing.T) {
 s, sep := "a:b:c", ":"
 words := strings.Split(s, sep)
 if got, want := len(words), 3; got != want {
 t.Errorf("Split(%q, %q) returned %d words,
want %d",
 s, sep, got, want)
 }
 // ...
}

Now the test reports the function that was called, its inputs, and the significance of
the result; it explicitly identifies the actual value and the expectation; and it continues
to execute even if this assertion should fail. Once we’ve written a test like this, the
natural next step is often not to define a function to replace the entire if statement,
but to execute the test in a loop in which s, sep, and want vary, like the table-
driven test of IsPalindrome.

The previous example didn’t need any utility functions, but of course that shouldn’t
stop us from introducing functions when they help make the code simpler. (We’ll look
at one such utility function, reflect.DeepEqual, in Section 13.3.) The key to a
good test is to start by implementing the concrete behavior that you want and only
then use functions to simplify the code and eliminate repetition. Best results are rarely
obtained by starting with a library of abstract, generic testing functions.
Exercise 11.5: Extend TestSplit to use a table of inputs and expected outputs.

11.2.6 Avoiding Brittle Tests

An application that often fails when it encounters new but valid inputs is called buggy;
a test that spuriously fails when a sound change was made to the program is called
brittle. Just as a buggy program frustrates its users, a brittle test exasperates its
maintainers. The most brittle tests, which fail for almost any change to the production
code, good or bad, are sometimes called change detector or status quo tests, and the
time spent dealing with them can quickly deplete any benefit they once seemed to
provide.
When a function under test produces a complex output such as a long string, an
elaborate data structure, or a file, it’s tempting to check that the output is exactly
equal to some “golden” value that was expected when the test was written. But as the
program evolves, parts of the output will likely change, probably in good ways, but
change nonetheless. And it’s not just the output; functions with complex inputs often
break because the input used in a test is no longer valid.
The easiest way to avoid brittle tests is to check only the properties you care about.
Test your program’s simpler and more stable interfaces in preference to its internal
functions. Be selective in your assertions. Don’t check for exact string matches, for
example, but look for relevant substrings that will remain unchanged as the program
evolves. It’s often worth writing a substantial function to distill a complex output
down to its essence so that assertions will be reliable. Even though that may seem like
a lot of up-front effort, it can pay for itself quickly in time that would otherwise be
spent fixing spuriously failing tests.

11.3 Coverage
By its nature, testing is never complete. As the influential computer scientist Edsger
Dijkstra put it, “Testing shows the presence, not the absence of bugs.” No quantity of
tests can ever prove a package free of bugs. At best, they increase our confidence
that the package works well in a wide range of important scenarios.
The degree to which a test suite exercises the package under test is called the test’s
coverage. Coverage can’t be quantified directly—the dynamics of all but the most
trivial programs are beyond precise measurement—but there are heuristics that can
help us direct our testing efforts to where they are more likely to be useful.
Statement coverage is the simplest and most widely used of these heuristics. The
statement coverage of a test suite is the fraction of source statements that are
executed at least once during the test. In this section, we’ll use Go’s cover tool,
which is integrated into go test , to measure statement coverage and help identify
obvious gaps in the tests.
The code below is a table-driven test for the expression evaluator we built back in
Chapter 7:

Click here to view code image

gopl.io/ch7/eval
func TestCoverage(t *testing.T) {
 var tests = []struct {
 input string
 env Env
 want string // expected error from
Parse/Check or result from Eval
 }{
 {"x % 2", nil, "unexpected '%'"},
 {"!true", nil, "unexpected '!'"},
 {"log(10)", nil, `unknown function "log"`},
 {"sqrt(1, 2)", nil, "call to sqrt has 2 args,
want 1"},
 {"sqrt(A / pi)", Env{"A": 87616, "pi":
math.Pi}, "167"},
 {"pow(x, 3) + pow(y, 3)", Env{"x": 9, "y":

10}, "1729"},
 {"5 / 9 * (F - 32)", Env{"F": -40}, "-40"},
 }

 for _, test := range tests {
 expr, err := Parse(test.input)
 if err == nil {
 err = expr.Check(map[Var]bool{})
 }
 if err != nil {
 if err.Error() != test.want {
 t.Errorf("%s: got %q, want %q",
test.input, err, test.want)
 }
 continue
 }

 got := fmt.Sprintf("%.6g",
expr.Eval(test.env))
 if got != test.want {
 t.Errorf("%s: %v => %s, want %s",
 test.input, test.env, got, test.want)
 }
 }
}

First, let’s check that the test passes:

Click here to view code image

$ go test -v -run=Coverage gopl.io/ch7/eval
=== RUN TestCoverage
--- PASS: TestCoverage (0.00s)
PASS
ok gopl.io/ch7/eval 0.011s

This command displays the usage message of the coverage tool:

Click here to view code image

$ go tool cover
Usage of 'go tool cover':

Given a coverage profile produced by 'go test':
 go test -coverprofile=c.out

Open a web browser displaying annotated source code:
 go tool cover -html=c.out
...

The go tool command runs one of the executables from the Go toolchain. These
programs live in the directory $GOROOT/pkg/tool/${GOOS}_${GOARCH}.
Thanks to go build , we rarely need to invoke them directly.

Now we run the test with the -coverprofile flag:

Click here to view code image

$ go test -run=Coverage -coverprofile=c.out
gopl.io/ch7/eval
ok gopl.io/ch7/eval 0.032s coverage: 68.5% of
statements

This flag enables the collection of coverage data by instrumenting the production
code. That is, it modifies a copy of the source code so that before each block of
statements is executed, a boolean variable is set, with one variable per block. Just
before the modified program exits, it writes the value of each variable to the specified
log file c.out and prints a summary of the fraction of statements that were
executed. (If all you need is the summary, use go test -cover.)

If go test is run with the -covermode=count flag, the instrumentation for
each block increments a counter instead of setting a boolean. The resulting log of
execution counts of each block enables quantitative comparisons between “hotter”
blocks, which are more frequently executed, and “colder” ones.
Having gathered the data, we run the cover tool, which processes the log, generates
an HTML report, and opens it in a new browser window (Figure 11.3).

$ go tool cover -html=c.out

Figure 11.3. A coverage report.

Each statement is colored green if it was covered or red if it was not covered. For
clarity, we’ve shaded the background of the red text. We can see immediately that
none of our inputs exercised the unary operator Eval method. If we add this new
test case to the table and re-run the previous two commands, the unary expression
code becomes green:

Click here to view code image

{"-x * -x", eval.Env{"x": 2}, "4"}

The two panic statements remain red, however. This should not be surprising,
because these statements are supposed to be unreachable.
Achieving 100% statement coverage sounds like a noble goal, but it is not usually
feasible in practice, nor is it likely to be a good use of effort. Just because a statement
is executed does not mean it is bug-free; statements containing complex expressions

must be executed many times with different inputs to cover the interesting cases.
Some statements, like the panic statements above, can never be reached. Others,
such as those that handle esoteric errors, are hard to exercise but rarely reached in
practice. Testing is fundamentally a pragmatic endeavor, a trade-off between the cost
of writing tests and the cost of failures that could have been prevented by tests.
Coverage tools can help identify the weakest spots, but devising good test cases
demands the same rigorous thinking as programming in general.

11.4 Benchmark Functions
Benchmarking is the practice of measuring the performance of a program on a fixed
workload. In Go, a benchmark function looks like a test function, but with the
Benchmark prefix and a *testing.B parameter that provides most of the same
methods as a *testing.T, plus a few extra related to performance measurement.
It also exposes an integer field N, which specifies the number of times to perform the
operation being measured.
Here’s a benchmark for IsPalindrome that calls it N times in a loop.

Click here to view code image

import "testing"

func BenchmarkIsPalindrome(b *testing.B) {
 for i := 0; i < b.N; i++ {
 IsPalindrome("A man, a plan, a canal: Panama")
 }
}

We run it with the command below. Unlike tests, by default no benchmarks are run.
The argument to the -bench flag selects which benchmarks to run. It is a regular
expression matching the names of Benchmark functions, with a default value that
matches none of them. The “.” pattern causes it to match all benchmarks in the
word package, but since there’s only one, -bench=IsPalindrome would have
been equivalent.

Click here to view code image

$ cd $GOPATH/src/gopl.io/ch11/word2
$ go test -bench=.
PASS
BenchmarkIsPalindrome-8 1000000 1035
ns/op
ok gopl.io/ch11/word2 2.179s

The benchmark name’s numeric suffix, 8 here, indicates the value of GOMAXPROCS,
which is important for concurrent benchmarks.

The report tells us that each call to IsPalindrome took about 1.035
microseconds, averaged over 1,000,000 runs. Since the benchmark runner initially
has no idea how long the operation takes, it makes some initial measurements using
small values of N and then extrapolates to a value large enough for a stable timing
measurement to be made.
The reason the loop is implemented by the benchmark function, and not by the
calling code in the test driver, is so that the benchmark function has the opportunity to
execute any necessary one-time setup code outside the loop without this adding to the
measured time of each iteration. If this setup code is still perturbing the results, the
testing.B parameter provides methods to stop, resume, and reset the timer, but
these are rarely needed.
Now that we have a benchmark and tests, it’s easy to try out ideas for making the
program faster. Perhaps the most obvious optimization is to make
IsPalindrome’s second loop stop checking at the midpoint, to avoid doing each
comparison twice:

Click here to view code image

n := len(letters)/2
for i := 0; i < n; i++ {
 if letters[i] != letters[len(letters)-1-i] {
 return false
 }
}
return true

But as is often the case, an obvious optimization doesn’t always yield the expected
benefit. This one delivered a mere 4% improvement in one experiment.

Click here to view code image

$ go test -bench=.
PASS
BenchmarkIsPalindrome-8 1000000 992
ns/op
ok gopl.io/ch11/word2 2.093s

Another idea is to pre-allocate a sufficiently large array for use by letters, rather
than expand it by successive calls to append. Declaring letters as an array of
the right size, like this,

Click here to view code image

letters := make([]rune, 0, len(s))
for _, r := range s {
 if unicode.IsLetter(r) {
 letters = append(letters, unicode.ToLower(r))
 }
}

yields an improvement of nearly 35%, and the benchmark runner now reports the
average over 2,000,000 iterations.

Click here to view code image

$ go test -bench=.
PASS
BenchmarkIsPalindrome-8 2000000 697
ns/op
ok gopl.io/ch11/word2 1.468s

As this example shows, the fastest program is often the one that makes the fewest
memory allocations. The -benchmem command-line flag will include memory
allocation statistics in its report. Here we compare the number of allocations before
the optimization:

Click here to view code image

$ go test -bench=. -benchmem
PASS
BenchmarkIsPalindrome 1000000 1026 ns/op 304
B/op 4 allocs/op

and after it:

Click here to view code image

$ go test -bench=. -benchmem
PASS
BenchmarkIsPalindrome 2000000 807 ns/op 128
B/op 1 allocs/op

Consolidating the allocations in a single call to make eliminated 75% of the
allocations and halved the quantity of allocated memory.

Benchmarks like this tell us the absolute time required for a given operation, but in
many settings the interesting performance questions are about the relative timings of
two different operations. For example, if a function takes 1ms to process 1,000
elements, how long will it take to process 10,000 or a million? Such comparisons
reveal the asymptotic growth of the running time of the function. Another example:
what is the best size for an I/O buffer? Benchmarks of application throughput over a
range of sizes can help us choose the smallest buffer that delivers satisfactory
performance. A third example: which algorithm performs best for a given job?
Benchmarks that evaluate two different algorithms on the same input data can often
show the strengths and weaknesses of each one on important or representative
workloads.
Comparative benchmarks are just regular code. They typically take the form of a
single parameterized function, called from several Benchmark functions with
different values, like this:

Click here to view code image

func benchmark(b *testing.B, size int) { /* ... */ }
func Benchmark10(b *testing.B) { benchmark(b, 10) }
func Benchmark100(b *testing.B) { benchmark(b, 100) }
func Benchmark1000(b *testing.B) { benchmark(b, 1000)
}

The parameter size, which specifies the size of the input, varies across benchmarks
but is constant within each benchmark. Resist the temptation to use the parameter
b.N as the input size. Unless you interpret it as an iteration count for a fixed-size
input, the results of your benchmark will be meaningless.
Patterns revealed by comparative benchmarks are particularly useful during program
design, but we don’t throw the benchmarks away when the program is working. As
the program evolves, or its input grows, or it is deployed on new operating systems or
processors with different characteristics, we can reuse those benchmarks to revisit
design decisions.
Exercise 11.6: Write benchmarks to compare the PopCount implementation in
Section 2.6.2 with your solutions to Exercise 2.4 and Exercise 2.5. At what point does
the table-based approach break even?
Exercise 11.7: Write benchmarks for Add, UnionWith, and other methods of
*IntSet (§6.5) using large pseudo-random inputs. How fast can you make these

methods run? How does the choice of word size affect performance? How fast is
IntSet compared to a set implementation based on the built-in map type?

11.5 Profiling
Benchmarks are useful for measuring the performance of specific operations, but
when we’re trying to make a slow program faster, we often have no idea where to
begin. Every programmer knows Donald Knuth’s aphorism about premature
optimization, which appeared in “Structured Programming with go to Statements” in
1974. Although often misinterpreted to mean performance doesn’t matter, in its
original context we can discern a different meaning:

There is no doubt that the grail of efficiency leads to abuse. Programmers waste
enormous amounts of time thinking about, or worrying about, the speed of
noncritical parts of their programs, and these attempts at efficiency actually have a
strong negative impact when debugging and maintenance are considered. We
should forget about small efficiencies, say about 97% of the time: premature
optimization is the root of all evil.
Yet we should not pass up our opportunities in that critical 3%. A good
programmer will not be lulled into complacency by such reasoning, he will be wise
to look carefully at the critical code; but only after that code has been identified. It
is often a mistake to make a priori judgments about what parts of a program are
really critical, since the universal experience of programmers who have been using
measurement tools has been that their intuitive guesses fail.

When we wish to look carefully at the speed of our programs, the best technique for
identifying the critical code is profiling. Profiling is an automated approach to
performance measurement based on sampling a number of profile events during
execution, then extrapolating from them during a post-processing step; the resulting
statistical summary is called a profile.
Go supports many kinds of profiling, each concerned with a different aspect of
performance, but all of them involve recording a sequence of events of interest, each
of which has an accompanying stack trace—the stack of function calls active at the
moment of the event. The go test tool has built-in support for several kinds of
profiling.
A CPU profile identifies the functions whose execution requires the most CPU time.
The currently running thread on each CPU is interrupted periodically by the operating
system every few milliseconds, with each interruption recording one profile event
before normal execution resumes.

A heap profile identifies the statements responsible for allocating the most memory.
The profiling library samples calls to the internal memory allocation routines so that
on average, one profile event is recorded per 512KB of allocated memory.
A blocking profile identifies the operations responsible for blocking goroutines the
longest, such as system calls, channel sends and receives, and acquisitions of locks.
The profiling library records an event every time a goroutine is blocked by one of
these operations.
Gathering a profile for code under test is as easy as enabling one of the flags below.
Be careful when using more than one flag at a time, however: the machinery for
gathering one kind of profile may skew the results of others.

Click here to view code image

$ go test -cpuprofile=cpu.out
$ go test -blockprofile=block.out
$ go test -memprofile=mem.out

It’s easy to add profiling support to non-test programs too, though the details of how
we do that vary between short-lived command-line tools and long-running server
applications. Profiling is especially useful in long-running applications, so the Go
runtime’s profiling features can be enabled under programmer control using the
runtime API.

Once we’ve gathered a profile, we need to analyze it using the pprof tool. This is a
standard part of the Go distribution, but since it’s not an everyday tool, it’s accessed
indirectly using go tool pprof . It has dozens of features and options, but basic
use requires only two arguments, the executable that produced the profile and the
profile log.
To make profiling efficient and to save space, the log does not include function
names; instead, functions are identified by their addresses. This means that pprof
needs the executable in order to make sense of the log. Although go test usually
discards the test executable once the test is complete, when profiling is enabled it
saves the executable as foo.test, where foo is the name of the tested package.

The commands below show how to gather and display a simple CPU profile. We’ve
selected one of the benchmarks from the net/http package. It is usually better to
profile specific benchmarks that have been constructed to be representative of
workloads one cares about. Benchmarking test cases is almost never representative,
which is why we disabled them by using the filter -run=NONE.

Click here to view code image

$ go test -run=NONE -bench=ClientServerParallelTLS64 \
 -cpuprofile=cpu.log net/http
PASS
BenchmarkClientServerParallelTLS64-8 1000
 3141325 ns/op 143010 B/op 1747 allocs/op
ok net/http 3.395s

$ go tool pprof -text -nodecount=10 ./http.test
cpu.log
2570ms of 3590ms total (71.59%)
Dropped 129 nodes (cum <= 17.95ms)
Showing top 10 nodes out of 166 (cum >= 60ms)
 flat flat% sum% cum cum%
 1730ms 48.19% 48.19% 1750ms 48.75%
crypto/elliptic.p256ReduceDegree
 230ms 6.41% 54.60% 250ms 6.96%
crypto/elliptic.p256Diff
 120ms 3.34% 57.94% 120ms 3.34%
math/big.addMulVVW
 110ms 3.06% 61.00% 110ms 3.06% syscall.Syscall
 90ms 2.51% 63.51% 1130ms 31.48%
crypto/elliptic.p256Square
 70ms 1.95% 65.46% 120ms 3.34%
runtime.scanobject
 60ms 1.67% 67.13% 830ms 23.12%
crypto/elliptic.p256Mul
 60ms 1.67% 68.80% 190ms 5.29%
math/big.nat.montgomery
 50ms 1.39% 70.19% 50ms 1.39%
crypto/elliptic.p256ReduceCarry
 50ms 1.39% 71.59% 60ms 1.67%
crypto/elliptic.p256Sum

The -text flag specifies the output format, in this case, a textual table with one row
per function, sorted so the “hottest” functions—those that consume the most CPU
cycles—appear first. The -nodecount=10 flag limits the result to 10 rows. For
gross performance problems, this textual format may be enough to pinpoint the cause.

This profile tells us that elliptic-curve cryptography is important to the performance of
this particular HTTPS benchmark. By contrast, if a profile is dominated by memory
allocation functions from the runtime package, reducing memory consumption
may be a worthwhile optimization.
For more subtle problems, you may be better off using one of pprof’s graphical
displays. These require GraphViz, which can be downloaded from
www.graphviz.org. The -web flag then renders a directed graph of the
functions of the program, annotated by their CPU profile numbers and colored to
indicate the hottest functions.
We’ve only scratched the surface of Go’s profiling tools here. To find out more, read
the “Profiling Go Programs” article on the Go Blog.

11.6 Example Functions
The third kind of function treated specially by go test is an example function, one
whose name starts with Example. It has neither parameters nor results. Here’s an
example function for IsPalindrome:

Click here to view code image

func ExampleIsPalindrome() {
 fmt.Println(IsPalindrome("A man, a plan, a canal:
Panama"))
 fmt.Println(IsPalindrome("palindrome"))
 // Output:
 // true
 // false
}

Figure 11.4. An interactive example of strings.Join in godoc.

Example functions serve three purposes. The primary one is documentation: a good
example can be a more succinct or intuitive way to convey the behavior of a library
function than its prose description, especially when used as a reminder or quick
reference. An example can also demonstrate the interaction between several types and
functions belonging to one API, whereas prose documentation must always be
attached to one place, like a type or function declaration or the package as a whole.
And unlike examples within comments, example functions are real Go code, subject
to compile-time checking, so they don’t become stale as the code evolves.
Based on the suffix of the Example function, the web-based documentation server
godoc associates example functions with the function or package they exemplify, so
ExampleIsPalindrome would be shown with the documentation for the
IsPalindrome function, and an example function called just Example would be
associated with the word package as a whole.

The second purpose is that examples are executable tests run by go test . If the
example function contains a final // Output: comment like the one above, the
test driver will execute the function and check that what it printed to its standard
output matches the text within the comment.
The third purpose of an example is hands-on experimentation. The godoc server at
golang.org uses the Go Playground to let the user edit and run each example
function from within a web browser, as shown in Figure 11.4. This is often the fastest
way to get a feel for a particular function or language feature.

The final two chapters of the book examine the reflect and unsafe packages,
which few Go programmers regularly use—and even fewer need to use. If you
haven’t written any substantial Go programs yet, now would be a good time to do
that.

12. Reflection
Go provides a mechanism to update variables and inspect their values at run time, to
call their methods, and to apply the operations intrinsic to their representation, all
without knowing their types at compile time. This mechanism is called reflection.
Reflection also lets us treat types themselves as first-class values.
In this chapter, we’ll explore Go’s reflection features to see how they increase the
expressiveness of the language, and in particular how they are crucial to the
implementation of two important APIs: string formatting provided by fmt, and
protocol encoding provided by packages like encoding/json and
encoding/xml. Reflection is also essential to the template mechanism provided by
the text/template and html/template packages we saw in Section 4.6.
However, reflection is complex to reason about and not for casual use, so although
these packages are implemented using reflection, they do not expose reflection in their
own APIs.

12.1 Why Reflection?
Sometimes we need to write a function capable of dealing uniformly with values of
types that don’t satisfy a common interface, don’t have a known representation, or
don’t exist at the time we design the function—or even all three.
A familiar example is the formatting logic within fmt.Fprintf, which can usefully
print an arbitrary value of any type, even a user-defined one. Let’s try to implement a
function like it using what we know already. For simplicity, our function will accept
one argument and will return the result as a string like fmt.Sprint does, so we’ll
call it Sprint.

We start with a type switch that tests whether the argument defines a String
method, and call it if so. We then add switch cases that test the value’s dynamic type
against each of the basic types—string, int, bool, and so on—and perform the
appropriate formatting operation in each case.

Click here to view code image

func Sprint(x interface{}) string {
 type stringer interface {
 String() string
 }
 switch x := x.(type) {
 case stringer:
 return x.String()
 case string:
 return x
 case int:
 return strconv.Itoa(x)
 // ...similar cases for int16, uint32, and so
on...
 case bool:
 if x {
 return "true"
 }
 return "false"
 default:
 // array, chan, func, map, pointer, slice,

struct
 return "???"
 }
}

But how do we deal with other types, like []float64, map[string]
[]string, and so on? We could add more cases, but the number of such types is
infinite. And what about named types, like url.Values? Even if the type switch
had a case for its underlying type map[string][]string, it wouldn’t match
url.Values because the two types are not identical, and the type switch cannot
include a case for each type like url.Values because that would require this
library to depend upon its clients.
Without a way to inspect the representation of values of unknown types, we quickly
get stuck. What we need is reflection.

12.2 reflect.Type and
reflect.Value

Reflection is provided by the reflect package. It defines two important types,
Type and Value. A Type represents a Go type. It is an interface with many
methods for discriminating among types and inspecting their components, like the
fields of a struct or the parameters of a function. The sole implementation of
reflect.Type is the type descriptor (§7.5), the same entity that identifies the
dynamic type of an interface value.
The reflect.TypeOf function accepts any interface{} and returns its
dynamic type as a reflect.Type:

Click here to view code image

t := reflect.TypeOf(3) // a reflect.Type
fmt.Println(t.String()) // "int"
fmt.Println(t) // "int"

The TypeOf(3) call above assigns the value 3 to the interface{} parameter.
Recall from Section 7.5 that an assignment from a concrete value to an interface type
performs an implicit interface conversion, which creates an interface value consisting
of two components: its dynamic type is the operand’s type (int) and its dynamic
value is the operand’s value (3).

Because reflect.TypeOf returns an interface value’s dynamic type, it always
returns a concrete type. So, for example, the code below prints "*os.File", not
"io.Writer". Later, we will see that reflect.Type is capable of representing
interface types too.

Click here to view code image

var w io.Writer = os.Stdout
fmt.Println(reflect.TypeOf(w)) // "*os.File"

Notice that reflect.Type satisfies fmt.Stringer. Because printing the
dynamic type of an interface value is useful for debugging and logging,
fmt.Printf provides a shorthand, %T, that uses reflect.TypeOf internally:

fmt.Printf("%T\n", 3) // "int"

The other important type in the reflect package is Value. A reflect.Value
can hold a value of any type. The reflect.ValueOf function accepts any
interface{} and returns a reflect.Value containing the interface’s dynamic
value. As with reflect.TypeOf, the results of reflect.ValueOf are always
concrete, but a reflect.Value can hold interface values too.

Click here to view code image

v := reflect.ValueOf(3) // a reflect.Value
fmt.Println(v) // "3"
fmt.Printf("%v\n", v) // "3"
fmt.Println(v.String()) // NOTE: "<int Value>"

Like reflect.Type, reflect.Value also satisfies fmt.Stringer, but
unless the Value holds a string, the result of the String method reveals only the
type. Instead, use the fmt package’s %v verb, which treats reflect.Values
specially.
Calling the Type method on a Value returns its type as a reflect.Type:

Click here to view code image

t := v.Type() // a reflect.Type
fmt.Println(t.String()) // "int"

The inverse operation to reflect.ValueOf is the
reflect.Value.Interface method. It returns an interface{} holding
the same concrete value as the reflect.Value:

Click here to view code image

v := reflect.ValueOf(3) // a reflect.Value
x := v.Interface() // an interface{}
i := x.(int) // an int
fmt.Printf("%d\n", i) // "3"

A reflect.Value and an interface{} can both hold arbitrary values. The
difference is that an empty interface hides the representation and intrinsic operations
of the value it holds and exposes none of its methods, so unless we know its dynamic
type and use a type assertion to peer inside it (as we did above), there is little we can
do to the value within. In contrast, a Value has many methods for inspecting its

contents, regardless of its type. Let’s use them for our second attempt at a general
formatting function, which we’ll call format.Any.
Instead of a type switch, we use reflect.Value’s Kind method to discriminate
the cases. Although there are infinitely many types, there are only a finite number of
kinds of type: the basic types Bool, String, and all the numbers; the aggregate
types Array and Struct; the reference types Chan, Func, Ptr, Slice, and
Map; Interface types; and finally Invalid, meaning no value at all. (The zero
value of a reflect.Value has kind Invalid.)

Click here to view code image

gopl.io/ch12/format
package format

import (
 "reflect"
 "strconv"
)

// Any formats any value as a string.
func Any(value interface{}) string {
 return formatAtom(reflect.ValueOf(value))
}

// formatAtom formats a value without inspecting its
internal structure.
func formatAtom(v reflect.Value) string {
 switch v.Kind() {
 case reflect.Invalid:
 return "invalid"
 case reflect.Int, reflect.Int8, reflect.Int16,
 reflect.Int32, reflect.Int64:
 return strconv.FormatInt(v.Int(), 10)
 case reflect.Uint, reflect.Uint8, reflect.Uint16,
 reflect.Uint32, reflect.Uint64,
reflect.Uintptr:
 return strconv.FormatUint(v.Uint(), 10)
 // ...floating-point and complex cases omitted for

brevity...
 case reflect.Bool:
 return strconv.FormatBool(v.Bool())
 case reflect.String:
 return strconv.Quote(v.String())
 case reflect.Chan, reflect.Func, reflect.Ptr,
reflect.Slice, reflect.Map:
 return v.Type().String() + " 0x" +
 strconv.FormatUint(uint64(v.Pointer()),
16)
 default: // reflect.Array, reflect.Struct,
reflect.Interface
 return v.Type().String() + " value"
 }
}

So far, our function treats each value as an indivisible thing with no internal structure
—hence formatAtom. For aggregate types (structs and arrays) and interfaces it
prints only the type of the value, and for reference types (channels, functions,
pointers, slices, and maps), it prints the type and the reference address in
hexadecimal. This is less than ideal but still a major improvement, and since Kind is
concerned only with the underlying representation, format.Any works for named
types too. For example:

Click here to view code image

var x int64 = 1
var d time.Duration = 1 * time.Nanosecond
fmt.Println(format.Any(x)) // "1"
fmt.Println(format.Any(d)) // "1"
fmt.Println(format.Any([]int64{x})) // "
[]int64 0x8202b87b0"
fmt.Println(format.Any([]time.Duration{d})) // "
[]time.Duration 0x8202b87e0"

12.3 Display, a Recursive Value
Printer
Next we’ll take a look at how to improve the display of composite types. Rather than
try to copy fmt.Sprint exactly, we’ll build a debugging utility function called
Display that, given an arbitrarily complex value x, prints the complete structure of
that value, labeling each element with the path by which it was found. Let’s start with
an example.

Click here to view code image

e, _ := eval.Parse("sqrt(A / pi)")
Display("e", e)

In the call above, the argument to Display is a syntax tree from the expression
evaluator in Section 7.9. The output of Display is shown below:

Click here to view code image

Display e (eval.call):
e.fn = "sqrt"
e.args[0].type = eval.binary
e.args[0].value.op = 47
e.args[0].value.x.type = eval.Var
e.args[0].value.x.value = "A"
e.args[0].value.y.type = eval.Var
e.args[0].value.y.value = "pi"

Where possible, you should avoid exposing reflection in the API of a package. We’ll
define an unexported function display to do the real work of the recursion, and
export Display, a simple wrapper around it that accepts an interface{}
parameter:

Click here to view code image

gopl.io/ch12/display
func Display(name string, x interface{}) {
 fmt.Printf("Display %s (%T):\n", name, x)

 display(name, reflect.ValueOf(x))
}

In display, we’ll use the formatAtom function we defined earlier to print
elementary values—basic types, functions, and channels—but we’ll use the methods
of reflect.Value to recursively display each component of a more complex
type. As the recursion descends, the path string, which initially describes the starting
value (for instance, "e"), will be augmented to indicate how we reached the current
value (for instance, "e.args[0].value").

Since we’re no longer pretending to implement fmt.Sprint, we will use the fmt
package to keep our example short.

Click here to view code image

func display(path string, v reflect.Value) {
 switch v.Kind() {
 case reflect.Invalid:
 fmt.Printf("%s = invalid\n", path)
 case reflect.Slice, reflect.Array:
 for i := 0; i < v.Len(); i++ {
 display(fmt.Sprintf("%s[%d]", path, i),
v.Index(i))
 }
 case reflect.Struct:
 for i := 0; i < v.NumField(); i++ {
 fieldPath := fmt.Sprintf("%s.%s", path,
v.Type().Field(i).Name)
 display(fieldPath, v.Field(i))
 }
 case reflect.Map:
 for _, key := range v.MapKeys() {
 display(fmt.Sprintf("%s[%s]", path,
 formatAtom(key)), v.MapIndex(key))
 }
 case reflect.Ptr:
 if v.IsNil() {
 fmt.Printf("%s = nil\n", path)
 } else {
 display(fmt.Sprintf("(*%s)", path),

v.Elem())
 }
 case reflect.Interface:
 if v.IsNil() {
 fmt.Printf("%s = nil\n", path)
 } else {
 fmt.Printf("%s.type = %s\n", path,
v.Elem().Type())
 display(path+".value", v.Elem())
 }
 default: // basic types, channels, funcs
 fmt.Printf("%s = %s\n", path, formatAtom(v))
 }
}

Let’s discuss the cases in order.
Slices and arrays: The logic is the same for both. The Len method returns the
number of elements of a slice or array value, and Index(i) retrieves the element at
index i, also as a reflect.Value; it panics if i is out of bounds. These are
analogous to the built-in len(a) and a[i] operations on sequences. The
display function recursively invokes itself on each element of the sequence,
appending the subscript notation "[i]" to the path.

Although reflect.Value has many methods, only a few are safe to call on any
given value. For example, the Index method may be called on values of kind
Slice, Array, or String, but panics for any other kind.

Structs: The NumField method reports the number of fields in the struct, and
Field(i) returns the value of the i-th field as a reflect.Value. The list of
fields includes ones promoted from anonymous fields. To append the field selector
notation ".f" to the path, we must obtain the reflect.Type of the struct and
access the name of its i-th field.
Maps: The MapKeys method returns a slice of reflect.Values, one per map
key. As usual when iterating over a map, the order is undefined. MapIndex(key)
returns the value corresponding to key. We append the subscript notation "[key]"
to the path. (We’re cutting a corner here. The type of a map key isn’t restricted to the
types formatAtom handles best; arrays, structs, and interfaces can also be valid
map keys. Extending this case to print the key in full is Exercise 12.1.)

Pointers: The Elem method returns the variable pointed to by a pointer, again as a
reflect.Value. This operation would be safe even if the pointer value is nil, in
which case the result would have kind Invalid, but we use IsNil to detect nil
pointers explicitly so we can print a more appropriate message. We prefix the path
with a "*" and parenthesize it to avoid ambiguity.

Interfaces: Again, we use IsNil to test whether the interface is nil, and if not, we
retrieve its dynamic value using v.Elem() and print its type and value.

Now that our Display function is complete, let’s put it to work. The Movie type
below is a slight variation on the one in Section 4.5:

Click here to view code image

type Movie struct {
 Title, Subtitle string
 Year int
 Color bool
 Actor map[string]string
 Oscars []string
 Sequel *string
}

Let’s declare a value of this type and see what Display does with it:

Click here to view code image

strangelove := Movie{
 Title: "Dr. Strangelove",
 Subtitle: "How I Learned to Stop Worrying and Love
the Bomb",
 Year: 1964,
 Color: false,
 Actor: map[string]string{
 "Dr. Strangelove": "Peter Sellers",
 "Grp. Capt. Lionel Mandrake": "Peter Sellers",
 "Pres. Merkin Muffley": "Peter Sellers",
 "Gen. Buck Turgidson": "George C.
Scott",
 "Brig. Gen. Jack D. Ripper": "Sterling
Hayden",

 `Maj. T.J. "King" Kong`: "Slim Pickens",
 },

 Oscars: []string{
 "Best Actor (Nomin.)",
 "Best Adapted Screenplay (Nomin.)",
 "Best Director (Nomin.)",
 "Best Picture (Nomin.)",
 },
}

The call Display("strangelove", strangelove) prints:

Click here to view code image

Display strangelove (display.Movie):
strangelove.Title = "Dr. Strangelove"
strangelove.Subtitle = "How I Learned to Stop Worrying
and Love the Bomb"
strangelove.Year = 1964
strangelove.Color = false
strangelove.Actor["Gen. Buck Turgidson"] = "George C.
Scott"
strangelove.Actor["Brig. Gen. Jack D. Ripper"] =
"Sterling Hayden"
strangelove.Actor["Maj. T.J. \"King\" Kong"] = "Slim
Pickens"
strangelove.Actor["Dr. Strangelove"] = "Peter Sellers"
strangelove.Actor["Grp. Capt. Lionel Mandrake"] =
"Peter Sellers"
strangelove.Actor["Pres. Merkin Muffley"] = "Peter
Sellers"
strangelove.Oscars[0] = "Best Actor (Nomin.)"
strangelove.Oscars[1] = "Best Adapted Screenplay
(Nomin.)"
strangelove.Oscars[2] = "Best Director (Nomin.)"
strangelove.Oscars[3] = "Best Picture (Nomin.)"
strangelove.Sequel = nil

We can use Display to display the internals of library types, such as *os.File:

Click here to view code image

Display("os.Stderr", os.Stderr)
// Output:
// Display os.Stderr (*os.File):
// (*(*os.Stderr).file).fd = 2
// (*(*os.Stderr).file).name = "/dev/stderr"
// (*(*os.Stderr).file).nepipe = 0

Notice that even unexported fields are visible to reflection. Beware that the particular
output of this example may vary across platforms and may change over time as
libraries evolve. (Those fields are private for a reason!) We can even apply Display
to a reflect.Value and watch it traverse the internal representation of the type
descriptor for *os.File. The output of the call Display("rV",
reflect.ValueOf(os.Stderr)) is shown below, though of course your
mileage may vary:

Click here to view code image

Display rV (reflect.Value):
(*rV.typ).size = 8
(*rV.typ).hash = 871609668
(*rV.typ).align = 8
(*rV.typ).fieldAlign = 8
(*rV.typ).kind = 22
(*(*rV.typ).string) = "*os.File"

Click here to view code image

(*(*(*rV.typ).uncommonType).methods[0].name) = "Chdir"
(*(*(*(*rV.typ).uncommonType).methods[0].mtyp).string)
= "func() error"
(*(*(*(*rV.typ).uncommonType).methods[0].typ).string)
= "func(*os.File) error"
...

Observe the difference between these two examples:
var i interface{} = 3

Display("i", i)
// Output:

// Display i (int):
// i = 3

Display("&i", &i)
// Output:
// Display &i (*interface {}):
// (*&i).type = int
// (*&i).value = 3

In the first example, Display calls reflect.ValueOf(i), which returns a
value of kind Int. As we mentioned in Section 12.2, reflect.ValueOf always
returns a Value of a concrete type since it extracts the contents of an interface
value.
In the second example, Display calls reflect.ValueOf(&i), which returns a
pointer to i, of kind Ptr. The switch case for Ptr calls Elem on this value, which
returns a Value representing the variable i itself, of kind Interface. A Value
obtained indirectly, like this one, may represent any value at all, including interfaces.
The display function calls itself recursively and this time, it prints separate
components for the interface’s dynamic type and value.
As currently implemented, Display will never terminate if it encounters a cycle in
the object graph, such as this linked list that eats its own tail:

Click here to view code image

// a struct that points to itself
type Cycle struct{ Value int; Tail *Cycle }
var c Cycle
c = Cycle{42, &c}
Display("c", c)

Display prints this ever-growing expansion:

Click here to view code image

Display c (display.Cycle):
c.Value = 42
(*c.Tail).Value = 42
(*(*c.Tail).Tail).Value = 42
(*(*(*c.Tail).Tail).Tail).Value = 42
...ad infinitum...

Many Go programs contain at least some cyclic data. Making Display robust
against such cycles is tricky, requiring additional bookkeeping to record the set of
references that have been followed so far; it is costly too. A general solution requires
unsafe language features, as we will see in Section 13.3.

Cycles pose less of a problem for fmt.Sprint because it rarely tries to print the
complete structure. For example, when it encounters a pointer, it breaks the recursion
by printing the pointer’s numeric value. It can get stuck trying to print a slice or map
that contains itself as an element, but such rare cases do not warrant the considerable
extra trouble of handling cycles.
Exercise 12.1: Extend Display so that it can display maps whose keys are structs
or arrays.
Exercise 12.2: Make display safe to use on cyclic data structures by bounding the
number of steps it takes before abandoning the recursion. (In Section 13.3, we’ll see
another way to detect cycles.)

12.4 Example: Encoding S-Expressions
Display is a debugging routine for displaying structured data, but it’s not far short
of being able to encode or marshal arbitrary Go objects as messages in a portable
notation suitable for inter-process communication.
As we saw in Section 4.5, Go’s standard library supports a variety of formats,
including JSON, XML, and ASN.1. Another notation that is still widely used is S-
expressions, the syntax of Lisp. Unlike the other notations, S-expressions are not
supported by the Go standard library, not least because they have no universally
accepted definition, despite several attempts at standardization and the existence of
many implementations.
In this section, we’ll define a package that encodes arbitrary Go objects using an S-
expression notation that supports the following constructs:

Click here to view code image

42 integer
"hello" string (with Go-style quotation)
foo symbol (an unquoted name)
(1 2 3) list (zero or more items enclosed in
parentheses)

Booleans are traditionally encoded using the symbol t for true, and the empty list ()
or the symbol nil for false, but for simplicity, our implementation ignores them. It
also ignores channels and functions, since their state is opaque to reflection. And it
ignores real and complex floating-point numbers and interfaces. Adding support for
them is Exercise 12.3.
We’ll encode the types of Go using S-expressions as follows. Integers and strings are
encoded in the obvious way. Nil values are encoded as the symbol nil. Arrays and
slices are encoded using list notation.
Structs are encoded as a list of field bindings, each field binding being a two-element
list whose first element (a symbol) is the field name and whose second element is the
field value. Maps too are encoded as a list of pairs, with each pair being the key and
value of one map entry. Traditionally, S-expressions represent lists of key/value pairs
using a single cons cell (key . value) for each pair, rather than a two-element
list, but to simplify the decoding we’ll ignore dotted list notation.

Encoding is done by a single recursive function, encode, shown below. Its structure
is essentially the same as that of Display in the previous section:

Click here to view code image

gopl.io/ch12/sexpr
func encode(buf *bytes.Buffer, v reflect.Value) error
{
 switch v.Kind() {
 case reflect.Invalid:
 buf.WriteString("nil")

 case reflect.Int, reflect.Int8, reflect.Int16,
 reflect.Int32, reflect.Int64:
 fmt.Fprintf(buf, "%d", v.Int())

 case reflect.Uint, reflect.Uint8, reflect.Uint16,
 reflect.Uint32, reflect.Uint64,
reflect.Uintptr:
 fmt.Fprintf(buf, "%d", v.Uint())

 case reflect.String:
 fmt.Fprintf(buf, "%q", v.String())

 case reflect.Ptr:
 return encode(buf, v.Elem())

 case reflect.Array, reflect.Slice: // (value ...)
 buf.WriteByte('(')
 for i := 0; i < v.Len(); i++ {
 if i > 0 {
 buf.WriteByte(' ')
 }
 if err := encode(buf, v.Index(i)); err !=
nil {
 return err
 }
 }
 buf.WriteByte(')')

 case reflect.Struct: // ((name value) ...)
 buf.WriteByte('(')
 for i := 0; i < v.NumField(); i++ {
 if i > 0 {
 buf.WriteByte(' ')
 }
 fmt.Fprintf(buf, "(%s ",
v.Type().Field(i).Name)
 if err := encode(buf, v.Field(i)); err !=
nil {
 return err
 }
 buf.WriteByte(')')
 }
 buf.WriteByte(')')

 case reflect.Map: // ((key value) ...)
 buf.WriteByte('(')
 for i, key := range v.MapKeys() {
 if i > 0 {
 buf.WriteByte(' ')
 }
 buf.WriteByte('(')
 if err := encode(buf, key); err != nil {
 return err
 }
 buf.WriteByte(' ')
 if err := encode(buf, v.MapIndex(key));
err != nil {
 return err
 }
 buf.WriteByte(')')
 }
 buf.WriteByte(')')

 default: // float, complex, bool, chan, func,
interface
 return fmt.Errorf("unsupported type: %s",

v.Type())
 }
 return nil
}

The Marshal function wraps the encoder in an API similar to those of the other
encoding/... packages:

Click here to view code image

// Marshal encodes a Go value in S-expression form.
func Marshal(v interface{}) ([]byte, error) {
 var buf bytes.Buffer
 if err := encode(&buf, reflect.ValueOf(v)); err !=
nil {
 return nil, err
 }
 return buf.Bytes(), nil
}

Here’s the output of Marshal applied to the strangelove variable from
Section 12.3:

Click here to view code image

((Title "Dr. Strangelove") (Subtitle "How I Learned to
Stop Worrying and Lo
ve the Bomb") (Year 1964) (Actor (("Grp. Capt. Lionel
Mandrake" "Peter Sell
ers") ("Pres. Merkin Muffley" "Peter Sellers") ("Gen.
Buck Turgidson" "Geor
ge C. Scott") ("Brig. Gen. Jack D. Ripper" "Sterling
Hayden") ("Maj. T.J. \
"King\" Kong" "Slim Pickens") ("Dr. Strangelove"
"Peter Sellers"))) (Oscars
("Best Actor (Nomin.)" "Best Adapted Screenplay
(Nomin.)" "Best Director (N
omin.)" "Best Picture (Nomin.)")) (Sequel nil))

The whole output appears on one long line with minimal spaces, making it hard to
read. Here’s the same output manually formatted according to S-expression
conventions. Writing a pretty-printer for S-expressions is left as a (challenging)

exercise; the download from gopl.io includes a simple version.

Click here to view code image

((Title "Dr. Strangelove")
 (Subtitle "How I Learned to Stop Worrying and Love
the Bomb")
 (Year 1964)
 (Actor (("Grp. Capt. Lionel Mandrake" "Peter
Sellers")
 ("Pres. Merkin Muffley" "Peter Sellers")
 ("Gen. Buck Turgidson" "George C. Scott")
 ("Brig. Gen. Jack D. Ripper" "Sterling
Hayden")
 ("Maj. T.J. \"King\" Kong" "Slim Pickens")
 ("Dr. Strangelove" "Peter Sellers")))
 (Oscars ("Best Actor (Nomin.)"
 "Best Adapted Screenplay (Nomin.)"
 "Best Director (Nomin.)"
 "Best Picture (Nomin.)"))
 (Sequel nil))

Like the fmt.Print, json.Marshal, and Display functions,
sexpr.Marshal will loop forever if called with cyclic data.

In Section 12.6, we’ll sketch out the implementation of the corresponding S-
expression decoding function, but before we get there, we’ll first need to understand
how reflection can be used to update program variables.
Exercise 12.3: Implement the missing cases of the encode function. Encode
booleans as t and nil, floating-point numbers using Go’s notation, and complex
numbers like 1+2i as #C(1.0 2.0) . Interfaces can be encoded as a pair of a type
name and a value, for instance ("[]int" (1 2 3)) , but beware that this
notation is ambiguous: the reflect.Type.String method may return the same
string for different types.
Exercise 12.4: Modify encode to pretty-print the S-expression in the style shown
above.
Exercise 12.5: Adapt encode to emit JSON instead of S-expressions. Test your
encoder using the standard decoder, json.Unmarshal.

Exercise 12.6: Adapt encode so that, as an optimization, it does not encode a field
whose value is the zero value of its type.
Exercise 12.7: Create a streaming API for the S-expression decoder, following the
style of json.Decoder (§4.5).

12.5 Setting Variables with
reflect.Value

So far, reflection has only interpreted values in our program in various ways. The
point of this section, however, is to change them.
Recall that some Go expressions like x, x.f[1], and *p denote variables, but
others like x + 1 and f(2) do not. A variable is an addressable storage location
that contains a value, and its value may be updated through that address.
A similar distinction applies to reflect.Values. Some are addressable; others are
not. Consider the following declarations:

Click here to view code image

x := 2 // value type variable?
a := reflect.ValueOf(2) // 2 int no
b := reflect.ValueOf(x) // 2 int no
c := reflect.ValueOf(&x) // &x *int no
d := c.Elem() // 2 int yes (x)

The value within a is not addressable. It is merely a copy of the integer 2. The same
is true of b. The value within c is also non-addressable, being a copy of the pointer
value &x. In fact, no reflect.Value returned by reflect.ValueOf(x) is
addressable. But d, derived from c by dereferencing the pointer within it, refers to a
variable and is thus addressable. We can use this approach, calling
reflect.ValueOf(&x).Elem(), to obtain an addressable Value for any
variable x.

We can ask a reflect.Value whether it is addressable through its CanAddr
method:

Click here to view code image

fmt.Println(a.CanAddr()) // "false"
fmt.Println(b.CanAddr()) // "false"
fmt.Println(c.CanAddr()) // "false"
fmt.Println(d.CanAddr()) // "true"

We obtain an addressable reflect.Value whenever we indirect through a
pointer, even if we started from a non-addressable Value. All the usual rules for
addressability have analogs for reflection. For example, since the slice indexing
expression e[i] implicitly follows a pointer, it is addressable even if the expression e
is not. By analogy, reflect.ValueOf(e).Index(i) refers to a variable, and
is thus addressable even if reflect.ValueOf(e) is not.

To recover the variable from an addressable reflect.Value requires three steps.
First, we call Addr(), which returns a Value holding a pointer to the variable.
Next, we call Interface() on this Value, which returns an interface{}
value containing the pointer. Finally, if we know the type of the variable, we can use a
type assertion to retrieve the contents of the interface as an ordinary pointer. We can
then update the variable through the pointer:

Click here to view code image

x := 2
d := reflect.ValueOf(&x).Elem() // d refers to the
variable x
px := d.Addr().Interface().(*int) // px := &x
*px = 3 // x = 3
fmt.Println(x) // "3"

Or, we can update the variable referred to by an addressable reflect.Value
directly, without using a pointer, by calling the reflect.Value.Set method:

d.Set(reflect.ValueOf(4))
fmt.Println(x) // "4"

The same checks for assignability that are ordinarily performed by the compiler are
done at run time by the Set methods. Above, the variable and the value both have
type int, but if the variable had been an int64, the program would panic, so it’s
crucial to make sure the value is assignable to the type of the variable:

Click here to view code image

d.Set(reflect.ValueOf(int64(5))) // panic: int64 is
not assignable to int

And of course calling Set on a non-addressable reflect.Value panics too:

Click here to view code image

x := 2
b := reflect.ValueOf(x)
b.Set(reflect.ValueOf(3)) // panic: Set using
unaddressable value

There are variants of Set specialized for certain groups of basic types: SetInt,
SetUint, SetString, SetFloat, and so on:

Click here to view code image

d := reflect.ValueOf(&x).Elem()
d.SetInt(3)
fmt.Println(x) // "3"

In some ways these methods are more forgiving. SetInt, for example, will succeed
so long as the variable’s type is some kind of signed integer, or even a named type
whose underlying type is a signed integer, and if the value is too large it will be quietly
truncated to fit. But tread carefully: calling SetInt on a reflect.Value that
refers to an interface{} variable will panic, even though Set would succeed.

Click here to view code image

x := 1
rx := reflect.ValueOf(&x).Elem()
rx.SetInt(2) // OK, x = 2
rx.Set(reflect.ValueOf(3)) // OK, x = 3
rx.SetString("hello") // panic: string is
not assignable to int
rx.Set(reflect.ValueOf("hello")) // panic: string is
not assignable to int

var y interface{}
ry := reflect.ValueOf(&y).Elem()
ry.SetInt(2) // panic: SetInt
called on interface Value
ry.Set(reflect.ValueOf(3)) // OK, y = int(3)
ry.SetString("hello") // panic: SetString
called on interface Value
ry.Set(reflect.ValueOf("hello")) // OK, y = "hello"

When we applied Display to os.Stdout, we found that reflection can read the
values of unexported struct fields that are inaccessible according to the usual rules of

the language, like the fd int field of an os.File struct on a Unix-like platform.
However, reflection cannot update such values:

Click here to view code image

stdout := reflect.ValueOf(os.Stdout).Elem() //
*os.Stdout, an os.File var
fmt.Println(stdout.Type()) //
"os.File"
fd := stdout.FieldByName("fd")
fmt.Println(fd.Int()) // "1"
fd.SetInt(2) // panic: unexported field

An addressable reflect.Value records whether it was obtained by traversing an
unexported struct field and, if so, disallows modification. Consequently, CanAddr is
not usually the right check to use before setting a variable. The related method
CanSet reports whether a reflect.Value is addressable and settable:

Click here to view code image

fmt.Println(fd.CanAddr(), fd.CanSet()) // "true false"

12.6 Example: Decoding S-Expressions
For each Marshal function provided by the standard library’s encoding/...
packages, there is a corresponding Unmarshal function that does decoding. For
example, as we saw in Section 4.5, given a byte slice containing JSON-encoded data
for our Movie type (§12.3), we can decode it like this:

Click here to view code image

data := []byte{/* ... */}
var movie Movie
err := json.Unmarshal(data, &movie)

The Unmarshal function uses reflection to modify the fields of the existing movie
variable, creating new maps, structs, and slices as determined by the type Movie and
the content of the incoming data.
Let’s now implement a simple Unmarshal function for S-expressions, analogous to
the standard json.Unmarshal function used above, and the inverse of our earlier
sexpr.Marshal. We must caution you that a robust and general implementation
requires substantially more code than will comfortably fit in this example, which is
already long, so we have taken many shortcuts. We support only a limited subset of
S-expressions and do not handle errors gracefully. The code is intended to illustrate
reflection, not parsing.
The lexer uses the Scanner type from the text/scanner package to break an
input stream into a sequence of tokens such as comments, identifiers, string literals,
and numeric literals. The scanner’s Scan method advances the scanner and returns
the kind of the next token, which has type rune. Most tokens, like '(', consist of a
single rune, but the text/scanner package represents the kinds of the multi-
character tokens Ident, String, and Int using small negative values of type
rune. Following a call to Scan that returns one of these kinds of token, the
scanner’s TokenText method returns the text of the token.

Since a typical parser may need to inspect the current token several times, but the
Scan method advances the scanner, we wrap the scanner in a helper type called
lexer that keeps track of the token most recently returned by Scan.

Click here to view code image

gopl.io/ch12/sexpr
type lexer struct {
 scan scanner.Scanner
 token rune // the current token
}

func (lex *lexer) next() { lex.token =
lex.scan.Scan() }
func (lex *lexer) text() string { return
lex.scan.TokenText() }

func (lex *lexer) consume(want rune) {
 if lex.token != want { // NOTE: Not an example of
good error handling.
 panic(fmt.Sprintf("got %q, want %q",
lex.text(), want))
 }
 lex.next()
}

Now let’s turn to the parser. It consists of two principal functions. The first of these,
read, reads the S-expression that starts with the current token and updates the
variable referred to by the addressable reflect.Value v.

Click here to view code image

func read(lex *lexer, v reflect.Value) {
 switch lex.token {
 case scanner.Ident:
 // The only valid identifiers are
 // "nil" and struct field names.
 if lex.text() == "nil" {
 v.Set(reflect.Zero(v.Type()))
 lex.next()
 return
 }
 case scanner.String:
 s, _ := strconv.Unquote(lex.text()) // NOTE:
ignoring errors
 v.SetString(s)

 lex.next()
 return
 case scanner.Int:
 i, _ := strconv.Atoi(lex.text()) // NOTE:
ignoring errors
 v.SetInt(int64(i))
 lex.next()
 return
 case '(':
 lex.next()
 readList(lex, v)
 lex.next() // consume ')'
 return
 }
 panic(fmt.Sprintf("unexpected token %q",
lex.text()))
}

Our S-expressions use identifiers for two distinct purposes, struct field names and the
nil value for a pointer. The read function only handles the latter case. When it
encounters the scanner.Ident "nil", it sets v to the zero value of its type
using the reflect.Zero function. For any other identifier, it reports an error. The
readList function, which we’ll see in a moment, handles identifiers used as struct
field names.
A '(' token indicates the start of a list. The second function, readList, decodes a
list into a variable of composite type—a map, struct, slice, or array—depending on
what kind of Go variable we’re currently populating. In each case, the loop keeps
parsing items until it encounters the matching close parenthesis, ')', as detected by
the endList function.

The interesting part is the recursion. The simplest case is an array. Until the closing
')' is seen, we use Index to obtain the variable for each array element and make a
recursive call to read to populate it. As in many other error cases, if the input data
causes the decoder to index beyond the end of the array, the decoder panics. A similar
approach is used for slices, except we must create a new variable for each element,
populate it, then append it to the slice.
The loops for structs and maps must parse a (key value) sublist on each
iteration. For structs, the key is a symbol identifying the field. Analogous to the case

for arrays, we obtain the existing variable for the struct field using FieldByName
and make a recursive call to populate it. For maps, the key may be of any type, and
analogous to the case for slices, we create a new variable, recursively populate it, and
finally insert the new key/value pair into the map.

Click here to view code image

func readList(lex *lexer, v reflect.Value) {
 switch v.Kind() {
 case reflect.Array: // (item ...)
 for i := 0; !endList(lex); i++ {
 read(lex, v.Index(i))
 }

 case reflect.Slice: // (item ...)
 for !endList(lex) {
 item :=
reflect.New(v.Type().Elem()).Elem()
 read(lex, item)
 v.Set(reflect.Append(v, item))
 }

 case reflect.Struct: // ((name value) ...)
 for !endList(lex) {
 lex.consume('(')
 if lex.token != scanner.Ident {
 panic(fmt.Sprintf("got token %q, want
field name", lex.text()))
 }
 name := lex.text()
 lex.next()
 read(lex, v.FieldByName(name))
 lex.consume(')')
 }

 case reflect.Map: // ((key value) ...)
 v.Set(reflect.MakeMap(v.Type()))
 for !endList(lex) {
 lex.consume('(')
 key := reflect.New(v.Type().Key()).Elem()

 read(lex, key)
 value :=
reflect.New(v.Type().Elem()).Elem()
 read(lex, value)
 v.SetMapIndex(key, value)
 lex.consume(')')
 }

 default:
 panic(fmt.Sprintf("cannot decode list into
%v", v.Type()))
 }
}

func endList(lex *lexer) bool {
 switch lex.token {
 case scanner.EOF:
 panic("end of file")
 case ')':
 return true
 }
 return false
}

Finally, we wrap up the parser in an exported function Unmarshal, shown below,
that hides some of the rough edges of the implementation. Errors encountered during
parsing result in a panic, so Unmarshal uses a deferred call to recover from the
panic (§5.10) and return an error message instead.

Click here to view code image

// Unmarshal parses S-expression data and populates
the variable
// whose address is in the non-nil pointer out.
func Unmarshal(data []byte, out interface{}) (err
error) {
 lex := &lexer{scan: scanner.Scanner{Mode:
scanner.GoTokens}}
 lex.scan.Init(bytes.NewReader(data))
 lex.next() // get the first token

 defer func() {
 // NOTE: this is not an example of ideal error
handling.
 if x := recover(); x != nil {
 err = fmt.Errorf("error at %s: %v",
lex.scan.Position, x)
 }
 }()
 read(lex, reflect.ValueOf(out).Elem())
 return nil
}

A production-quality implementation should never panic for any input and should
report an informative error for every mishap, perhaps with a line number or offset.
Nonetheless, we hope this example conveys some idea of what’s happening under the
hood of the packages like encoding/json, and how you can use reflection to
populate data structures.
Exercise 12.8: The sexpr.Unmarshal function, like json.Marshal, requires
the complete input in a byte slice before it can begin decoding. Define a
sexpr.Decoder type that, like json.Decoder, allows a sequence of values to
be decoded from an io.Reader. Change sexpr.Unmarshal to use this new
type.
Exercise 12.9: Write a token-based API for decoding S-expressions, following the
style of xml.Decoder (§7.14). You will need five types of tokens: Symbol,
String, Int, StartList, and EndList.

Exercise 12.10: Extend sexpr.Unmarshal to handle the booleans, floating-point
numbers, and interfaces encoded by your solution to Exercise 12.3. (Hint: to decode
interfaces, you will need a mapping from the name of each supported type to its
reflect.Type.)

12.7 Accessing Struct Field Tags
In Section 4.5 we used struct field tags to modify the JSON encoding of Go struct
values. The json field tag lets us choose alternative field names and suppress the
output of empty fields. In this section, we’ll see how to access field tags using
reflection.
In a web server, the first thing most HTTP handler functions do is extract the request
parameters into local variables. We’ll define a utility function, params.Unpack,
that uses struct field tags to make writing HTTP handlers (§7.7) more convenient.
First, we’ll show how it’s used. The search function below is an HTTP handler. It
defines a variable called data of an anonymous struct type whose fields correspond
to the HTTP request parameters. The struct’s field tags specify the parameter names,
which are often short and cryptic since space is precious in a URL. The Unpack
function populates the struct from the request so that the parameters can be accessed
conveniently and with an appropriate type.

Click here to view code image

gopl.io/ch12/search
import "gopl.io/ch12/params"

// search implements the /search URL endpoint.
func search(resp http.ResponseWriter, req
*http.Request) {
 var data struct {
 Labels []string `http:"l"`
 MaxResults int `http:"max"`
 Exact bool `http:"x"`
 }
 data.MaxResults = 10 // set default
 if err := params.Unpack(req, &data); err != nil {
 http.Error(resp, err.Error(),
http.StatusBadRequest) // 400
 return
 }

 // ...rest of handler...
 fmt.Fprintf(resp, "Search: %+v\n", data)
}

The Unpack function below does three things. First, it calls req.ParseForm()
to parse the request. Thereafter, req.Form contains all the parameters, regardless
of whether the HTTP client used the GET or the POST request method.
Next, Unpack builds a mapping from the effective name of each field to the variable
for that field. The effective name may differ from the actual name if the field has a
tag. The Field method of reflect.Type returns a reflect.StructField
that provides information about the type of each field such as its name, type, and
optional tag. The Tag field is a reflect.StructTag, which is a string type that
provides a Get method to parse and extract the substring for a particular key, such as
http:"..." in this case.

Click here to view code image

gopl.io/ch12/params
// Unpack populates the fields of the struct pointed
to by ptr
// from the HTTP request parameters in req.
func Unpack(req *http.Request, ptr interface{}) error
{
 if err := req.ParseForm(); err != nil {
 return err
 }

 // Build map of fields keyed by effective name.
 fields := make(map[string]reflect.Value)
 v := reflect.ValueOf(ptr).Elem() // the struct
variable
 for i := 0; i < v.NumField(); i++ {
 fieldInfo := v.Type().Field(i) // a
reflect.StructField
 tag := fieldInfo.Tag // a
reflect.StructTag
 name := tag.Get("http")
 if name == "" {
 name = strings.ToLower(fieldInfo.Name)

 }
 fields[name] = v.Field(i)
 }

 // Update struct field for each parameter in the
request.
 for name, values := range req.Form {
 f := fields[name]
 if !f.IsValid() {
 continue // ignore unrecognized HTTP
parameters
 }
 for _, value := range values {
 if f.Kind() == reflect.Slice {
 elem :=
reflect.New(f.Type().Elem()).Elem()
 if err := populate(elem, value); err
!= nil {
 return fmt.Errorf("%s: %v", name,
err)
 }
 f.Set(reflect.Append(f, elem))
 } else {
 if err := populate(f, value); err !=
nil {
 return fmt.Errorf("%s: %v", name,
err)
 }
 }
 }
 }
 return nil
}

Finally, Unpack iterates over the name/value pairs of the HTTP parameters and
updates the corresponding struct fields. Recall that the same parameter name may
appear more than once. If this happens, and the field is a slice, then all the values of
that parameter are accumulated into the slice. Otherwise, the field is repeatedly
overwritten so that only the last value has any effect.

The populate function takes care of setting a single field v (or a single element of
a slice field) from a parameter value. For now, it supports only strings, signed
integers, and booleans. Supporting other types is left as an exercise.

Click here to view code image

func populate(v reflect.Value, value string) error {
 switch v.Kind() {
 case reflect.String:
 v.SetString(value)

 case reflect.Int:
 i, err := strconv.ParseInt(value, 10, 64)
 if err != nil {
 return err
 }
 v.SetInt(i)

 case reflect.Bool:
 b, err := strconv.ParseBool(value)
 if err != nil {
 return err
 }
 v.SetBool(b)

 default:
 return fmt.Errorf("unsupported kind %s",
v.Type())
 }
 return nil
}

If we add the server handler to a web server, this might be a typical session:

Click here to view code image

$ go build gopl.io/ch12/search
$./search &
$./fetch 'http://localhost:12345/search'
Search: {Labels:[] MaxResults:10 Exact:false}
$./fetch 'http://localhost:12345/search?

l=golang&l=programming'
Search: {Labels:[golang programming] MaxResults:10
Exact:false}
$./fetch 'http://localhost:12345/search?
l=golang&l=programming&max=100'
Search: {Labels:[golang programming] MaxResults:100
Exact:false}
$./fetch 'http://localhost:12345/search?
x=true&l=golang&l=programming'
Search: {Labels:[golang programming] MaxResults:10
Exact:true}
$./fetch 'http://localhost:12345/search?
q=hello&x=123'
x: strconv.ParseBool: parsing "123": invalid syntax
$./fetch 'http://localhost:12345/search?
q=hello&max=lots'
max: strconv.ParseInt: parsing "lots": invalid syntax

Exercise 12.11: Write the corresponding Pack function. Given a struct value, Pack
should return a URL incorporating the parameter values from the struct.
Exercise 12.12: Extend the field tag notation to express parameter validity
requirements. For example, a string might need to be a valid email address or credit-
card number, and an integer might need to be a valid US ZIP code. Modify Unpack
to check these requirements.
Exercise 12.13: Modify the S-expression encoder (§12.4) and decoder (§12.6) so that
they honor the sexpr:"..." field tag in a similar manner to encoding/json
(§4.5).

12.8 Displaying the Methods of a Type
Our final example of reflection uses reflect.Type to print the type of an
arbitrary value and enumerate its methods:

Click here to view code image

gopl.io/ch12/methods
// Print prints the method set of the value x.
func Print(x interface{}) {
 v := reflect.ValueOf(x)
 t := v.Type()
 fmt.Printf("type %s\n", t)

 for i := 0; i < v.NumMethod(); i++ {
 methType := v.Method(i).Type()
 fmt.Printf("func (%s) %s%s\n", t,
t.Method(i).Name,
 strings.TrimPrefix(methType.String(),
"func"))
 }
}

Both reflect.Type and reflect.Value have a method called Method.
Each t.Method(i) call returns an instance of reflect.Method, a struct type
that describes the name and type of a single method. Each v.Method(i) call
returns a reflect.Value representing a method value (§6.4), that is, a method
bound to its receiver. Using the reflect.Value.Call method (which we don’t
have space to show here), it’s possible to call Values of kind Func like this one,
but this program needs only its Type.

Here are the methods belonging to two types, time.Duration and
*strings.Replacer:

Click here to view code image

methods.Print(time.Hour)
// Output:
// type time.Duration

// func (time.Duration) Hours() float64
// func (time.Duration) Minutes() float64
// func (time.Duration) Nanoseconds() int64
// func (time.Duration) Seconds() float64
// func (time.Duration) String() string

methods.Print(new(strings.Replacer))
// Output:
// type *strings.Replacer
// func (*strings.Replacer) Replace(string) string
// func (*strings.Replacer) WriteString(io.Writer,
string) (int, error)

12.9 A Word of Caution
There is a lot more to the reflection API than we have space to show, but the
preceding examples give an idea of what is possible. Reflection is a powerful and
expressive tool, but it should be used with care, for three reasons.
The first reason is that reflection-based code can be fragile. For every mistake that
would cause a compiler to report a type error, there is a corresponding way to misuse
reflection, but whereas the compiler reports the mistake at build time, a reflection
error is reported during execution as a panic, possibly long after the program was
written or even long after it has started running.
If the readList function (§12.6), for example, should read a string from the input
while populating a variable of type int, the call to
reflect.Value.SetString will panic. Most programs that use reflection have
similar hazards, and considerable care is required to keep track of the type,
addressability, and settability of each reflect.Value.

The best way to avoid this fragility is to ensure that the use of reflection is fully
encapsulated within your package and, if possible, avoid reflect.Value in favor
of specific types in your package’s API, to restrict inputs to legal values. If this is not
possible, perform additional dynamic checks before each risky operation. As an
example from the standard library, when fmt.Printf applies a verb to an
inappropriate operand, it does not panic mysteriously but prints an informative error
message. The program still has a bug, but it is easier to diagnose.

Click here to view code image

fmt.Printf("%d %s\n", "hello", 42) //
"%!d(string=hello) %!s(int=42)"

Reflection also reduces the safety and accuracy of automated refactoring and analysis
tools, because they can’t determine or rely on type information.
The second reason to avoid reflection is that since types serve as a form of
documentation and the operations of reflection cannot be subject to static type
checking, heavily reflective code is often hard to understand. Always carefully
document the expected types and other invariants of functions that accept an
interface{} or a reflect.Value.

The third reason is that reflection-based functions may be one or two orders of
magnitude slower than code specialized for a particular type. In a typical program, the
majority of functions are not relevant to the overall performance, so it’s fine to use
reflection when it makes the program clearer. Testing is a particularly good fit for
reflection since most tests use small data sets. But for functions on the critical path,
reflection is best avoided.

13. Low-Level Programming
The design of Go guarantees a number of safety properties that limit the ways in
which a Go program can “go wrong.” During compilation, type checking detects most
attempts to apply an operation to a value that is inappropriate for its type, for
instance, subtracting one string from another. Strict rules for type conversions prevent
direct access to the internals of built-in types like strings, maps, slices, and channels.
For errors that cannot be detected statically, such as out-of-bounds array accesses or
nil pointer dereferences, dynamic checks ensure that the program immediately
terminates with an informative error whenever a forbidden operation occurs.
Automatic memory management (garbage collection) eliminates “use after free” bugs,
as well as most memory leaks.
Many implementation details are inaccessible to Go programs. There is no way to
discover the memory layout of an aggregate type like a struct, or the machine code
for a function, or the identity of the operating system thread on which the current
goroutine is running. Indeed, the Go scheduler freely moves goroutines from one
thread to another. A pointer identifies a variable without revealing the variable’s
numeric address. Addresses may change as the garbage collector moves variables;
pointers are transparently updated.
Together, these features make Go programs, especially failing ones, more predictable
and less mysterious than programs in C, the quintessential low-level language. By
hiding the underlying details, they also make Go programs highly portable, since the
language semantics are largely independent of any particular compiler, operating
system, or CPU architecture. (Not entirely independent: some details leak through,
such as the word size of the processor, the order of evaluation of certain expressions,
and the set of implementation restrictions imposed by the compiler.)
Occasionally, we may choose to forfeit some of these helpful guarantees to achieve
the highest possible performance, to interoperate with libraries written in other
languages, or to implement a function that cannot be expressed in pure Go.
In this chapter, we’ll see how the unsafe package lets us step outside the usual
rules, and how to use the cgo tool to create Go bindings for C libraries and operating
system calls.

The approaches described in this chapter should not be used frivolously. Without
careful attention to detail, they may cause the kinds of unpredictable, inscrutable,
non-local failures with which C programmers are unhappily acquainted. Use of
unsafe also voids Go’s warranty of compatibility with future releases, since,
whether intended or inadvertent, it is easy to depend on unspecified implementation
details that may change unexpectedly.
The unsafe package is rather magical. Although it appears to be a regular package
and is imported in the usual way, it is actually implemented by the compiler. It
provides access to a number of built-in language features that are not ordinarily
available because they expose details of Go’s memory layout. Presenting these
features as a separate package makes the rare occasions on which they are needed
more conspicuous. Also, some environments may restrict the use of the unsafe
package for security reasons.
Package unsafe is used extensively within low-level packages like runtime, os,
syscall, and net that interact with the operating system, but is almost never
needed by ordinary programs.

13.1 unsafe.Sizeof, Alignof, and
Offsetof

The unsafe.Sizeof function reports the size in bytes of the representation of its
operand, which may be an expression of any type; the expression is not evaluated. A
call to Sizeof is a constant expression of type uintptr, so the result may be used
as the dimension of an array type, or to compute other constants.

Click here to view code image

import "unsafe"

fmt.Println(unsafe.Sizeof(float64(0))) // "8"

Sizeof reports only the size of the fixed part of each data structure, like the pointer
and length of a string, but not indirect parts like the contents of the string. Typical
sizes for all non-aggregate Go types are shown below, though the exact sizes may
vary by toolchain. For portability, we’ve given the sizes of reference types (or types
containing references) in terms of words, where a word is 4 bytes on a 32-bit
platform and 8 bytes on a 64-bit platform.
Computers load and store values from memory most efficiently when those values
are properly aligned. For example, the address of a value of a two-byte type such as
int16 should be an even number, the address of a four-byte value such as a rune
should be a multiple of four, and the address of an eight-byte value such as a
float64, uint64, or 64-bit pointer should be a multiple of eight. Alignment
requirements of higher multiples are unusual, even for larger data types such as
complex128.

For this reason, the size of a value of an aggregate type (a struct or array) is at least
the sum of the sizes of its fields or elements but may be greater due to the presence
of “holes.” Holes are unused spaces added by the compiler to ensure that the
following field or element is properly aligned relative to the start of the struct or array.

Type Size
bool 1 byte
intN, uintN, floatN, complexN N / 8 bytes (for example, float64 is 8 bytes)
int, uint, uintptr 1 word
*T 1 word
string 2 words (data, len)
[]T 3 words (data, len, cap)
map 1 word
func 1 word
chan 1 word
interface 2 words (type, value)

The language specification does not guarantee that the order in which fields are
declared is the order in which they are laid out in memory, so in theory a compiler is
free to rearrange them, although as we write this, none do. If the types of a struct’s
fields are of different sizes, it may be more space-efficient to declare the fields in an
order that packs them as tightly as possible. The three structs below have the same
fields, but the first requires up to 50% more memory than the other two:

Click here to view code image

 // 64-bit 32-bit
struct{ bool; float64; int16 } // 3 words 4 words
struct{ float64; int16; bool } // 2 words 3 words
struct{ bool; int16; float64 } // 2 words 3 words

The details of the alignment algorithm are beyond the scope of this book, and it’s
certainly not worth worrying about every struct, but efficient packing may make
frequently allocated data structures more compact and therefore faster.
The unsafe.Alignof function reports the required alignment of its argument’s
type. Like Sizeof, it may be applied to an expression of any type, and it yields a
constant. Typically, boolean and numeric types are aligned to their size (up to a
maximum of 8 bytes) and all other types are word-aligned.
The unsafe.Offsetof function, whose operand must be a field selector x.f,
computes the offset of field f relative to the start of its enclosing struct x, accounting
for holes, if any.
Figure 13.1 shows a struct variable x and its memory layout on typical 32- and 64-bit

Go implementations. The gray regions are holes.
var x struct {
 a bool
 b int16
 c []int
}

Figure 13.1. Holes in a struct.

The table below shows the results of applying the three unsafe functions to x itself
and to each of its three fields:

Click here to view code image

Typical 32-bit platform:
Sizeof(x) = 16 Alignof(x) = 4
Sizeof(x.a) = 1 Alignof(x.a) = 1 Offsetof(x.a) = 0
Sizeof(x.b) = 2 Alignof(x.b) = 2 Offsetof(x.b) = 2
Sizeof(x.c) = 12 Alignof(x.c) = 4 Offsetof(x.c) = 4

Typical 64-bit platform:
Sizeof(x) = 32 Alignof(x) = 8
Sizeof(x.a) = 1 Alignof(x.a) = 1 Offsetof(x.a) = 0
Sizeof(x.b) = 2 Alignof(x.b) = 2 Offsetof(x.b) = 2
Sizeof(x.c) = 24 Alignof(x.c) = 8 Offsetof(x.c) = 8

Despite their names, these functions are not in fact unsafe, and they may be helpful
for understanding the layout of raw memory in a program when optimizing for space.

13.2 unsafe.Pointer
Most pointer types are written *T, meaning “a pointer to a variable of type T.” The
unsafe.Pointer type is a special kind of pointer that can hold the address of any
variable. Of course, we can’t indirect through an unsafe.Pointer using *p
because we don’t know what type that expression should have. Like ordinary
pointers, unsafe.Pointers are comparable and may be compared with nil,
which is the zero value of the type.
An ordinary *T pointer may be converted to an unsafe.Pointer, and an
unsafe.Pointer may be converted back to an ordinary pointer, not necessarily
of the same type *T. By converting a *float64 pointer to a *uint64, for
instance, we can inspect the bit pattern of a floating-point variable:

Click here to view code image

package math

func Float64bits(f float64) uint64 { return *(*uint64)
(unsafe.Pointer(&f)) }

fmt.Printf("%#016x\n", Float64bits(1.0)) //
"0x3ff0000000000000"

Through the resulting pointer, we can update the bit pattern too. This is harmless for
a floating-point variable since any bit pattern is legal, but in general,
unsafe.Pointer conversions let us write arbitrary values to memory and thus
subvert the type system.
An unsafe.Pointer may also be converted to a uintptr that holds the
pointer’s numeric value, letting us perform arithmetic on addresses. (Recall from
Chapter 3 that a uintptr is an unsigned integer wide enough to represent an
address.) This conversion too may be applied in reverse, but again, converting from a
uintptr to an unsafe.Pointer may subvert the type system since not all
numbers are valid addresses.
Many unsafe.Pointer values are thus intermediaries for converting ordinary
pointers to raw numeric addresses and back again. The example below takes the
address of variable x, adds the offset of its b field, converts the resulting address to

*int16, and through that pointer updates x.b:

Click here to view code image

gopl.io/ch13/unsafeptr
var x struct {
 a bool
 b int16
 c []int
}

// equivalent to pb := &x.b
pb := (*int16)(unsafe.Pointer(
 uintptr(unsafe.Pointer(&x)) +
unsafe.Offsetof(x.b)))
*pb = 42

fmt.Println(x.b) // "42"

Although the syntax is cumbersome—perhaps no bad thing since these features
should be used sparingly—do not be tempted to introduce temporary variables of type
uintptr to break the lines. This code is incorrect:

Click here to view code image

// NOTE: subtly incorrect!
tmp := uintptr(unsafe.Pointer(&x)) +
unsafe.Offsetof(x.b)
pb := (*int16)(unsafe.Pointer(tmp))
*pb = 42

The reason is very subtle. Some garbage collectors move variables around in memory
to reduce fragmentation or bookkeeping. Garbage collectors of this kind are known as
moving GCs. When a variable is moved, all pointers that hold the address of the old
location must be updated to point to the new one. From the perspective of the
garbage collector, an unsafe.Pointer is a pointer and thus its value must change
as the variable moves, but a uintptr is just a number so its value must not change.
The incorrect code above hides a pointer from the garbage collector in the non-
pointer variable tmp. By the time the second statement executes, the variable x could
have moved and the number in tmp would no longer be the address &x.b. The third

statement clobbers an arbitrary memory location with the value 42.
There are myriad pathological variations on this theme. After this statement has
executed:

Click here to view code image

pT := uintptr(unsafe.Pointer(new(T))) // NOTE: wrong!

there are no pointers that refer to the variable created by new, so the garbage
collector is entitled to recycle its storage when this statement completes, after which
pT contains the address where the variable was but is no longer.

No current Go implementation uses a moving garbage collector (though future
implementations might), but this is no reason for complacency: current versions of Go
do move some variables around in memory. Recall from Section 5.2 that goroutine
stacks grow as needed. When this happens, all variables on the old stack may be
relocated to a new, larger stack, so we cannot rely on the numeric value of a
variable’s address remaining unchanged throughout its lifetime.
At the time of writing, there is little clear guidance on what Go programmers may rely
upon after an unsafe.Pointer to uintptr conversion (see Go issue 7192), so
we strongly recommend that you assume the bare minimum. Treat all uintptr
values as if they contain the former address of a variable, and minimize the number
of operations between converting an unsafe.Pointer to a uintptr and using
that uintptr. In our first example above, the three operations—conversion to a
uintptr, addition of the field offset, conversion back—all appeared within a single
expression.
When calling a library function that returns a uintptr, such as those below from
the reflect package, the result should be immediately converted to an
unsafe.Pointer to ensure that it continues to point to the same variable.

Click here to view code image

package reflect

func (Value) Pointer() uintptr
func (Value) UnsafeAddr() uintptr
func (Value) InterfaceData() [2]uintptr // (index 1)

13.3 Example: Deep Equivalence
The DeepEqual function from the reflect package reports whether two values
are “deeply” equal. DeepEqual compares basic values as if by the built-in ==
operator; for composite values, it traverses them recursively, comparing
corresponding elements. Because it works for any pair of values, even ones that are
not comparable with ==, it finds widespread use in tests. The following test uses
DeepEqual to compare two []string values:

Click here to view code image

func TestSplit(t *testing.T) {
 got := strings.Split("a:b:c", ":")
 want := []string{"a", "b", "c"};
 if !reflect.DeepEqual(got, want) { /* ... */ }
}

Although DeepEqual is convenient, its distinctions can seem arbitrary. For
example, it doesn’t consider a nil map equal to a non-nil empty map, nor a nil slice
equal to a non-nil empty one:

Click here to view code image

var a, b []string = nil, []string{}
fmt.Println(reflect.DeepEqual(a, b)) // "false"

var c, d map[string]int = nil, make(map[string]int)
fmt.Println(reflect.DeepEqual(c, d)) // "false"

In this section we’ll define a function Equal that compares arbitrary values. Like
DeepEqual, it compares slices and maps based on their elements, but unlike
DeepEqual, it considers a nil slice (or map) equal to a non-nil empty one. The
basic recursion over the arguments can be done with reflection, using a similar
approach to the Display program we saw in Section 12.3. As usual, we define an
unexported function, equal, for the recursion. Don’t worry about the seen
parameter just yet. For each pair of values x and y to be compared, equal checks
that both (or neither) are valid and checks that they have the same type. The result of
the function is defined as a set of switch cases that compare two values of the same
type. For reasons of space, we’ve omitted several cases since the pattern should be

familiar by now.

Click here to view code image

gopl.io/ch13/equal
func equal(x, y reflect.Value, seen
map[comparison]bool) bool {
 if !x.IsValid() || !y.IsValid() {
 return x.IsValid() == y.IsValid()
 }
 if x.Type() != y.Type() {
 return false
 }

 // ...cycle check omitted (shown later)...

 switch x.Kind() {
 case reflect.Bool:
 return x.Bool() == y.Bool()

 case reflect.String:
 return x.String() == y.String()

 // ...numeric cases omitted for brevity...

 case reflect.Chan, reflect.UnsafePointer,
reflect.Func:
 return x.Pointer() == y.Pointer()

 case reflect.Ptr, reflect.Interface:
 return equal(x.Elem(), y.Elem(), seen)

 case reflect.Array, reflect.Slice:
 if x.Len() != y.Len() {
 return false
 }
 for i := 0; i < x.Len(); i++ {
 if !equal(x.Index(i), y.Index(i), seen) {
 return false

 }
 }
 return true

 // ...struct and map cases omitted for brevity...
 }
 panic("unreachable")
}

As usual, we don’t expose the use of reflection in the API, so the exported function
Equal must call reflect.ValueOf on its arguments:

Click here to view code image

// Equal reports whether x and y are deeply equal.
func Equal(x, y interface{}) bool {
 seen := make(map[comparison]bool)
 return equal(reflect.ValueOf(x),
reflect.ValueOf(y), seen)
}

type comparison struct {
 x, y unsafe.Pointer
 t reflect.Type
}

To ensure that the algorithm terminates even for cyclic data structures, it must record
which pairs of variables it has already compared and avoid comparing them a second
time. Equal allocates a set of comparison structs, each holding the address of
two variables (represented as unsafe.Pointer values) and the type of the
comparison. We need to record the type in addition to the addresses because different
variables can have the same address. For example, if x and y are both arrays, x and
x[0] have the same address, as do y and y[0], and it is important to distinguish
whether we have compared x and y or x[0] and y[0].

Once equal has established that its arguments have the same type, and before it
executes the switch, it checks whether it is comparing two variables it has already
seen and, if so, terminates the recursion.

Click here to view code image

// cycle check
if x.CanAddr() && y.CanAddr() {
 xptr := unsafe.Pointer(x.UnsafeAddr())
 yptr := unsafe.Pointer(y.UnsafeAddr())
 if xptr == yptr {
 return true // identical references
 }
 c := comparison{xptr, yptr, x.Type()}
 if seen[c] {
 return true // already seen
 }
 seen[c] = true
}

Here’s our Equal function in action:

Click here to view code image

fmt.Println(Equal([]int{1, 2, 3}, []int{1, 2, 3}))
// "true"
fmt.Println(Equal([]string{"foo"}, []string{"bar"}))
// "false"
fmt.Println(Equal([]string(nil), []string{}))
// "true"
fmt.Println(Equal(map[string]int(nil),
map[string]int{})) // "true"

It even works on cyclic inputs similar to the one that caused the Display function
from Section 12.3 to get stuck in a loop:

Click here to view code image

// Circular linked lists a -> b -> a and c -> c.
type link struct {
 value string
 tail *link
}
a, b, c := &link{value: "a"}, &link{value: "b"},
&link{value: "c"}
a.tail, b.tail, c.tail = b, a, c
fmt.Println(Equal(a, a)) // "true"

fmt.Println(Equal(b, b)) // "true"
fmt.Println(Equal(c, c)) // "true"
fmt.Println(Equal(a, b)) // "false"
fmt.Println(Equal(a, c)) // "false"

Exercise 13.1: Define a deep comparison function that considers numbers (of any
type) equal if they differ by less than one part in a billion.
Exercise 13.2: Write a function that reports whether its argument is a cyclic data
structure.

13.4 Calling C Code with cgo
A Go program might need to use a hardware driver implemented in C, query an
embedded database implemented in C++, or use some linear algebra routines
implemented in Fortran. C has long been the lingua franca of programming, so many
packages intended for widespread use export a C-compatible API, regardless of the
language of their implementation.
In this section, we’ll build a simple data compression program that uses cgo, a tool
that creates Go bindings for C functions. Such tools are called foreign-function
interfaces (FFIs), and cgo is not the only one for Go programs. SWIG
(swig.org) is another; it provides more complex features for integrating with C++
classes, but we won’t show it here.
The compress/... subtree of the standard library provides compressors and
decompressors for popular compression algorithms, including LZW (used by the Unix
compress command) and DEFLATE (used by the GNU gzip command). The
APIs of these packages vary slightly in details, but they all provide a wrapper for an
io.Writer that compresses the data written to it, and a wrapper for an
io.Reader that decompresses the data read from it. For example:

Click here to view code image

package gzip // compress/gzip

func NewWriter(w io.Writer) io.WriteCloser
func NewReader(r io.Reader) (io.ReadCloser, error)

The bzip2 algorithm, which is based on the elegant Burrows-Wheeler transform, runs
slower than gzip but yields significantly better compression. The
compress/bzip2 package provides a decompressor for bzip2, but at the moment
the package provides no compressor. Building one from scratch is a substantial
undertaking, but there is a well-documented and high-performance open-source C
implementation, the libbzip2 package from bzip.org.

If the C library were small, we would just port it to pure Go, and if its performance
were not critical for our purposes, we would be better off invoking a C program as a
helper subprocess using the os/exec package. It’s when you need to use a
complex, performance-critical library with a narrow C API that it may make sense to

wrap it using cgo. For the rest of this chapter, we’ll work through an example.

From the libbzip2 C package, we need the bz_stream struct type, which holds
the input and output buffers, and three C functions: BZ2_bzCompressInit,
which allocates the stream’s buffers; BZ2_bzCompress, which compresses data
from the input buffer to the output buffer; and BZ2_bzCompressEnd, which
releases the buffers. (Don’t worry about the mechanics of the libbzip2 package;
the purpose of this example is to show how the parts fit together.)
We’ll call the BZ2_bzCompressInit and BZ2_bzCompressEnd C functions
directly from Go, but for BZ2_bzCompress, we’ll define a wrapper function in C,
to show how it’s done. The C source file below lives alongside the Go code in our
package:

Click here to view code image

gopl.io/ch13/bzip
/* This file is gopl.io/ch13/bzip/bzip2.c, */
/* a simple wrapper for libbzip2 suitable for cgo. */
#include <bzlib.h>

int bz2compress(bz_stream *s, int action,
 char *in, unsigned *inlen, char *out,
unsigned *outlen) {
 s->next_in = in;
 s->avail_in = *inlen;
 s->next_out = out;
 s->avail_out = *outlen;
 int r = BZ2_bzCompress(s, action);
 *inlen -= s->avail_in;
 *outlen -= s->avail_out;
 return r;
}

Now let’s turn to the Go code, the first part of which is shown below. The import
"C" declaration is special. There is no package C, but this import causes go build
to preprocess the file using the cgo tool before the Go compiler sees it.

Click here to view code image

// Package bzip provides a writer that uses bzip2

compression (bzip.org).
package bzip

/*
#cgo CFLAGS: -I/usr/include
#cgo LDFLAGS: -L/usr/lib -lbz2
#include <bzlib.h>
int bz2compress(bz_stream *s, int action,
 char *in, unsigned *inlen, char *out,
unsigned *outlen);
*/
import "C"

import (
 "io"
 "unsafe"
)

type writer struct {
 w io.Writer // underlying output stream
 stream *C.bz_stream
 outbuf [64 * 1024]byte
}

// NewWriter returns a writer for bzip2-compressed
streams.
func NewWriter(out io.Writer) io.WriteCloser {
 const (
 blockSize = 9
 verbosity = 0
 workFactor = 30
)
 w := &writer{w: out, stream: new(C.bz_stream)}
 C.BZ2_bzCompressInit(w.stream, blockSize,
verbosity, workFactor)
 return w
}

During preprocessing, cgo generates a temporary package that contains Go
declarations corresponding to all the C functions and types used by the file, such as

C.bz_stream and C.BZ2_bzCompressInit. The cgo tool discovers these
types by invoking the C compiler in a special way on the contents of the comment
that precedes the import declaration.
The comment may also contain #cgo directives that specify extra options to the C
toolchain. The CFLAGS and LDFLAGS values contribute extra arguments to the
compiler and linker commands so that they can locate the bzlib.h header file and
the libbz2.a archive library. The example assumes that these are installed beneath
/usr on your system. You may need to alter or delete these flags for your
installation.
NewWriter makes a call to the C function BZ2_bzCompressInit to initialize
the buffers for the stream. The writer type includes another buffer that will be
used to drain the decompressor’s output buffer.
The Write method, shown below, feeds the uncompressed data to the
compressor, calling the function bz2compress in a loop until all the data has been
consumed. Observe that the Go program may access C types like bz_stream,
char, and uint, C functions like bz2compress, and even object-like C
preprocessor macros such as BZ_RUN, all through the C.x notation. The C.uint
type is distinct from Go’s uint type, even if both have the same width.

Click here to view code image

func (w *writer) Write(data []byte) (int, error) {
 if w.stream == nil {
 panic("closed")
 }
 var total int // uncompressed bytes written

 for len(data) > 0 {
 inlen, outlen := C.uint(len(data)),
C.uint(cap(w.outbuf))
 C.bz2compress(w.stream, C.BZ_RUN,
 (*C.char)(unsafe.Pointer(&data[0])),
&inlen,
 (*C.char)(unsafe.Pointer(&w.outbuf)),
&outlen)
 total += int(inlen)
 data = data[inlen:]

 if _, err := w.w.Write(w.outbuf[:outlen]); err
!= nil {
 return total, err
 }
 }
 return total, nil
}

Each iteration of the loop passes bz2compress the address and length of the
remaining portion of data, and the address and capacity of w.outbuf. The two
length variables are passed by their addresses, not their values, so that the C function
can update them to indicate how much uncompressed data was consumed and how
much compressed data was produced. Each chunk of compressed data is then written
to the underlying io.Writer.

The Close method has a similar structure to Write, using a loop to flush out any
remaining compressed data from the stream’s output buffer.

Click here to view code image

// Close flushes the compressed data and closes the
stream.
// It does not close the underlying io.Writer.
func (w *writer) Close() error {
 if w.stream == nil {
 panic("closed")
 }
 defer func() {
 C.BZ2_bzCompressEnd(w.stream)
 w.stream = nil
 }()
 for {
 inlen, outlen := C.uint(0),
C.uint(cap(w.outbuf))
 r := C.bz2compress(w.stream, C.BZ_FINISH, nil,
&inlen,
 (*C.char)(unsafe.Pointer(&w.outbuf)),
&outlen)
 if _, err := w.w.Write(w.outbuf[:outlen]); err
!= nil {

 return err
 }
 if r == C.BZ_STREAM_END {
 return nil
 }
 }
}

Upon completion, Close calls C.BZ2_bzCompressEnd to release the stream
buffers, using defer to ensure that this happens on all return paths. At this point the
w.stream pointer is no longer safe to dereference. To be defensive, we set it to
nil, and add explicit nil checks to each method, so that the program panics if the
user mistakenly calls a method after Close. Not only is writer not concurrency-
safe, but concurrent calls to Close and Write could cause the program to crash in
C code. Fixing this is Exercise 13.3.
The program below, bzipper, is a bzip2 compressor command that uses our new
package. It behaves like the bzip2 command present on many Unix systems.

Click here to view code image

gopl.io/ch13/bzipper
// Bzipper reads input, bzip2-compresses it, and
writes it out.
package main

import (
 "io"
 "log"
 "os"

 "gopl.io/ch13/bzip"
)

func main() {
 w := bzip.NewWriter(os.Stdout)
 if _, err := io.Copy(w, os.Stdin); err != nil {
 log.Fatalf("bzipper: %v\n", err)
 }
 if err := w.Close(); err != nil {

 log.Fatalf("bzipper: close: %v\n", err)
 }
}

In the session below, we use bzipper to compress
/usr/share/dict/words, the system dictionary, from 938,848 bytes to
335,405 bytes—about a third of its original size—then uncompress it with the system
bunzip2 command. The SHA256 hash is the same before and after, giving us
confidence that the compressor is working correctly. (If you don’t have sha256sum
on your system, use your solution to Exercise 4.2.)

Click here to view code image

$ go build gopl.io/ch13/bzipper
$ wc -c < /usr/share/dict/words
938848
$ sha256sum < /usr/share/dict/words
126a4ef38493313edc50b86f90dfdaf7c59ec6c948451eac228f2f3a8ab1a6ed
 -
$./bzipper < /usr/share/dict/words | wc -c
335405
$./bzipper < /usr/share/dict/words | bunzip2 |
sha256sum
126a4ef38493313edc50b86f90dfdaf7c59ec6c948451eac228f2f3a8ab1a6ed
 -

We’ve demonstrated linking a C library into a Go program. Going in the other
direction, it’s also possible to compile a Go program as a static archive that can be
linked into a C program or as a shared library that can be dynamically loaded by a C
program. We’ve only scratched the surface of cgo here, and there is much more to
say about memory management, pointers, callbacks, signal handling, strings, errno,
finalizers, and the relationship between goroutines and operating system threads,
much of it very subtle. In particular, the rules for correctly passing pointers from Go
to C or vice versa are complex, for reasons similar to those we discussed in
Section 13.2, and not yet authoritatively specified. For further reading, start with
https://golang.org/cmd/cgo.

Exercise 13.3: Use sync.Mutex to make bzip2.writer safe for concurrent
use by multiple goroutines.
Exercise 13.4: Depending on C libraries has its drawbacks. Provide an alternative

pure-Go implementation of bzip.NewWriter that uses the os/exec package to
run /bin/bzip2 as a subprocess.

13.5 Another Word of Caution
We ended the previous chapter with a warning about the downsides of the reflection
interface. That warning applies with even more force to the unsafe package
described in this chapter.
High-level languages insulate programs and programmers not only from the arcane
specifics of individual computer instruction sets, but from dependence on
irrelevancies like where in memory a variable lives, how big a data type is, the details
of structure layout, and a host of other implementation details. Because of that
insulating layer, it’s possible to write programs that are safe and robust and that will
run on any operating system without change.
The unsafe package lets programmers reach through the insulation to use some
crucial but otherwise inaccessible feature, or perhaps to achieve higher performance.
The cost is usually to portability and safety, so one uses unsafe at one’s peril. Our
advice on how and when to use unsafe parallels Knuth’s comments on premature
optimization, which we quoted in Section 11.5. Most programmers will never need to
use unsafe at all. Nevertheless, there will occasionally be situations where some
critical piece of code can be best written using unsafe. If careful study and
measurement indicates that unsafe really is the best approach, restrict it to as small
a region as possible, so that most of the program is oblivious to its use.
For now, put the last two chapters in the back of your mind. Write some substantial
Go programs. Avoid reflect and unsafe; come back to these chapters only if
you must.
Meanwhile, happy Go programming. We hope you enjoy writing Go as much as we
do.

Index
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
, -= , etc., assignment operator +=, 1.2
-= , etc., assignment operator += , , 1.2
| in template, 4.6
. in template, dot , 4.6
:= short variable declaration, 1.2, 2.3.1, 2.7
&, address-of operator, 1.8, 2.3.2, 2.3.2, 2.3.2, 4.3, 6.2, 6.5
&^, AND-NOT operator, 3.1
... argument, 5.6, 5.7
... array length, 4.1
` backquote character, 3.5.1
&^, bit-clear operator, 3.1
^, bitwise complement operator, 3.1
|, bitwise OR operator, 6.5, 6.5
_, blank identifier, 1.2, 2.4.1, 4.3, 5.1, 5.3, 10.5
// comment, 1.2
// comment, 1.8
==, comparison operator, 2.5, 3.4
--, decrement statement, 1.2, 2.4
, etc., assignment operator += , -=, 1.2
^, exclusive OR operator, 3.1
&, implicit, 6.2, 6.5
*, indirection operator, 1.8, 2.3.2
<<, left shift operator, 3.1
!, negation operator, 3.4
// Output comment, 11.6
... parameter, 4.2.1, 5.7, 5.7, 7.1
... path, 10.7.2, 10.7.6
' quote character, 3.1
%, remainder operator, 3.1, 6.5

>>, right shift operator, 3.1
&&, short-circuit AND operator, 3.4
||, short-circuit OR operator, 3.4
-, unary operator, 3.1

, Unicode replacement character , 3.5.3, 4.3
+= , -= , etc., assignment operator, 1.2
+, string concatenation operator, 1.2, 3.5
+, unary operator, 3.1
++, increment statement, 1.2, 2.4, 4.3
+build comments, 10.7.3

A
Abstract Syntax Notation One (ASN.1), 4.5
abstract type, 1.8, 7.1
abstraction, premature, 7.15, 11.2.5, 11.2.5
ad hoc polymorphism, 7.13
address of local variable, 2.3.2, 2.3.4
address of struct literal, 4.4.1
addressable expression, 6.2, 12.5
addressable value, 2.3.2
address-of operator &, 1.8, 2.3.2, 2.3.2, 2.3.2, 4.3, 6.2, 6.5
aggregate type, 4, 4.4
Alef programming language, Preface
algorithm, breadth-first search, 5.6, 8.6
algorithm, depth-first search, 5.6
algorithm, Fibonacci, 2.4.1, 8.1
algorithm, GCD, 2.4.1
algorithm, insertion sort, 4.4
algorithm, Lissajous, 1.4
algorithm, slice rotation, 4.2
algorithm, topological sort, 5.6
aliasing, pointer, 2.3.2
alignment, 13.1
allocation, heap, 2.3.4
allocation, memory, 2.3.4, 2.3.4, 3.5.4, 4.2.1, 6.6, 7.12, 11.4
allocation, stack, 2.3.4

anchor element, HTML, 5.2
AND operator &&, short-circuit, 3.4
AND-NOT operator &^, 3.1
animation, GIF, 1.4
anonymous function, 1.7, 5.6, 5.6, 8.5
anonymous function, defer, 5.8
anonymous function, recursive, 5.6
anonymous struct field, 4.4.3, 4.4.3, 4.4.3, 6.3
API, encoding, 7.14, 12.4
API, error, 5.4, 5.10
API, package, 10.1, 10.7.4, 11.2.3, 12.3, 12.9
API, runtime, 11.5
API, SQL, 7.13
API, system call, 7.8
API, template, 4.6
API, token-based decoder, 7.14, 7.14, 12.6
APL programming language, Preface
append built-in function, 4.2.1, 4.2.1, 4.2.1
appendInt example, 4.2.1
argument, ..., 5.6, 5.7
argument, command-line, 1.2, 1.6, 2.3.2, 2.6.1, 7.4, 7.4, 10.7, 11.2.3
argument, function, 5.1
argument, pointer, 2.3.2, 4.1
argument, slice, 4.2
arithmetic expression evaluator, 7.9
array comparison, 4.1
array length, ..., 4.1
array literal, 4.1, 4.1, 4.2
array type, 4.1
array, underlying, 4.2, 4.2, 4.2.1, 7.6
array zero value, 4.1
ASCII, 3.1, 3.5, 3.5.1, 3.5.2, 11.2
ASN.1 (Abstract Syntax Notation One), 4.5
assembly line, cake, 8.4.4
assertion function, 11.2.5
assertion, interface type, 7.12, 7.12
assertion, test, 11.2

assertion, type, 7.10, 7.13
assignability, 2.4.2, 2.4.2, 7.3
assignability, interface, 7.3
assignment, implicit, 2.4.2
assignment, multiple-value, 2.4.1
assignment operator += , -= , etc., 1.2
assignment operators, 2.4, 3.1
assignment statement, 1.2, 1.2, 2.4, 3.1, 4.3, 7.1
assignment, tuple, 2.3.1, 2.4.1
associativity, operator, 3.1
atomic operation, 9.2
attack, HTML injection, 4.6
attack, SQL injection, 7.13
autoescape example, 4.6

B
back-door, package, 11.2.4
back-off, exponential, 5.4.1
backquote character, `, 3.5.1
bank example package, 9.1, 9.1, 9.2
bare return, 5.3
basename example, 3.5.4, 3.5.4
behavior, undefined, 9.1
Benchmark function, 11.1, 11.4
bidirectional to unidirectional channel conversion, 8.4.3
binary operators, table of, 3.1
binary semaphore, 9.2
binary tree, 4.4
bit vector, 6.5
bit-clear operator &^, 3.1
bit-set data type, 3.6.1
bitwise complement operator ^, 3.1
bitwise operators, table of, 3.1
bitwise OR operator |, 6.5, 6.5
black-box test, 11.2.3
blank identifier _, 1.2, 2.4.1, 4.3, 5.1, 5.3, 10.5

blank import, 10.5
block, file, 2.7
block, lexical, 2.7, 5.1, 5.6, 5.6.1, 7.13
block, local, 2.7
block, package, 2.7
block, universe, 2.7
blocking profile, 11.5
Blog, Go, Preface, 11.5
boiling example, 2.2
bool type, 3.4
boolean constant, false, 3.4
boolean constant, true, 3.4
boolean zero value, 2.3
breadthFirst function, 5.6
breadth-first search algorithm, 5.6, 8.6
break statement, labeled, 8.8
break statement, 1.8, 2.7
brittle test, 11.2.6
broadcast, 8.9, 8.10, 9.7
Brooks, Fred, Preface
btoi function, 3.4
buffered channel, 8.4, 8.4.4
bufio package, 1.3
bufio.NewReader function, 4.3
bufio.NewScanner function, 1.3
(*bufio.Reader).ReadRune method, 4.3, 4.3
bufio.Scanner type, 1.3
(*bufio.Scanner).Err method, 4.3
(*bufio.Scanner).Scan method, 1.3
(*bufio.Scanner).Split method, 4.3
bufio.ScanWords function, 4.3
build constraints, 10.7.3
build tags, 10.7.3
building packages, 10.7.3
built-in function, append, 4.2.1, 4.2.1, 4.2.1
built-in function, cap, 4.2, 8.4.4

built-in function, close, 8.4, 8.4.2, 8.9
built-in function, complex, 3.3
built-in function, copy, 4.2.1
built-in function, delete, 4.3
built-in function, imag, 3.3
built-in function, len, 1.2, 3.1, 3.5, 3.5, 4.1, 4.2, 8.4.4
built-in function, make, 1.3, 1.6, 4.2, 4.3, 8.4
built-in function, new, 2.3.3
built-in function, panic, 5.9, 5.9
built-in function, real, 3.3
built-in function, recover, 5.10
built-in interface, error, 7.8, 7.8
built-in type, error, 1.3, 5.4, 5.9, 7.8
byte slice to string conversion, 3.5.4
byte type, 3.1
ByteCounter example, 7.1
bytes package, 3.5.4, 3.5.4
bytes.Buffer type, 3.5.4, 6.6, 7.1, 7.5.1
(*bytes.Buffer).Grow method, 6.6
(*bytes.Buffer).WriteByte method, 3.5.4
(*bytes.Buffer).WriteRune method, 3.5.4
(*bytes.Buffer).WriteString method, 3.5.4
bytes.Equal function, 4.2
bzip C code, 13.4
bzip example package, 13.4
bzipper example, 13.4

C
C programming language, Preface, Preface, 1.1, 1.2, 3.1, 9.1, 13.4
C++ programming language, Preface, Preface, 13.4
cache, concurrent non-blocking, 9.7
cache, non-blocking, 9.7
cake assembly line, 8.4.4
call by reference, 4.1
call by value, 4.1, 5.1, 6.2
call, interface method, 7.5

call, ok value from function, 5.4
calling C from Go, 13.4
camel case, 2.1
cancellation, 8.9, 8.9
cancellation of HTTP request, 8.9
cap built-in function, 4.2, 8.4.4
capacity, channel, 8.4, 8.4.4, 8.4.4
capacity, slice, 4.2, 4.2.1
capturing iteration variable, 5.6.1
capturing loop variable, 5.6.1, 8.5, 8.6
case in type switch, 7.13
case, select, 8.7
Celsius type, 2.5
CelsiusFlag function, 7.4
cf example, 2.6.1
cgo tool, 13.4, 13.4
<-ch, channel receive, 1.6, 8.4, 8.4.4
ch<-, channel send, 1.6, 8.4, 8.4.4
chaining, method, 4.6
<-chan T , receive-only channel type , 8.4.3
chan<- T , send-only channel type , 8.4.3
chan type, 8.4
channel, buffered, 8.4, 8.4.4
channel capacity, 8.4, 8.4.4, 8.4.4
channel close, 8.4.2, 8.9
channel, closing a, 8.4
channel communication, 8.4, 8.7
channel comparison, 8.4
channel conversion, bidirectional to unidirectional, 8.4.3
channel, draining a, 8.4.2, 8.9
channel, make, 1.6, 8.4
channel, nil, 8.7, 8.8
channel, polling, 8.7
channel, range over, 8.4.2
channel receive <-ch, 1.6, 8.4, 8.4.4
channel receive, non-blocking, 8.7

channel receive, ok value from, 8.4.2
channel send ch<-, 1.6, 8.4, 8.4.4
channel, synchronous, 8.4.1
channel type, 1.6
channel type <-chan T , receive-only, 8.4.3
channel type chan<- T , send-only, 8.4.3
channel type, unidirectional, 8.4.3, 8.4.3, 8.4.3
channel, unbuffered, 8.4, 8.4.1
channel zero value, 8.4, 8.7
character conversion, 3.5.4
character test, 3.5.4
charcount example, 4.3
chat example, 8.10
chat server, 8.10
CheckQuota function, 11.2.3, 11.2.3
client, email, 11.2.3
client, SMTP, 11.2.3
clock example, 8.2, 8.2
clock server, concurrent, 8.2
close built-in function, 8.4, 8.4.2, 8.9
close, channel, 8.4.2, 8.9
closer goroutine, 8.5, 8.8
closing a channel, 8.4
closure, lexical, 5.6
cmplx.Sqrt function, 3.3
code format, 1.1, 1.2, 1.3, 2.7
code point, Unicode, 3.5.2
code, production, 11
ColoredPoint example, 6.3
comma example, 3.5.4
command, testing a, 11.2.2
command-line argument, 1.2, 1.6, 2.3.2, 2.6.1, 7.4, 7.4, 10.7, 11.2.3
comment, //, 1.2
comment, //, 1.8
comment, // Output , 11.6
comment, doc, 2.6, 10.7.4

comments, +build, 10.7.3
communicating sequential processes (CSP), Preface, 8
communication, channel, 8.4, 8.7
comparability, 1.3, 2.4.2, 2.5, 3.1, 4.2, 4.3, 4.3, 4.4.2
comparison, array, 4.1
comparison, channel, 8.4
comparison, function, 5.5
comparison, interface, 7.5
comparison, map, 4.3
comparison operator ==, 2.5, 3.4
comparison operators, 2.5, 4.3
comparison operators, table of, 3.1
comparison, slice, 4.2
comparison, string, 3.5
comparison, struct, 4.4.2
compilation, separate, 10.1
complement operator ^, bitwise, 3.1
complex built-in function, 3.3
complex type, 3.3
composite literal, 1.4
composite type, Preface, 1.4, 4
composition, parallel, 8.3
composition, type, Preface, 4.4.3, 6.3, 7.6
compress/bzip2 package, 13.4
compression, 13.4
conceptual integrity, Preface
concrete type, 1.8, 7.1, 7.13, 7.14
concurrency, 1.6, 8, 9
concurrency, excessive, 8.6, 8.6
concurrency safe, 9.7
concurrency safety, 8.10, 9.1, 9.7, 13.4
concurrency with shared variables, 9
concurrent clock server, 8.2
concurrent directory traversal, 8.8
concurrent echo server, 8.3
concurrent non-blocking cache, 9.7
concurrent web crawler, 8.6

confinement, serial, 9.1
confinement, variable, 9.1
consistency, sequential, 9.4, 9.5
const declaration, 1.4, 3.6
constant, false boolean, 3.4
constant generator, iota, Preface, 3.6.1
constant, time.Minute, 3.6
constant, time.Second, 6.4
constant, true boolean, 3.4
constant types, untyped, 3.6.2
constants, precision of, 3.6.2
constraints, build, 10.7.3
contention, lock, 9.3, 9.7
context switch, 9.8.2
continue statement, labeled, 8.8
continue statement, 1.8, 2.7
contracts, interfaces as, 7.1
control flow, 2.7
conversion, bidirectional to unidirectional channel, 8.4.3
conversion, byte slice to string, 3.5.4
conversion, character, 3.5.4
conversion, implicit, 3.6.2
conversion, narrowing, 2.5, 3.1
conversion, numeric, 3.6.2
conversion operation, 2.5, 3.1, 3.1, 3.1, 3.4, 3.5.3, 3.6.2, 3.6.2, 7.1, 7.6, 7.7, 7.12, 8.4.3, 13,
13.2
conversion, rune slice to string, 3.5.3
conversion, rune to string, 3.5.3
conversion, string, 3.5.4
conversion, string to byte slice, 2.5, 3.5.4
conversion, string to rune slice, 3.5.3, 4.2.1
conversion, unsafe.Pointer, 13.2
copy built-in function, 4.2.1
countdown example, 8.7, 8.7, 8.7, 8.7
counting semaphore, 8.6
coverage, statement, 11.3, 11.3
coverage, test, 11.3

coverage_test example, 11.3
CPU profile, 11.5
crawl example, 8.6, 8.6, 8.6, 8.6
crawler, concurrent web, 8.6
crawler, web, 5
critical section, 9.2, 9.5, 9.7
cross-compilation, 10.7.3
cryptography, 3.1, 4.1, 5.2, 11.5
crypto/sha256 package, 4.1
customSort example, 7.6
cyclic data structure, 12.3
cyclic test dependency, 11.2.4

D
data race, 9.1, 9.4, 9.7
data structure, cyclic, 12.3
data structure, recursive, 4.4, 4.4, 4.5
data type, bit-set, 3.6.1
database driver, MySQL, 10.2
database/sql package, 7.13, 10.5
daysAgo function, 4.6
deadbeef, 3.1, 3.6.2
deadlock, 8.4.4, 8.6, 9.2
declaration, const, 1.4, 3.6
declaration, func, 1.1, 2.2, 5.1
declaration, import, 1.1, 2.2, 2.6.1, 10.2, 10.4, 13.4
declaration, method, 2.5, 6.1
declaration, package, 1.1, 2.2, 2.6, 10.3
declaration, package-level, 2.2
declaration scope, 2.7, 5.6
declaration, shadowing, 2.7, 2.7, 7.10, 7.13
declaration, short variable, 1.2, 1.2, 2.3.1, 2.3.1
declaration statement, short variable, 1.2
declaration, struct, 4.4
declaration, type, 2.5
declaration, var, 1.2, 2.3

declarations, order of, 2.7
decode example, S-expression, 12.6
decoder API, token-based, 7.14, 7.14, 12.6
decoding, S-expression, 12.6
decoding, XML, 7.14
decrement statement --, 1.2, 2.4
dedup example, 4.3
deep equivalence, 4.2, 11.2.5, 13.3
default case in select, 8.7
default case in switch, 1.8
default case in type switch, 7.13
defer anonymous function, 5.8
defer example, 5.9, 5.9
defer statement, 5.8, 5.9, 9.2
deferred function call, 5.8
delete built-in function, 4.3
depth-first search algorithm, 5.6
dereference, implicit, 6.2
diagram, helloworld substring, 3.5.3
diagram, pipeline, 8.4.2
diagram, slice capacity growth, 4.2.1
diagram, slice of months, 4.2
diagram, string sharing, 3.5
diagram, struct hole, 13.1
diagram, thumbnail sequence, 8.5
digital artifact example, 7.3
Dijkstra, Edsger, 11.3
Dilbert, 4.4
directed acyclic graph, 5.6, 10.1
directory traversal, concurrent, 8.8
discriminated union, 7.13, 7.13, 7.14
display example, 12.3
Display function, 12.3
display function, 12.3
displaying methods of a type, 12.8
Distance function, 6.1
doc comment, 2.6, 10.7.4

doc.go doc comment file, 2.6, 10.7.4
documentation, package, 10.7.4
domain name, import path, 10.2
dot . in template, 4.6
downloading packages, 10.7.2
Dr. Strangelove, 12.3
draining a channel, 8.4.2, 8.9
du example, 8.8, 8.8, 8.8
dup example, 1.3, 1.3, 1.3
duplicate suppression, 9.7
dynamic dispatch, 7.5
dynamic type, interface, 7.5

E
echo example, 1.2, 1.2, 2.3.2, 11.2.2
echo server, concurrent, 8.3
echo test, 11.2.2
echo_test.go, 11.2.2
effective tests, writing, 11.2.5, 11.2.6
email client, 11.2.3
embarrassingly parallel, 8.5
embedded struct field, 6.3
embedding, interface, 7.2
embedding, struct, 4.4.3, 6.3
Employee struct, 4.4
empty select statement, 8.7
empty interface type, 7.3
empty string, 1.2, 1.2, 2.3
empty struct, 4.4
encapsulation, 6.6, 10.1
encoding API, 7.14, 12.4
encoding, S-expression, 12.4, 12.4
encoding/json package, 4.5
encoding/xml package, 4.5, 7.14
end of file (EOF), 5.4.2
enum, 3.6.1

environment variable, GOARCH, 10.7.1, 10.7.3
environment variable, GOMAXPROCS, 9.8.3, 11.4
environment variable, GOOS, 10.7.1, 10.7.3
environment variable, GOPATH, Preface, 10.7.1, 10.7.3
environment variable, GOROOT, 10.7.1
equal function, 4.2, 4.3
equality, pointer, 2.3.2
equivalence, deep, 4.2, 11.2.5, 13.3
error API, 5.4, 5.10
error built-in interface, 7.8, 7.8
error built-in type, 1.3, 5.4, 5.9, 7.8
error.Error method, 7.8
errorf function, 5.7
error-handling strategies, 5.4.1, 5.10, 11.2.2, 11.2.5
errors package, 7.8
errors.New function, 7.8
escape, hexadecimal, 3.5.1
escape, HTML, 4.6
escape, octal, 3.5.1
escape sequence, 1.3
escape sequences, table of, 3.5.1
escape, Unicode, 3.5.3, 4.5
escape, URL, 4.5
escaping variables, 2.3.4
eval example, 7.9, 7.9
event multiplexing, 8.7
events, 8.4.1, 8.7
example, appendInt, 4.2.1
example, autoescape, 4.6
example, basename, 3.5.4, 3.5.4
example, boiling, 2.2
example, ByteCounter, 7.1
example, bzipper, 13.4
example, cf, 2.6.1
example, charcount, 4.3
example, chat, 8.10

example, clock, 8.2, 8.2
example, ColoredPoint, 6.3
example, comma, 3.5.4
example, countdown, 8.7, 8.7, 8.7, 8.7
example, coverage_test, 11.3
example, crawl, 8.6, 8.6, 8.6, 8.6
example, customSort, 7.6
example, dedup, 4.3
example, defer, 5.9, 5.9
example, digital artifact, 7.3
example, display, 12.3
example, du, 8.8, 8.8, 8.8
example, dup, 1.3, 1.3, 1.3
example, echo, 1.2, 1.2, 2.3.2, 11.2.2
example, eval, 7.9, 7.9
example, fetch, 1.5, 5.8
example, fetchall, 1.6
example, findlinks, 5.2, 5.3, 5.6
example, ftoc, 2.2
Example function, 11.1, 11.6
example, github, 4.5, 4.5
example, graph, 4.3
example, helloworld, 1.1, 1.1
example, http, 7.7, 7.7, 7.7, 7.7
example, intset, 6.5, 6.5
example, issues, 4.5
example, issueshtml, 4.6
example, issuesreport, 4.6
example, jpeg, 10.5
example, lissajous, 1.4, 1.7, 2.3.4
example, mandelbrot, 3.3
example, memo, 9.7, 9.7, 9.7, 9.7, 9.7, 9.7
example, methods, 12.8
example, movie, 4.5, 4.5
example, netcat, 8.2, 8.3, 8.4.1
example, netflag, 3.6.1

example, nonempty, 4.2.2
example, outline, 5.2, 5.5
example package, bank, 9.1, 9.1, 9.2
example package, bzip, 13.4
example package, format, 12.2
example package, geometry, 6.1
example package, http, 7.7
example package, links, 5.6
example package, memo, 9.7
example package, params, 12.7
example package, storage, 11.2.3, 11.2.3
example package, tempconv, 2.6
example package, thumbnail, 8.5
example, palindrome, 11.2, 11.2, 11.2.1
example, params, 12.7
example, Parse, 5.10
example, pipeline, 8.4.2, 8.4.2, 8.4.3
example, playlist, 7.6
example, rev, 4.2
example, reverb, 8.3, 8.3
example, server, 1.7, 1.7, 1.7
example, sexpr, 12.4
example, S-expression decode, 12.6
example, sha256, 4.1
example, sleep, 7.4
example, spinner, 8.1
example, squares, 5.6
example, sum, 5.7
example, surface, 3.2, 7.9
example, tempconv, 2.5, 7.4, 10.6
example, temperature conversion, 2.2
example, tempflag, 7.4
example, test of word, 11.2
example, thumbnail, 8.5, 8.5, 8.5
example, title, 5.10
example, topoSort, 5.6

example, trace, 5.8
example, treesort, 4.4
example, urlvalues, 6.2.1
example, wait, 5.4.1
example, word, 11.2, 11.2, 11.2.1
example, xmlselect, 7.14
exception, 5.4, 5.9
excessive concurrency, 8.6, 8.6
exclusion, mutual, 9.1, 9.2, 9.4
exclusive lock, 9.2, 9.3, 9.5
exclusive OR operator ^, 3.1
exponential back-off, 5.4.1
export of struct field, 4.4, 4.4.3, 4.5, 4.5, 6.6
export_test.go file, 11.2.4
Expr.Check method, 7.9
expression, addressable, 6.2, 12.5
expression evaluator, 7.9
expression, method, 6.4
expression, receive, 8.4
Expr.Eval method, 7.9
extending a slice, 4.2
Extensible Markup Language (XML), 4.5
external test package, 10.3, 11.2.4

F
Fahrenheit type, 2.5
failure message, test, 11.2
fallthrough statement, 1.8, 7.13
false boolean constant, 3.4
fetch example, 1.5, 5.8
fetchall example, 1.6
fib function, 2.4.1, 8.1
Fibonacci algorithm, 2.4.1, 8.1
field, anonymous struct, 4.4.3, 4.4.3, 4.4.3, 6.3
field, embedded struct, 6.3
field, export of struct, 4.4, 4.4.3, 4.5, 4.5, 6.6

field order, struct, 4.4, 13.1
field selector, 6.1
field, struct, 1.4, 4.4
field tag, omitempty, 4.5
field tag, struct, 4.5, 12.7
figure, Lissajous, 1.4
figure, Mandelbrot, 3.3
figure, three-D surface, 3.2, 7.9
file block, 2.7
file, export_test.go, 11.2.4
file name, Microsoft Windows, 3.5.4
file name, POSIX, 3.5.4
file, _test.go, 10.3, 11.1, 11.2
File Transfer Protocol (FTP), 8.2
findlinks example, 5.2, 5.3, 5.6
fixed-size stack, 5.2
flag, go list -f, 11.2.4
flag, go -race, 9.6
flag, go test -race, 9.7
flag, go test -run, 11.2
flag, go test -v, 11.2
flag, go tool -bench, 11.4
flag, go tool -benchmem, 11.4
flag, go tool -covermode, 11.3
flag, go tool -coverprofile, 11.3
flag, go tool -cpuprofile, 11.5
flag, go tool -nodecount, 11.5
flag, go tool -text, 11.5
flag, go tool -web, 11.5
flag, godoc -analysis, 7.3
flag package, 2.3.2, 7.4
flag.Args function, 2.3.2
flag.Bool function, 2.3.2
flag.Duration function, 7.4
flag.Parse function, 2.3.2
flag.String function, 2.3.2

flag.Value interface, 7.4, 7.4
floating-point number, 3.2
floating-point precision, 3.2, 3.2, 3.3, 3.6.2
floating-point truncation, 2.5, 3.1
fmt package, 1.1
fmt.Errorf function, 5.4.1, 7.8
fmt.Fprintf function, 7.1
fmt.Printf function, 1.3
fmt.Println function, 1.1
fmt.Scanf function, 3.5.5
fmt.Sscanf function, 7.4
fmt.Stringer interface, 7.4, 7.12
for scope, 2.7
for statement, 1.2
forEachNode function, 5.5
foreign-function interface (FFI), 13.4
format, code, 1.1, 1.2, 1.3, 2.7
format example package, 12.2
formatAtom function, 12.2
framework, web, 7.7
ftoc example, 2.2
func declaration, 1.1, 2.2, 5.1
function, anonymous, 1.7, 5.6, 5.6, 8.5
function, append built-in, 4.2.1, 4.2.1, 4.2.1
function argument, 5.1
function, assertion, 11.2.5
function, Benchmark, 11.1, 11.4
function body, missing, 5.1
function, breadthFirst, 5.6
function, btoi, 3.4
function, bufio.NewReader, 4.3
function, bufio.NewScanner, 1.3
function, bufio.ScanWords, 4.3
function, bytes.Equal, 4.2
function call, deferred, 5.8
function call, ok value from, 5.4

function, cap built-in, 4.2, 8.4.4
function, CelsiusFlag, 7.4
function, CheckQuota, 11.2.3, 11.2.3
function, close built-in, 8.4, 8.4.2, 8.9
function, cmplx.Sqrt, 3.3
function comparison, 5.5
function, complex built-in, 3.3
function, copy built-in, 4.2.1
function, daysAgo, 4.6
function, delete built-in, 4.3
function, Display, 12.3
function, display, 12.3
function, Distance, 6.1
function, equal, 4.2, 4.3
function, errorf, 5.7
function, errors.New, 7.8
function, Example, 11.1, 11.6
function, fib, 2.4.1, 8.1
function, flag.Args, 2.3.2
function, flag.Bool, 2.3.2
function, flag.Duration, 7.4
function, flag.Parse, 2.3.2
function, flag.String, 2.3.2
function, fmt.Errorf, 5.4.1, 7.8
function, fmt.Fprintf, 7.1
function, fmt.Printf, 1.3
function, fmt.Println, 1.1
function, fmt.Scanf, 3.5.5
function, fmt.Sscanf, 7.4
function, forEachNode, 5.5
function, formatAtom, 12.2
function, gcd, 2.4.1
function, handler, 1.7, 1.7, 5.10, 7.7, 7.7, 7.7, 12.7
function, html.Parse, 5.2, 5.3
function, http.DefaultServeMux, 7.7
function, http.Error, 7.7

function, http.Get, 1.5, 1.6
function, http.Handle, 7.7
function, http.HandleFunc, 1.7, 1.7, 7.7
function, http.ListenAndServe, 1.7, 7.7
function, http.NewRequest, 8.9
function, http.ServeMux, 7.7
function, hypot, 5.1
function, imag built-in, 3.3
function, image.Decode, 10.5
function, image.RegisterFormat, 10.5
function, incr, 2.3.2
function, init, 2.6.2, 2.7
function, intsToString, 3.5.4
function, io.Copy, 1.5, 1.6
function, ioutil.ReadAll, 1.5, 9.7
function, ioutil.ReadDir, 8.8
function, ioutil.ReadFile, 1.3, 5.8
function, io.WriteString, 7.12
function, itob, 3.4
function, json.Marshal, 4.5
function, json.MarshalIndent, 4.5
function, json.NewDecoder, 4.5
function, json.NewEncoder, 4.5
function, json.Unmarshal, 4.5, 4.6
function, len built-in, 1.2, 3.1, 3.5, 3.5, 4.1, 4.2, 8.4.4
function, links.Extract, 5.6
function literal, 1.7, 5.6, 8.4.1
function, log.Fatalf, 2.7, 5.4.1
function, main, 1.1, 11.2.2
function, make built-in, 1.3, 1.6, 4.2, 4.3, 8.4
function, math.Hypot, 6.1
function, math.Inf, 3.2
function, math.IsInf, 3.2
function, math.IsNaN, 3.2
function, math.NaN, 3.2
function, multi-valued, 1.3, 2.3, 2.4.1, 4.3, 5.3, 5.3

function, mustCopy, 8.2
function, net.Dial, 8.2
function, net.Listen, 8.2
function, new built-in, 2.3.3
function, nil, 5.5
function, os.Close, 1.3
function, os.Exit, 1.5, 2.3.2, 2.7
function, os.Getwd, 2.7
function, os.IsExist, 7.11
function, os.IsNotExist, 7.11
function, os.IsPermission, 7.11
function, os.Open, 1.3
function, os.Stat, 8.8
function, panic built-in, 5.9, 5.9
function parameter, 5.1
function, params.Unpack, 12.7
function, png.Encode, 3.3
function, PopCount, 2.6.2
function, real built-in, 3.3
function, recover built-in, 5.10
function, recursive anonymous, 5.6
function, reflect.TypeOf, 12.2
function, reflect.ValueOf, 12.2, 12.2, 12.3
function, reflect.Zero, 12.6
function, regexp.Compile, 5.9
function, regexp.MustCompile, 5.9
function result list, 5.1
function, runtime.Stack, 5.9
function, SearchIssues, 4.5
function, sexpr.Marshal, 12.4
function, sexpr.readList, 12.6
function, sexpr.Unmarshal, 12.6
function signature, 5.1
function, sort.Float64s, 7.6
function, sort.Ints, 7.6
function, sort.IntsAreSorted, 7.6

function, sort.Reverse, 7.6
function, sort.Strings, 4.3, 5.6, 7.6
function, Sprint, 12.1
function, sqlQuote, 7.13, 7.13
function, strconv.Atoi, 1.7, 3.5.5
function, strconv.FormatInt, 3.5.5
function, strconv.Itoa, 3.5.5
function, strconv.ParseInt, 3.5.5
function, strconv.ParseUint, 3.5.5
function, strings.Contains, 3.5.3
function, strings.HasPrefix, 3.5.3
function, strings.HasSuffix, 3.5.3
function, strings.Index, 10.6
function, strings.Join, 1.2, 1.3
function, strings.Map, 5.5
function, strings.NewReader, 10.6
function, strings.NewReplacer, 10.6
function, strings.Split, 1.3
function, strings.ToLower, 3.5.4
function, strings.ToUpper, 3.5.4
function, template.Must, 4.6
function, template.New, 4.6
function, Test, 11.1
function, time.After, 8.7
function, time.AfterFunc, 6.4
function, time.Now, 8.2
function, time.Parse, 8.2
function, time.Since, 4.6
function, time.Tick, 8.7, 8.7
function, title, 5.8, 5.8
function type, 5.1, 5.1
function, unicode.IsDigit, 3.5.4
function, unicode.IsLetter, 3.5.4
function, unicode.IsLower, 3.5.4
function, unicode.IsSpace, 4.2.2
function, unicode.IsUpper, 3.5.4

function, unsafe.AlignOf, 13.1
function, unsafe.Offsetof, 13.1
function, unsafe.Sizeof, 13.1
function, url.QueryEscape, 4.5
function, utf8.DecodeRuneInString, 3.5.3
function, utf8.RuneCountInString, 3.5.3
function value, 5.5
function, variadic, 5.7, 7.1
function, visit, 5.2
function, WaitForServer, 5.4.1
function, walkDir, 8.8
function zero value, 5.5

G
garbage collection, Preface, Preface, 1.2, 2.3.4, 8.4.2, 13, 13.2
garbage collector, moving, 13.2
GCD algorithm, 2.4.1
gcd function, 2.4.1
geometry example package, 6.1
geometry.Point.Distance method, 6.1
getter method, 6.6
GIF animation, 1.4
github example, 4.5, 4.5
GitHub issue tracker, 4.5
Go Blog, Preface, 11.5
go build , 1.1, 10.4, 10.7.3, 10.7.3
go doc , 10.7.4
go doc tool, 1.8
go env , 10.7.1
go get , Preface, 1.1, 10.7.2, 10.7.2
go help , 10.7
go install , 10.7.3
Go issue, 4.5, 4.5, 13.2
go list , 10.7.6, 11.2.4
go list -f flag, 11.2.4
Go Playground, Preface, 11.6

go -race flag, 9.6
go run , 1.1, 10.7.3
go statement, 1.6, 8.1
go test , 11, 11.1, 11.1, 11.2
go test -race flag, 9.7
go test -run flag, 11.2
go test -v flag, 11.2
go tool, 1.1, 2.6.1, 2.6.2, 10.7
go tool -bench flag, 11.4
go tool -benchmem flag, 11.4
go tool cover , 11.3, 11.3, 11.3
go tool -covermode flag, 11.3
go tool -coverprofile flag, 11.3
go tool -cpuprofile flag, 11.5
go tool -nodecount flag, 11.5
go tool pprof , 11.5
go tool -text flag, 11.5
go tool -web flag, 11.5
GOARCH environment variable, 10.7.1, 10.7.3
godoc -analysis flag, 7.3
godoc tool, Preface, 1.8, 10.7.4, 11.6
gofmt tool, 1.1, 1.2, 2.6.1, 10.4
goimports tool, 1.1, 2.6.1, 10.4
golang.org/x/net/html package, 5.2
golint tool, 10.7.2
GOMAXPROCS environment variable, 9.8.3, 11.4
GOOS environment variable, 10.7.1, 10.7.3
GOPATH environment variable, Preface, 10.7.1, 10.7.3
gopl.io repository, Preface
GOROOT environment variable, 10.7.1
goroutine, 1.6, 8.1, 8.4.4, 8.5
goroutine, closer, 8.5, 8.8
goroutine identity, 9.8.4
goroutine leak, 8.4.4, 8.5, 8.7
goroutine, monitor, 9.1, 9.7
goroutine multiplexing, 9.8.2

goroutine vs. OS thread, 9.8
goto statement, 1.8
graph example, 4.3
GraphViz, 11.5
Griesemer, Robert, Preface
growth, stack, 5.2, 9.8.1, 13.2
guarding mutex, 9.2

H
half-open interval, 1.2
handler function, 1.7, 1.7, 5.10, 7.7, 7.7, 7.7, 12.7
“happens before” relation, 8.4.1, 9.1, 9.1, 9.7
“has a” relationship, 6.3
hash table, 1.3, 4.3
Haskell programming language, Preface
heap allocation, 2.3.4
heap profile, 11.5
heap variable, 2.3.4
helloworld substring diagram, 3.5.3
helloworld example, 1.1, 1.1
hexadecimal escape, 3.5.1
hexadecimal literal, 3.1
hidden pointer, 13.2
Hoare, Tony, Preface
hole, struct, 13.1
HTML anchor element, 5.2
HTML escape, 4.6
HTML injection attack, 4.6
HTML metacharacter, 4.6
HTML parser, 5.2
html.Parse function, 5.2, 5.3
html/template package, 4.6, 4.6
http example, 7.7, 7.7, 7.7, 7.7
http example package, 7.7
HTTP GET request, 1.7, 5.3, 9.7, 12.7
HTTP POST request, 12.7

HTTP request, cancellation of, 8.9
HTTP request multiplexer, 7.7
(*http.Client).Do method, 8.9
http.DefaultClient variable, 8.9
http.DefaultServeMux function, 7.7
http.Error function, 7.7
http.Get function, 1.5, 1.6
http.Handle function, 7.7
http.HandleFunc function, 1.7, 1.7, 7.7
http.Handler interface, 7.7, 7.7
http.HandlerFunc type, 7.7, 7.9
http.ListenAndServe function, 1.7, 7.7
http.NewRequest function, 8.9
http.Request type, 1.7, 8.9
(*http.Request).ParseForm method, 1.7, 12.7
http.ResponseWriter type, 1.7, 1.7, 7.7, 7.7
http.ServeMux function, 7.7
hypot function, 5.1

I
identifier _, blank, 1.2, 2.4.1, 4.3, 5.1, 5.3, 10.5
identifier, qualified, 2.6, 2.6.1
identity, goroutine, 9.8.4
IEEE 754 standard, 3.2, 3.2
if, initialization statement in, 1.7, 7.10
if-else scope, 2.7
if-else statement, 1.3, 1.7, 2.7
imag built-in function, 3.3
image manipulation, 5.2
image package, 3.3, 10.5
image/color package, 1.4
image.Decode function, 10.5
image/png package, 10.5
image.RegisterFormat function, 10.5
imaginary literal, 3.3
immutability, 9.1

immutability, string, 3.5, 3.5.4
implementation with slice, stack, 4.2.2, 7.14
implicit &, 6.2, 6.5
implicit assignment, 2.4.2
implicit conversion, 3.6.2
implicit dereference, 6.2
import, blank, 10.5
import declaration, 1.1, 2.2, 2.6.1, 10.2, 10.4, 13.4
import path, 10.2, 10.2
import path domain name, 10.2
import, renaming, 10.4
incr function, 2.3.2
increment statement ++, 1.2, 2.4, 4.3
index operation, string, 3.5
indirection operator *, 1.8, 2.3.2
infinite loop, 1.2, 5.1, 8.4.2
information hiding, 6.6, 10.1
init function, 2.6.2, 2.7
initialization, lazy, 9.5
initialization, package, 2.6.2
initialization statement in if, 1.7, 7.10
initialization statement in switch, 1.8
initializer list, 2.3
injection attack, HTML, 4.6
injection attack, SQL, 7.13
in-place slice techniques, 4.2.2
insertion sort algorithm, 4.4
int type, 3.1
integer literal, 3.1
integer overflow, 3.1, 4.5
integer, signed, 3.1, 3.1
integer, unsigned, 3.1, 3.1
integration test, 11.2.4
interface assignability, 7.3
interface comparison, 7.5
interface dynamic type, 7.5
interface embedding, 7.2

interface, error built-in, 7.8, 7.8
interface, flag.Value, 7.4, 7.4
interface, fmt.Stringer, 7.4, 7.12
interface, http.Handler, 7.7, 7.7
interface, io.Closer, 7.2
interface, io.Reader, 7.2
interface, io.Writer, 1.4, 1.7, 7.1, 7.2, 7.5.1, 7.12, 7.12, 11.2.2
interface, JSON, 4.5
interface method call, 7.5
interface, nil, 7.5
interface pitfall, 7.5.1
interface, ReadWriteCloser, 7.2
interface, ReadWriter, 7.2
interface satisfaction, 7, 7.3
interface, sort.Interface, 7.6
interface{} type, 5.7
interface type, 7.1, 7.2
interface{} type, 7.3, 12.2, 12.2
interface type assertion, 7.12, 7.12
interface type, empty, 7.3
interface value, 7.5
interface with nil pointer, 7.5.1
interface zero value, 7.5
interfaces as contracts, 7.1
internal package, 10.7.5
intset example, 6.5, 6.5
intsToString function, 3.5.4
invariants, 6.2, 6.6, 6.6, 9.2, 10.1, 11.2.3, 12.9
io package, 7.2
io.Closer interface, 7.2
io.Copy function, 1.5, 1.6
io.Discard stream, 1.7
io.Discard variable, 1.6
io.EOF variable, 5.4.2
io/ioutil package, 1.5, 5.8
io.Reader interface, 7.2

iota constant generator, Preface, 3.6.1
ioutil.ReadAll function, 1.5, 9.7
ioutil.ReadDir function, 8.8
ioutil.ReadFile function, 1.3, 5.8
io.Writer interface, 1.4, 1.7, 7.1, 7.2, 7.5.1, 7.12, 7.12, 11.2.2
io.WriteString function, 7.12
“is a” relationship, 6.3, 7.3
issue, Go, 4.5, 4.5, 13.2
issue tracker, GitHub, 4.5
issues example, 4.5
issueshtml example, 4.6
issuesreport example, 4.6
iteration order, map, 4.3
iteration variable, capturing, 5.6.1
itob function, 3.4

J
Java programming language, Preface
JavaScript Object Notation (JSON), 4.5, 12.4
JavaScript programming language, Preface, 4.5
jpeg example, 10.5
JSON interface, 4.5
JSON interface, Open Movie Database, 4.5
JSON interface, xkcd, 4.5
JSON, marshaling, 4.5
JSON, unmarshaling, 4.5
json.Decoder type, 4.5
json.Encoder type, 4.5
json.Marshal function, 4.5
json.MarshalIndent function, 4.5
json.NewDecoder function, 4.5
json.NewEncoder function, 4.5
json.Unmarshal function, 4.5, 4.6

K
keyword, type, 7.13

keywords, table of, 2.1
Knuth, Donald, 11.5

L
label scope, 2.7
label, statement, 2.7
labeled break statement, 8.8
labeled continue statement, 8.8
labeled statement, 2.7

layout, memory, 13, 13.1, 13.1
lazy initialization, 9.5
leak, goroutine, 8.4.4, 8.5, 8.7
left shift operator <<, 3.1
len built-in function, 1.2, 3.1, 3.5, 3.5, 4.1, 4.2, 8.4.4
lexical block, 2.7, 5.1, 5.6, 5.6.1, 7.13
lexical closure, 5.6
lifetime, variable, 2.3.4, 2.7, 5.6
links example package, 5.6
links.Extract function, 5.6
Lisp programming language, 12.4
Lissajous algorithm, 1.4
lissajous example, 1.4, 1.7, 2.3.4
Lissajous figure, 1.4
list, initializer, 2.3
literal, array, 4.1, 4.1, 4.2
literal, composite, 1.4
literal, function, 1.7, 5.6, 8.4.1
literal, hexadecimal, 3.1
literal, imaginary, 3.3
literal, integer, 3.1
literal, map, 4.3
literal, octal, 3.1
literal, raw string, 3.5.1
literal, rune, 3.1
literal, slice, 2.4.2, 4.2
literal, string, 3.5.1
literal, struct, 1.4, 4.4.1, 4.4.3
local block, 2.7
local variable, 2.2, 5.6.1
local variable, address of, 2.3.2, 2.3.4
local variable scope, 5.6
locating packages, 10.7.1
lock contention, 9.3, 9.7
lock, exclusive, 9.2, 9.3, 9.5
lock, mutex, 4.4, 9.2, 9.2, 11.5
lock, non-reentrant, 9.2

lock, readers, 9.3
lock, shared, 9.3
lock, writer, 9.3
log package, 2.7, 5.4.1, 6.6
log.Fatalf function, 2.7, 5.4.1
lookup m[key], map, 4.3
lookup, ok value from map, 4.3
loop, infinite, 1.2, 5.1, 8.4.2
loop, range, 1.2, 1.3
loop variable, capturing, 5.6.1, 8.5, 8.6
loop variable scope, 5.6.1, 8.5
loop, while, 1.2

M
main function, 1.1, 11.2.2
main, package, 1.1, 10.3, 11.2.2
make built-in function, 1.3, 1.6, 4.2, 4.3, 8.4
make channel, 1.6, 8.4
make map, 1.3, 1.6, 4.3
make slice, 4.2, 11.4
mandelbrot example, 3.3
Mandelbrot figure, 3.3
Mandelbrot set, 3.3
map as set, 4.3, 7.9
map comparison, 4.3
map element, nonexistent, 4.3, 4.3
map iteration order, 4.3
map literal, 4.3
map lookup m[key], 4.3
map lookup, ok value from, 4.3
map, make, 1.3, 1.6, 4.3
map, nil, 4.3
map, range over, 4.3
map type, 1.3, 4.3
map with slice key, 4.3
map zero value, 4.3

marshaling JSON, 4.5
math package, 1.4, 3.2
math/big package, 3.3
math/cmplx package, 3.3
math.Hypot function, 6.1
math.Inf function, 3.2
math.IsInf function, 3.2
math.IsNaN function, 3.2
math.NaN function, 3.2
math/rand package, 10.3, 11.2.1
memo example, 9.7, 9.7, 9.7, 9.7, 9.7, 9.7
memo example package, 9.7
memoization, 9.7
memory allocation, 2.3.4, 2.3.4, 3.5.4, 4.2.1, 6.6, 7.12, 11.4
memory layout, 13, 13.1, 13.1
metacharacter, HTML, 4.6
method, (*bufio.Reader).ReadRune, 4.3, 4.3
method, (*bufio.Scanner).Err, 4.3
method, (*bufio.Scanner).Scan, 1.3
method, (*bufio.Scanner).Split, 4.3
method, (*bytes.Buffer).Grow, 6.6
method, (*bytes.Buffer).WriteByte, 3.5.4
method, (*bytes.Buffer).WriteRune, 3.5.4
method, (*bytes.Buffer).WriteString, 3.5.4
method call, interface, 7.5
method chaining, 4.6
method declaration, 2.5, 6.1
method, error.Error, 7.8
method, Expr.Check, 7.9
method expression, 6.4
method, Expr.Eval, 7.9
method, geometry.Point.Distance, 6.1
method, getter, 6.6
method, (*http.Client).Do, 8.9
method, (*http.Request).ParseForm, 1.7, 12.7
method name, 6.1

method, net.Conn.Close, 8.2
method, net.Listener.Accept, 8.2
method, (*os.File).Write, 7.5
method, path.Distance, 6.1
method promotion, 6.3
method receiver name, 6.1
method receiver parameter, 6.1
method receiver type, 6.1
method, reflect.Type.Field, 12.7
method, reflect.Value.Addr, 12.5
method, reflect.Value.CanAddr, 12.5
method, reflect.Value.Interface, 12.2, 12.5
method, reflect.Value.Kind, 12.2
method selector, 6.1
method, setter, 6.6
method, String, 2.5, 6.5, 12.1
method, (*sync.Mutex).Lock, 1.7, 5.8, 9.2
method, (*sync.Mutex).Unlock, 1.7, 5.8, 9.2
method, (*sync.Once).Do, 9.5
method, (*sync.RWMutex).RLock, 9.3
method, (*sync.RWMutex).RUnlock, 9.3
method, (*sync.WaitGroup).Add, 8.5
method, (*sync.WaitGroup).Done, 8.5
method, template.Funcs, 4.6
method, template.Parse, 4.6
method, (*testing.T).Errorf, 7.9, 11.2, 11.2
method, (*testing.T).Fatal, 11.2
method, time.Time.Format, 8.2
method value, 6.4
method, (*xml.Decoder).Token, 7.14
methods example, 12.8
methods of a type, displaying, 12.8
Microsoft Windows file name, 3.5.4
missing function body, 5.1
m[key], map lookup, 4.3
mobile platforms, 5.2

Modula-2 programming language, Preface
modularity, 10.1
monitor, 9.2, 9.7
monitor goroutine, 9.1, 9.7
movie example, 4.5, 4.5
moving garbage collector, 13.2
multimap, 6.2.1, 7.7
multiple-value assignment, 2.4.1
multiplexer, HTTP request, 7.7
multiplexing, event, 8.7
multiplexing, goroutine, 9.8.2
multithreading, shared-memory, 8, 9
multi-valued function, 1.3, 2.3, 2.4.1, 4.3, 5.3, 5.3
mustCopy function, 8.2
mutex, 5.8, 6.3, 8.10, 9.5
mutex, guarding, 9.2
mutex lock, 4.4, 9.2, 9.2, 11.5
mutex, read/write, 9.3, 9.3
mutual exclusion, 9.1, 9.2, 9.4
MySQL database driver, 10.2

N
name, method, 6.1
name, method receiver, 6.1
name, package, 2.1, 2.6.1
name, parameter, 5.1
name space, 2.6, 6.1, 10.1
named result, 5.1, 5.3
named result zero value, 5.1, 5.3
named type, 1.8, 2.5, 2.5, 4.4.3, 6.1
naming convention, 2.1, 6.6, 7.2, 10.6
naming, package, 10.6
NaN (not a number), 3.2, 4.3
narrowing conversion, 2.5, 3.1
negation operator !, 3.4
net package, 8.2
netcat example, 8.2, 8.3, 8.4.1

net.Conn type, 8.2
net.Conn.Close method, 8.2
net.Dial function, 8.2
netflag example, 3.6.1
net/http package, 1.5, 7.7
net.Listen function, 8.2
net.Listener type, 8.2
net.Listener.Accept method, 8.2
net/smtp package, 11.2.3
net/url package, 6.2.1
networking, 5.2, 8.2
new built-in function, 2.3.3
new, redefining, 2.3.3
nil channel, 8.7, 8.8
nil function, 5.5
nil interface, 7.5
nil map, 4.3
nil pointer, 2.3.2
nil pointer, interface with, 7.5.1
nil receiver, 6.2.1, 7.5.1
nil slice, 4.2
non-blocking cache, 9.7
non-blocking cache, concurrent, 9.7
non-blocking channel receive, 8.7
non-blocking select, 8.7
nonempty example, 4.2.2
nonexistent map element, 4.3, 4.3
non-reentrant lock, 9.2
non-standard package, 5.2
number, floating-point, 3.2
number zero value, 1.2, 2.3
numeric conversion, 3.6.2
numeric precision, 3.1, 3.6.2
numeric type, 3.1

O

Oberon programming language, Preface
object, 6.1
object-oriented programming (OOP), 6, 6.6
octal escape, 3.5.1
octal literal, 3.1
ok value, 2.4.1
ok value from channel receive, 8.4.2
ok value from function call, 5.4
ok value from map lookup, 4.3
ok value from type assertion, 7.10
omitempty field tag, 4.5
Open Movie Database JSON interface, 4.5
operation, atomic, 9.2
operation, conversion, 2.5, 3.1, 3.1, 3.1, 3.4, 3.5.3, 3.6.2, 3.6.2, 7.1, 7.6, 7.7, 7.12, 8.4.3, 13,
13.2
operator &, address-of, 1.8, 2.3.2, 2.3.2, 2.3.2, 4.3, 6.2, 6.5
operator &^, AND-NOT, 3.1
operator &^, bit-clear, 3.1
operator ^, bitwise complement, 3.1
operator |, bitwise OR, 6.5, 6.5
operator ==, comparison, 2.5, 3.4
operator ^, exclusive OR, 3.1
operator *, indirection, 1.8, 2.3.2
operator <<, left shift, 3.1
operator !, negation, 3.4
operator %, remainder, 3.1, 6.5
operator >>, right shift, 3.1
operator &&, short-circuit AND, 3.4
operator ||, short-circuit OR, 3.4
operator -, unary, 3.1
operator += , -= , etc., assignment, 1.2
operator +, string concatenation, 1.2, 3.5
operator +, unary, 3.1
operator associativity, 3.1
operator precedence, 3.1, 3.4
operator s[i:j], slice, 4.2, 4.2

operator s[i:j], substring, 3.5, 4.2
operators, assignment, 2.4, 3.1
operators, comparison, 2.5, 4.3
operators, table of binary, 3.1
operators, table of bitwise, 3.1
operators, table of comparison, 3.1
optimization, 9.2, 11.4, 11.5
optimization, premature, 11.5
OR operator ||, short-circuit, 3.4
order of declarations, 2.7
order, struct field, 4.4, 13.1
organization, workspace, 10.7.1
os package, 1.2, 7.11
OS thread vs. goroutine, 9.8
os.Args variable, 1.2
os.Close function, 1.3
os.Exit function, 1.5, 2.3.2, 2.7
*os.File type, 1.3, 1.3, 7.1, 7.3, 7.5.1, 12.3
os.FileInfo type, 8.8
(*os.File).Write method, 7.5
os.Getwd function, 2.7
os.IsExist function, 7.11
os.IsNotExist function, 7.11
os.IsPermission function, 7.11
os.LinkError type, 7.11
os.Open function, 1.3
os.PathError type, 7.11
os.Stat function, 8.8
outline example, 5.2, 5.5
overflow, integer, 3.1, 4.5
overflow, stack, 5.2

P
package API, 10.1, 10.7.4, 11.2.3, 12.3, 12.9
package back-door, 11.2.4
package, bank example, 9.1, 9.1, 9.2

package block, 2.7
package, bufio, 1.3
package, bytes, 3.5.4, 3.5.4
package, bzip example, 13.4
package, compress/bzip2, 13.4
package, crypto/sha256, 4.1
package, database/sql, 7.13, 10.5
package declaration, 1.1, 2.2, 2.6, 10.3
package documentation, 10.7.4
package, encoding/json, 4.5
package, encoding/xml, 4.5, 7.14
package, errors, 7.8
package, external test, 10.3, 11.2.4
package, flag, 2.3.2, 7.4
package, fmt, 1.1
package, format example, 12.2
package, geometry example, 6.1
package, golang.org/x/net/html, 5.2
package, html/template, 4.6, 4.6
package, http example, 7.7
package, image, 3.3, 10.5
package, image/color, 1.4
package, image/png, 10.5
package initialization, 2.6.2
package, internal, 10.7.5
package, io, 7.2
package, io/ioutil, 1.5, 5.8
package, links example, 5.6
package, log, 2.7, 5.4.1, 6.6
package main, 1.1, 10.3, 11.2.2
package, math, 1.4, 3.2
package, math/big, 3.3
package, math/cmplx, 3.3
package, math/rand, 10.3, 11.2.1
package, memo example, 9.7
package name, 2.1, 2.6.1

package naming, 10.6
package, net, 8.2
package, net/http, 1.5, 7.7
package, net/smtp, 11.2.3
package, net/url, 6.2.1
package, non-standard, 5.2
package, os, 1.2, 7.11
package, params example, 12.7
package, path, 3.5.4
package, path/filepath, 3.5.4
package, reflect, 12.2
package, regexp, 5.9
package, runtime, 5.9
package, sort, 4.3, 7.6, 7.6
package, storage example, 11.2.3, 11.2.3
package, strconv, 1.7, 3.5.4, 3.5.5
package, strings, 1.2, 3.5.4, 3.5.4, 10.6
package, sync, 8.5, 9.2
package, syscall, 7.8, 7.11
package, tempconv example, 2.6
package, testing, 10.3, 11.2
package, text/scanner, 12.6
package, text/tabwriter, 7.6
package, text/template, 4.6, 10.7.6
package, thumbnail example, 8.5
package, time, 1.6, 3.6.1, 7.5
package, unicode, 3.5.4
package, unicode/utf8, 3.5.3
package, unsafe, 13
package-level declaration, 2.2
packages, building, 10.7.3
packages, downloading, 10.7.2
packages, locating, 10.7.1
packages, querying, 10.7.6
palindrome, 7.6
palindrome example, 11.2, 11.2, 11.2.1

panic, 3.5, 5.10, 8.9
panic built-in function, 5.9, 5.9
paradoxical race, 9.4
parallel composition, 8.3
parallel, embarrassingly, 8.5
parallelism, 8
parameter, ..., 4.2.1, 5.7, 5.7, 7.1
parameter, function, 5.1
parameter, method receiver, 6.1
parameter name, 5.1
parameter passing, 5.1
parameter, unused, 5.1
params example, 12.7
params example package, 12.7
params.Unpack function, 12.7
parentheses, 1.2, 1.2, 1.3, 3.1, 3.4, 5.1, 5.8, 6.2, 10.4, 12.3, 12.6
Parse example, 5.10
parser, HTML, 5.2
Pascal programming language, Preface
path, ..., 10.7.2, 10.7.6
path package, 3.5.4
path.Distance method, 6.1
path/filepath package, 3.5.4
Pike, Rob, Preface, Preface, Preface, 3.5.3, 4.5
pipeline, 8.4.2
pipeline diagram, 8.4.2
pipeline example, 8.4.2, 8.4.2, 8.4.3
pitfall, interface, 7.5.1
pitfall, scope, 5.6.1
platforms, mobile, 5.2
Playground, Go, Preface, 11.6
playlist example, 7.6
png.Encode function, 3.3
pointer, 1.8, 2.3.2, 2.3.3
pointer aliasing, 2.3.2
pointer argument, 2.3.2, 4.1
pointer equality, 2.3.2

pointer, hidden, 13.2
pointer, nil, 2.3.2
pointer receiver, 6.2, 6.5
pointer to struct, 4.4, 4.4.1
pointer zero value, 2.3.2
polling channel, 8.7
polymorphism, ad hoc, 7.13
polymorphism, subtype, 7.13
PopCount function, 2.6.2
Portable Network Graphics (PNG), 3.3
POSIX file name, 3.5.4
POSIX standard, Preface, 3.1, 3.5.4, 7.8
precedence, operator, 3.1, 3.4
precision, floating-point, 3.2, 3.2, 3.3, 3.6.2
precision, numeric, 3.1, 3.6.2
precision of constants, 3.6.2
predeclared names, table of, 2.1
premature abstraction, 7.15, 11.2.5, 11.2.5
premature optimization, 11.5
Printf %% , 1.3
Printf verbs, table of, 1.3
Printf %b , 1.3, 3.1, 3.5.5
Printf %c , 1.3, 3.1
Printf %d , 1.3, 3.1
Printf %e , 1.3, 3.2
Printf %f , 1.3, 3.2
Printf %g , 1.3, 3.2
Printf %[n], 3.1
Printf %o , 1.3, 3.1
Printf %q , 1.3, 3.1, 4.3
Printf %s , 1.3
Printf %*s , 5.5, 5.5
Printf %T , 1.3
Printf %t , 1.3
Printf %T , 3.6.2
Printf %t , 4.1

Printf %T , 4.1, 7.5, 12.2
Printf %v , 1.3, 1.3
Printf %#v , 4.4.3, 7.11
Printf %x , 1.3, 3.1
Printf %#x , 3.1
Printf % x , 3.5.3
Printf %x , 4.1
production code, 11
profile, blocking, 11.5
profile, CPU, 11.5
profile, heap, 11.5
profiling, 11.5
programming language, Alef, Preface
programming language, APL, Preface
programming language, C, Preface, Preface, 1.1, 1.2, 3.1, 9.1, 13.4
programming language, C++, Preface, Preface, 13.4
programming language, Haskell, Preface
programming language, Java, Preface
programming language, JavaScript, Preface, 4.5
programming language, Lisp, 12.4
programming language, Modula-2, Preface
programming language, Oberon, Preface
programming language, Pascal, Preface
programming language, Python, Preface, 7.7
programming language, Ruby, Preface, 7.7
programming language, Scheme, Preface
programming language, Squeak, Newsqueak, Preface
promotion, method, 6.3
protocol buffers, 4.5
Python programming language, Preface, 7.7

Q
qualified identifier, 2.6, 2.6.1
querying packages, 10.7.6
quote character, ', 3.1

R
race condition, 1.7, 9.1, 9.1, 9.1
race detector, 9.6, 9.7
race, paradoxical, 9.4
randomized testing, 11.2.1
range over channel, 8.4.2
range over map, 4.3
range over string, 3.5.3, 4.2.1
range loop, 1.2, 1.3
{{range}} template action, 4.6
raw string literal, 3.5.1
reachability, 2.3.4
read, stale, 9.4
readers lock, 9.3
read/write mutex, 9.3, 9.3
ReadWriteCloser interface, 7.2
ReadWriter interface, 7.2
real built-in function, 3.3
receive <-ch, channel, 1.6, 8.4, 8.4.4
receive expression, 8.4
receive, non-blocking channel, 8.7
receive, ok value from channel, 8.4.2
receive-only channel type <-chan T , 8.4.3
receiver name, method, 6.1
receiver, nil, 6.2.1, 7.5.1
receiver parameter, method, 6.1
receiver, pointer, 6.2, 6.5
receiver type, method, 6.1
recover built-in function, 5.10
recursion, 5.2, 5.2, 8.8, 12.3, 12.4, 12.6, 13.3
recursive anonymous function, 5.6
recursive data structure, 4.4, 4.4, 4.5
recursive type, 2.7
redefining new, 2.3.3
reference, call by, 4.1
reference identity, 4.2
reference type, 1.3, 1.3, 4.3, 5.1

reflect package, 12.2
reflection, 12, 12.9, 13.3
reflect.StructTag type, 12.7
reflect.Type type, 12.2
reflect.Type.Field method, 12.7
reflect.TypeOf function, 12.2
reflect.Value type, 12.2, 12.5
reflect.Value zero value, 12.2
reflect.Value.Addr method, 12.5
reflect.Value.CanAddr method, 12.5
reflect.Value.Interface method, 12.2, 12.5
reflect.Value.Kind method, 12.2
reflect.ValueOf function, 12.2, 12.2, 12.3
reflect.Zero function, 12.6
regexp package, 5.9
regexp.Compile function, 5.9
regexp.MustCompile function, 5.9
regular expression, 3.5.1, 5.9, 5.9, 11.2, 11.4
relation, “happens before”, 8.4.1, 9.1, 9.1, 9.7
relationship, “has a”, 6.3
relationship, “is a”, 6.3, 7.3
remainder operator %, 3.1, 6.5
renaming import, 10.4
rendezvous, 8.4.4
replacement character , Unicode, 3.5.3, 4.3
repository, gopl.io, Preface
request, HTTP GET, 1.7, 5.3, 9.7, 12.7
request, HTTP POST, 12.7
request multiplexer, HTTP, 7.7
result list, function, 5.1
result, named, 5.1, 5.3
return, bare, 5.3
return statement, 2.2, 5.1, 5.3
rev example, 4.2
reverb example, 8.3, 8.3
right shift operator >>, 3.1

Ruby programming language, Preface, 7.7
rune literal, 3.1
rune slice to string conversion, 3.5.3
rune to string conversion, 3.5.3
rune type, 3.1, 3.5.2
runtime API, 11.5
runtime package, 5.9
runtime scheduler, 9.8.2
runtime.Stack function, 5.9

S
satisfaction, interface, 7, 7.3
Scalable Vector Graphics (SVG), 3.2
scheduler, runtime, 9.8.2
Scheme programming language, Preface
scope, declaration, 2.7, 5.6
scope, for, 2.7
scope, if-else, 2.7
scope, label, 2.7
scope, local variable, 5.6
scope, loop variable, 5.6.1, 8.5
scope pitfall, 5.6.1
scope, short variable declaration, 1.7, 2.7
scope, switch, 2.7
search algorithm, breadth-first, 5.6, 8.6
search algorithm, depth-first, 5.6
SearchIssues function, 4.5
select statement, empty , 8.7
select case, 8.7
select, default case in, 8.7
select, non-blocking, 8.7
select statement, 8.7, 8.7
select{} statement, 8.7
selective recovery, 5.10
selector, field, 6.1
selector, method, 6.1

semaphore, binary, 9.2
semaphore, counting, 8.6
semicolon, 1.1, 1.2
send ch<-, channel, 1.6, 8.4, 8.4.4
send statement, 8.4
send-only channel type chan<- T , 8.4.3
separate compilation, 10.1
sequence diagram, thumbnail, 8.5
sequential consistency, 9.4, 9.5
serial confinement, 9.1
server, chat, 8.10
server, concurrent clock, 8.2
server, concurrent echo, 8.3
server example, 1.7, 1.7, 1.7
set, map as, 4.3, 7.9
setter method, 6.6
sexpr example, 12.4
S-expression decode example, 12.6
S-expression decoding, 12.6
S-expression encoding, 12.4, 12.4
sexpr.Marshal function, 12.4
sexpr.readList function, 12.6
sexpr.Unmarshal function, 12.6
sha256 example, 4.1
SHA256 message digest, 4.1
shadowing declaration, 2.7, 2.7, 7.10, 7.13
shared lock, 9.3
shared variables, 9
shared variables, concurrency with, 9
shared-memory multithreading, 8, 9
shift operator <<, left, 3.1
shift operator >>, right, 3.1
short variable declaration, 1.2, 1.2, 2.3.1, 2.3.1
short variable declaration scope, 1.7, 2.7
short variable declaration statement, 1.2
short-circuit AND operator &&, 3.4
short-circuit evaluation, 3.4

short-circuit OR operator ||, 3.4
signature, function, 5.1
signed integer, 3.1, 3.1
s[i:j], slice operator, 4.2, 4.2
s[i:j], substring operator, 3.5, 4.2
simple statement, 1.2, 1.7
Sizeof table, 13.1
sleep example, 7.4
slice, 1.2
slice argument, 4.2
slice capacity, 4.2, 4.2.1
slice capacity growth diagram, 4.2.1
slice comparison, 4.2
slice, extending a, 4.2
slice key, map with, 4.3
slice literal, 2.4.2, 4.2
slice, make, 4.2, 11.4
slice, nil, 4.2
slice of months diagram, 4.2
slice operator s[i:j], 4.2, 4.2
slice rotation algorithm, 4.2
slice techniques, in-place, 4.2.2
slice type, 4.2
slice used as stack, 5.2
slice, zero length, 4.2
slice zero value, 3.5.4, 4.2
SMTP client, 11.2.3
socket, TCP, 8.2
socket, UDP, 8.2
socket, Unix domain, 8.2
sort algorithm, topological, 5.6
sort package, 4.3, 7.6, 7.6
sort.Float64s function, 7.6
sort.Interface interface, 7.6
sort.Ints function, 7.6
sort.IntsAreSorted function, 7.6
sort.IntSlice type, 7.6

sort.Reverse function, 7.6
sort.Strings function, 4.3, 5.6, 7.6
spinner example, 8.1
Sprint function, 12.1
SQL API, 7.13
SQL injection attack, 7.13
sqlQuote function, 7.13, 7.13
squares example, 5.6
Squeak, Newsqueak programming language, Preface
stack allocation, 2.3.4
stack, fixed-size, 5.2
stack growth, 5.2, 9.8.1, 13.2
stack implementation with slice, 4.2.2, 7.14
stack overflow, 5.2
stack, slice used as, 5.2
stack trace, 5.9, 8.9
stack variable, 2.3.4
stack, variable-size, 5.2
stale read, 9.4
standard, IEEE 754, 3.2, 3.2
standard, POSIX, Preface, 3.1, 3.5.4, 7.8
standard, Unicode, 1.1, 2.1, 3.1, 3.5.1, 3.5.2, 3.5.3, 3.5.3, 4.3
statement --, decrement, 1.2, 2.4
statement ++, increment, 1.2, 2.4, 4.3
statement, assignment, 1.2, 1.2, 2.4, 3.1, 4.3, 7.1
statement, break, 1.8, 2.7
statement, continue, 1.8, 2.7
statement coverage, 11.3, 11.3
statement, defer, 5.8, 5.9, 9.2
statement, fallthrough, 1.8, 7.13
statement, for, 1.2
statement, go, 1.6, 8.1
statement, goto, 1.8
statement, if-else, 1.3, 1.7, 2.7
statement label, 2.7
statement, labeled, 2.7

statement, return, 2.2, 5.1, 5.3
statement, select, 8.7, 8.7
statement, select{}, 8.7
statement, send, 8.4
statement, short variable declaration, 1.2
statement, simple, 1.2, 1.7
statement, switch, 1.8, 2.7
statement, tagless switch, 1.8
statement, type switch, 7.13, 7.13, 7.14, 12.1
statement, unreachable, 5.1
storage example package, 11.2.3, 11.2.3
Strangelove, Dr., 12.3
strategies, error-handling, 5.4.1, 5.10, 11.2.2, 11.2.5
strconv package, 1.7, 3.5.4, 3.5.5
strconv.Atoi function, 1.7, 3.5.5
strconv.FormatInt function, 3.5.5
strconv.Itoa function, 3.5.5
strconv.ParseInt function, 3.5.5
strconv.ParseUint function, 3.5.5
stream, io.Discard, 1.7
string comparison, 3.5
string concatenation operator +, 1.2, 3.5
string conversion, 3.5.4
string immutability, 3.5, 3.5.4
string index operation, 3.5
string literal, 3.5.1
string literal, raw, 3.5.1
String method, 2.5, 6.5, 12.1
string, range over, 3.5.3, 4.2.1
string sharing diagram, 3.5
string test, 3.5.4
string to byte slice conversion, 2.5, 3.5.4
string to rune slice conversion, 3.5.3, 4.2.1
string zero value, 1.2, 1.2, 2.3
strings package, 1.2, 3.5.4, 3.5.4, 10.6
strings.Contains function, 3.5.3

strings.HasPrefix function, 3.5.3
strings.HasSuffix function, 3.5.3
strings.Index function, 10.6
strings.Join function, 1.2, 1.3
strings.Map function, 5.5
strings.NewReader function, 10.6
strings.NewReplacer function, 10.6
strings.Reader type, 10.6
strings.Replacer type, 10.6
strings.Split function, 1.3
strings.ToLower function, 3.5.4
strings.ToUpper function, 3.5.4
struct comparison, 4.4.2
struct declaration, 4.4
struct embedding, 4.4.3, 6.3
struct, Employee, 4.4
struct, empty, 4.4
struct field, 1.4, 4.4
struct field, anonymous, 4.4.3, 4.4.3, 4.4.3, 6.3
struct field, embedded, 6.3
struct field, export of, 4.4, 4.4.3, 4.5, 4.5, 6.6
struct field order, 4.4, 13.1
struct field tag, 4.5, 12.7
struct hole, 13.1
struct hole diagram, 13.1
struct literal, 1.4, 4.4.1, 4.4.3
struct literal, address of, 4.4.1
struct, pointer to, 4.4, 4.4.1
struct type, 1.4, 1.8, 4.4
struct{} type, 8.4.1, 8.6, 8.8
struct type, unnamed, 6.3
struct zero value, 4.4
substitutability, 7.7
substring operator s[i:j], 3.5, 4.2
subtype polymorphism, 7.13
sum example, 5.7

surface example, 3.2, 7.9
surface figure, three-D, 3.2, 7.9
SVG, 3.2
SWIG, 13.4
Swiss army knife, 10.7
switch, case in type , 7.13
switch, context, 9.8.2
switch, default case in, 1.8
switch, default case in type , 7.13
switch, initialization statement in, 1.8
switch scope, 2.7
switch statement, 1.8, 2.7
switch statement, tagless, 1.8
switch statement, type, 7.13, 7.13, 7.14, 12.1
sync package, 8.5, 9.2
synchronous channel, 8.4.1
sync.Mutex type, 9.2, 9.5
(*sync.Mutex).Lock method, 1.7, 5.8, 9.2
(*sync.Mutex).Unlock method, 1.7, 5.8, 9.2
sync.Once type, 9.5
(*sync.Once).Do method, 9.5
sync.RWMutex type, 9.3, 9.5
(*sync.RWMutex).RLock method, 9.3
(*sync.RWMutex).RUnlock method, 9.3
sync.WaitGroup type, 8.5, 8.8, 9.7
(*sync.WaitGroup).Add method, 8.5
(*sync.WaitGroup).Done method, 8.5
syscall package, 7.8, 7.11
syscall.Errno type, 7.8, 7.8
system call API, 7.8

T
table of binary operators, 3.1
table of bitwise operators, 3.1
table of comparison operators, 3.1
table of escape sequences, 3.5.1

table of keywords, 2.1
table of predeclared names, 2.1
table of Printf verbs, 1.3
table of UTF-8 encodings, 3.5.3
table, Sizeof, 13.1
table-driven testing, 7.9, 11.2, 11.3
tag, struct field, 4.5, 12.7
tagless switch statement, 1.8
tags, build, 10.7.3
TCP socket, 8.2
techniques, in-place slice, 4.2.2
tempconv example, 2.5, 7.4, 10.6
tempconv example package, 2.6
temperature conversion example, 2.2
tempflag example, 7.4
template, | in, 4.6
template action, {{range}}, 4.6
template API, 4.6
template, dot . in, 4.6
template.Funcs method, 4.6
template.HTML type, 4.6
template.Must function, 4.6
template.New function, 4.6
template.Parse method, 4.6
test assertion, 11.2
test, black-box, 11.2.3
test, brittle, 11.2.6
test, character, 3.5.4
test coverage, 11.3
test dependency, cyclic, 11.2.4
test, echo, 11.2.2
test failure message, 11.2
Test function, 11.1
test, integration, 11.2.4
test of word example, 11.2
test package, external, 10.3, 11.2.4

test, string, 3.5.4
test, white-box, 11.2.3
_test.go file, 10.3, 11.1, 11.2
testing a command, 11.2.2
testing package, 10.3, 11.2
testing, randomized, 11.2.1
testing, table-driven, 7.9, 11.2, 11.3
testing.B type, 11.4
testing.T type, 11.2
(*testing.T).Errorf method, 7.9, 11.2, 11.2
(*testing.T).Fatal method, 11.2
tests, writing effective, 11.2.5, 11.2.6
text/scanner package, 12.6
text/tabwriter package, 7.6
text/template package, 4.6, 10.7.6
Thompson, Ken, Preface, 3.5.3
thread, 8.1, 9.8.1
thread-local storage, 9.8.4
three-D surface figure, 3.2, 7.9
thumbnail example, 8.5, 8.5, 8.5
thumbnail example package, 8.5
thumbnail sequence diagram, 8.5
time package, 1.6, 3.6.1, 7.5
time.After function, 8.7
time.AfterFunc function, 6.4
time.Duration type, 3.6, 7.4
time.Minute constant, 3.6
time.Now function, 8.2
time.Parse function, 8.2
time.Second constant, 6.4
time.Since function, 4.6
time.Tick function, 8.7, 8.7
time.Time type, 4.6
time.Time.Format method, 8.2
title example, 5.10
title function, 5.8, 5.8

token-based decoder API, 7.14, 7.14, 12.6
token-based XML decoding, 7.14
tool, cgo, 13.4, 13.4
tool, go, 1.1, 2.6.1, 2.6.2, 10.7
tool, go doc, 1.8
tool, godoc, Preface, 1.8, 10.7.4, 11.6
tool, gofmt, 1.1, 1.2, 2.6.1, 10.4
tool, goimports, 1.1, 2.6.1, 10.4
tool, golint, 10.7.2
topological sort algorithm, 5.6
topoSort example, 5.6
trace example, 5.8
trace, stack, 5.9, 8.9
tree, binary, 4.4
treesort example, 4.4
true boolean constant, 3.4
truncation, floating-point, 2.5, 3.1
tuple assignment, 2.3.1, 2.4.1
type <-chan T , receive-only channel, 8.4.3
type chan<- T , send-only channel, 8.4.3
type switch, case in, 7.13
type switch, default case in, 7.13
type, abstract, 1.8, 7.1
type, aggregate, 4, 4.4
type, array, 4.1
type assertion, 7.10, 7.13
type assertion, interface, 7.12, 7.12
type assertion, ok value from, 7.10
type, bool, 3.4
type, bufio.Scanner, 1.3
type, byte, 3.1
type, bytes.Buffer, 3.5.4, 6.6, 7.1, 7.5.1
type, Celsius, 2.5
type, chan, 8.4
type, channel, 1.6
type, complex, 3.3

type, composite, Preface, 1.4, 4
type composition, Preface, 4.4.3, 6.3, 7.6
type, concrete, 1.8, 7.1, 7.13, 7.14
type declaration, 2.5
type, displaying methods of a, 12.8
type, empty interface, 7.3
type, error built-in, 1.3, 5.4, 5.9, 7.8
type, Fahrenheit, 2.5
type, function, 5.1, 5.1
type, http.HandlerFunc, 7.7, 7.9
type, http.Request, 1.7, 8.9
type, http.ResponseWriter, 1.7, 1.7, 7.7, 7.7
type, int, 3.1
type, interface{}, 5.7
type, interface, 7.1, 7.2
type, interface{}, 7.3, 12.2, 12.2
type, interface dynamic, 7.5
type, json.Decoder, 4.5
type, json.Encoder, 4.5
type keyword, 7.13
type, map, 1.3, 4.3
type, method receiver, 6.1
type mismatch, 3.1
type, named, 1.8, 2.5, 2.5, 4.4.3, 6.1
type, net.Conn, 8.2
type, net.Listener, 8.2
type, numeric, 3.1
type, *os.File, 1.3, 1.3, 7.1, 7.3, 7.5.1, 12.3
type, os.FileInfo, 8.8
type, os.LinkError, 7.11
type, os.PathError, 7.11
type, recursive, 2.7
type, reference, 1.3, 1.3, 4.3, 5.1
type, reflect.StructTag, 12.7
type, reflect.Type, 12.2
type, reflect.Value, 12.2, 12.5

type, rune, 3.1, 3.5.2
type, slice, 4.2
type, sort.IntSlice, 7.6
type, strings.Reader, 10.6
type, strings.Replacer, 10.6
type, struct, 1.4, 1.8, 4.4
type, struct{}, 8.4.1, 8.6, 8.8
type switch statement, 7.13, 7.13, 7.14, 12.1
type, sync.Mutex, 9.2, 9.5
type, sync.Once, 9.5
type, sync.RWMutex, 9.3, 9.5
type, sync.WaitGroup, 8.5, 8.8, 9.7
type, syscall.Errno, 7.8, 7.8
type, template.HTML, 4.6
type, testing.B, 11.4
type, testing.T, 11.2
type, time.Duration, 3.6, 7.4
type, time.Time, 4.6
type, uint, 3.1
type, uintptr, 3.1, 13.1, 13.2
type, underlying, 2.5
type, unidirectional channel, 8.4.3, 8.4.3, 8.4.3
type, unnamed struct, 6.3
type, unsafe.Pointer, 13.2
type, url.URL, 7.7
types, untyped constant, 3.6.2

U
UDP socket, 8.2
uint type, 3.1
uintptr type, 3.1, 13.1, 13.2
unary operator -, 3.1
unary operator +, 3.1
unbuffered channel, 8.4, 8.4.1
undefined behavior, 9.1
underlying array, 4.2, 4.2, 4.2.1, 7.6

underlying type, 2.5
Unicode code point, 3.5.2
Unicode escape, 3.5.3, 4.5
unicode package, 3.5.4
Unicode replacement character , 3.5.3, 4.3
Unicode standard, 1.1, 2.1, 3.1, 3.5.1, 3.5.2, 3.5.3, 3.5.3, 4.3
unicode.IsDigit function, 3.5.4
unicode.IsLetter function, 3.5.4
unicode.IsLower function, 3.5.4
unicode.IsSpace function, 4.2.2
unicode.IsUpper function, 3.5.4
unicode/utf8 package, 3.5.3
unidirectional channel type, 8.4.3, 8.4.3, 8.4.3
union, discriminated, 7.13, 7.13, 7.14
universe block, 2.7
Unix domain socket, 8.2
unmarshaling JSON, 4.5
unnamed struct type, 6.3
unnamed variable, 2.3.3, 4.2
unreachable statement, 5.1
unsafe package, 13
unsafe.AlignOf function, 13.1
unsafe.Offsetof function, 13.1
unsafe.Pointer conversion, 13.2
unsafe.Pointer type, 13.2
unsafe.Pointer zero value, 13.2
unsafe.Sizeof function, 13.1
unsigned integer, 3.1, 3.1
untyped constant types, 3.6.2
unused parameter, 5.1
URL, 5.2
URL escape, 4.5
url.QueryEscape function, 4.5
url.URL type, 7.7
urlvalues example, 6.2.1
UTF-8, 3.5.1, 3.5.3, 4.3

UTF-8 encodings, table of, 3.5.3
utf8.DecodeRuneInString function, 3.5.3
utf8.RuneCountInString function, 3.5.3
utf8.UTFMax value, 4.3

V
value, addressable, 2.3.2
value, call by, 4.1, 5.1, 6.2
value, function, 5.5
value, interface, 7.5
value, method, 6.4
value, utf8.UTFMax, 4.3
var declaration, 1.2, 2.3
variable confinement, 9.1
variable, heap, 2.3.4
variable, http.DefaultClient, 8.9
variable, io.Discard, 1.6
variable, io.EOF, 5.4.2
variable lifetime, 2.3.4, 2.7, 5.6
variable, local, 2.2, 5.6.1
variable, os.Args, 1.2
variable, stack, 2.3.4
variable, unnamed, 2.3.3, 4.2
variables, escaping, 2.3.4
variables, shared, 9
variable-size stack, 5.2
variadic function, 5.7, 7.1
vector, bit, 6.5
vendoring, 10.7.2
visibility, 2.1, 2.2, 2.6, 6.6, 10.7.5
visit function, 5.2

W
wait example, 5.4.1
WaitForServer function, 5.4.1
walkDir function, 8.8

web crawler, 5
web crawler, concurrent, 8.6
web framework, 7.7
while loop, 1.2
white-box test, 11.2.3
Wilkes, Maurice, 11
Wirth, Niklaus, Preface
word example, 11.2, 11.2, 11.2.1
word example, test of, 11.2
workspace organization, 10.7.1
writer lock, 9.3
writing effective tests, 11.2.5, 11.2.6

X
xkcd JSON interface, 4.5
XML decoding, 7.14
XML (Extensible Markup Language), 4.5
(*xml.Decoder).Token method, 7.14
xmlselect example, 7.14

Y

Z
zero length slice, 4.2
zero value, array, 4.1
zero value, boolean, 2.3
zero value, channel, 8.4, 8.7
zero value, function, 5.5
zero value, interface, 7.5
zero value, map, 4.3
zero value, named result, 5.1, 5.3
zero value, number, 1.2, 2.3
zero value, pointer, 2.3.2
zero value, reflect.Value, 12.2
zero value, slice, 3.5.4, 4.2
zero value, string, 1.2, 1.2, 2.3

zero value, struct, 4.4
zero value, unsafe.Pointer, 13.2

Code Snippets
Many titles include programming code or configuration examples. To optimize the
presentation of these elements, view the eBook in single-column, landscape mode and
adjust the font size to the smallest setting. In addition to presenting code and
configurations in the reflowable text format, we have included images of the code that
mimic the presentation found in the print book; therefore, where the reflowable
format may compromise the presentation of the code listing, you will see a “Click
here to view code image” link. Click the link to view the print-fidelity code image. To
return to the previous page viewed, click the Back button on your device or app.

	Cover
	Title Page
	Copyright
	Contents
	Preface
	The Origins of Go
	The Go Project
	Organization of the Book
	Where to Find More Information
	Acknowledgments

	1. Tutorial
	1.1 Hello, World
	1.2 Command-Line Arguments
	1.3 Finding Duplicate Lines
	1.4 Animated GIFs
	1.5 Fetching a URL
	1.6 Fetching URLs Concurrently
	1.7 A Web Server
	1.8 Loose Ends

	2. Program Structure
	2.1 Names
	2.2 Declarations
	2.3 Variables
	2.4 Assignments
	2.5 Type Declarations
	2.6 Packages and Files
	2.7 Scope

	3. Basic Data Types
	3.1 Integers
	3.2 Floating-Point Numbers
	3.3 Complex Numbers
	3.4 Booleans
	3.5 Strings
	3.6 Constants

	4. Composite Types
	4.1 Arrays
	4.2 Slices
	4.3 Maps
	4.4 Structs
	4.5 JSON
	4.6 Text and HTML Templates

	5. Functions
	5.1 Function Declarations
	5.2 Recursion
	5.3 Multiple Return Values
	5.4 Errors
	5.5 Function Values
	5.6 Anonymous Functions
	5.7 Variadic Functions
	5.8 Deferred Function Calls
	5.9 Panic
	5.10 Recover

	6. Methods
	6.1 Method Declarations
	6.2 Methods with a Pointer Receiver
	6.3 Composing Types by Struct Embedding
	6.4 Method Values and Expressions
	6.5 Example: Bit Vector Type
	6.6 Encapsulation

	7. Interfaces
	7.1 Interfaces as Contracts
	7.2 Interface Types
	7.3 Interface Satisfaction
	7.4 Parsing Flags with flag.Value
	7.5 Interface Values
	7.6 Sorting with sort.Interface
	7.7 The http.Handler Interface
	7.8 The error Interface
	7.9 Example: Expression Evaluator
	7.10 Type Assertions
	7.11 Discriminating Errors with Type Assertions
	7.12 Querying Behaviors with Interface Type Assertions
	7.13 Type Switches
	7.14 Example: Token-Based XML Decoding
	7.15 A Few Words of Advice

	8. Goroutines and Channels
	8.1 Goroutines
	8.2 Example: Concurrent Clock Server
	8.3 Example: Concurrent Echo Server
	8.4 Channels
	8.5 Looping in Parallel
	8.6 Example: Concurrent Web Crawler
	8.7 Multiplexing with select
	8.8 Example: Concurrent Directory Traversal
	8.9 Cancellation
	8.10 Example: Chat Server

	9. Concurrency with Shared Variables
	9.1 Race Conditions
	9.2 Mutual Exclusion: sync.Mutex
	9.3 Read/Write Mutexes: sync.RWMutex
	9.4 Memory Synchronization
	9.5 Lazy Initialization: sync.Once
	9.6 The Race Detector
	9.7 Example: Concurrent Non-Blocking Cache
	9.8 Goroutines and Threads

	10. Packages and the Go Tool
	10.1 Introduction
	10.2 Import Paths
	10.3 The Package Declaration
	10.4 Import Declarations
	10.5 Blank Imports
	10.6 Packages and Naming
	10.7 The Go Tool

	11. Testing
	11.1 The go test Tool
	11.2 Test Functions
	11.3 Coverage
	11.4 Benchmark Functions
	11.5 Profiling
	11.6 Example Functions

	12. Reflection
	12.1 Why Reflection?
	12.2 reflect.Type and reflect.Value
	12.3 Display, a Recursive Value Printer
	12.4 Example: Encoding S-Expressions
	12.5 Setting Variables with reflect.Value
	12.6 Example: Decoding S-Expressions
	12.7 Accessing Struct Field Tags
	12.8 Displaying the Methods of a Type
	12.9 A Word of Caution

	13. Low-Level Programming
	13.1 unsafe.Sizeof, Alignof, and Offsetof
	13.2 unsafe.Pointer
	13.3 Example: Deep Equivalence
	13.4 Calling C Code with cgo
	13.5 Another Word of Caution

	Index

